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Because the cardiovascular system and respiration are so intimately coupled, disturbances
in respiratory control often lead to disturbances in cardiovascular control. Obstructive Sleep
Apnea (OSA), Chronic Obstructive Pulmonary Disease (COPD), and Bronchiectasis (BE) are
all associated with a greatly elevated muscle vasoconstrictor drive (muscle sympathetic
nerve activity, MSNA). Indeed, the increase in MSNA is comparable to that seen in con-
gestive heart failure (CHF), in which the increase in MSNA compensates for the reduced
cardiac output and thereby assists in maintaining blood pressure. However, in OSA – but
not COPD or BE – the increase in MSNA can lead to hypertension. Here, the features of the
sympathoexcitation in OSA, COPD, and BE are reviewed in terms of the firing properties of
post-ganglionic muscle vasoconstrictor neurons. Compared to healthy subjects with low
levels of resting MSNA, single-unit recordings revealed that the augmented MSNA seen
in OSA, BE, COPD, and CHF were each associated with an increase in firing probability
and mean firing rates of individual neurons. However, unlike patients with heart failure, all
patients with respiratory disease exhibited an increase in multiple within-burst firing which,
it is argued, reflects an increase in central sympathetic drive. Similar patterns to those seen
in OSA, COPD, and BE were seen in healthy subjects during an acute increase in muscle
vasoconstrictor drive.These observations emphasize the differences by which the sympa-
thetic nervous system grades its output in health and disease, with an increase in firing
probability of active neurons and recruitment of additional neurons being the dominant
mechanisms.
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The respiratory and cardiovascular systems are tightly coupled
in order to maximize oxygen delivery to, and removal of car-
bon dioxide from, the tissues of the body. It is not surprising,
then, that diseases that affect the respiratory system may have
cardiovascular consequences. Indeed, diseases that compromise
gas exchange – such as obstructive sleep apnea (OSA), chronic
obstructive pulmonary disease (COPD), and bronchiectasis (BE) –
are all associated with an increase in vasoconstrictor drive to the
skeletal muscle vascular beds. This increase in muscle sympathetic
nerve activity (MSNA), as recorded directly from muscle fascicles
of the common peroneal nerve via intraneural microelectrodes, is
comparable in magnitude to that seen in congestive heart failure
(CHF). It is known that sustained hypoxemia causes a long-lasting
increase in MSNA and blood pressure, and that this persists fol-
lowing the return to normoxia (Morgan et al., 1995; Hansen and
Sander, 2003; Tamisier et al., 2005). It is also known that episodes
of airway obstruction in sleep cause repeated bouts of hypox-
emia and an increase in MSNA (Somers et al., 1995; Narkiewicz
et al., 1999) that persists in the awake state, leading to the develop-
ment of hypertension (Hedner et al., 1988; Carlsson et al., 1993,
1996; Narkiewicz et al., 1998, 1999; Elam et al., 2002). The sympa-
thoexcitation associated with OSA has been shown to normalize

following nocturnal treatment with continuous positive airway
pressure (Waradekar et al., 1996; Narkiewicz et al., 1999). How-
ever, unlike OSA, in which airflow limitation is acute, COPD is
a disease characterized by chronic airflow limitation, especially in
expiration (McKenzie et al., 2003). The compromised gas exchange
and resultant chronic hypoxemia increases the load on the cardio-
vascular system. Three studies have shown that MSNA is increased
in COPD (Heindl et al., 2001; Raupach et al., 2008; Ashley et al.,
2010). Bronchiectasis, another respiratory disease associated with
chronic airflow limitation, has also been shown to be associated
with increased MSNA (Ashley et al., 2010). BE is due to collapse of
large airways and the production of large volumes of mucus secre-
tions; unlike COPD, there is neither hypoxemia nor hypercapnia
in BE.

The purpose of this review is to highlight the different mecha-
nisms by which the increase in MSNA in OSA, COPD, and BE is
brought about, comparing these to the sympathoexcitation seen
in CHF and during acute increases in MSNA in healthy subjects.
Accordingly, I have brought together previously published data I
have obtained in each of these conditions (Macefield and Wallin,
1999; Macefield et al., 1999; Elam and Macefield, 2001; Elam et al.,
2002; Ashley et al., 2010), the current review serving as a means
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of synthesizing the state of knowledge about the sympathoexcita-
tion in chronic respiratory disease, and comparing this with that
of CHF – largely considered the “gold standard” of a pathological
increase in MSNA. As will become apparent, the material I present
is largely sourced from single-unit recordings of muscle sympa-
thetic (vasoconstrictor) nerve activity. Although more difficult to
obtain, unitary recordings provide a more sensitive measure of
central sympathetic drive – i.e., the intensity of central sympa-
thetic outflow – than standard multi-unit recordings (Macefield
et al., 1994, 2002). In multi-unit recordings the absolute strength
(intensity) of the recorded activity cannot be determined because
of the dependence on the proximity of the electrode tip to the
active nerve fibers, but this is not a limitation with single-unit
recordings. Differences in the strength of multi-unit sympathetic
activity (i.e., the number and the amplitude of multi-unit bursts)
may be brought about in two ways: by differences in (i) the number
of active neurons or (ii) the mean firing frequency of the neurons.
A combination of both may also occur. A difference in mean fir-
ing frequency can be brought about by (a) a difference in firing
probability of active neurons, i.e., the percentage of heart beats in
which a given neuron is active or (b) a difference in the number
of spikes a given neuron discharges within the bursts (or a combi-
nation of both). As explored by Lambert et al. (2012) in different
cardiovascular and anxiety diseases, single-unit recordings allow
one to tease out the mechanisms by which the sympathoexcitation
is brought about in different pathophysiological states.

CLINICAL FEATURES IN RESPIRATORY DISEASE
Three groups of patients with respiratory disease were compared:
one group with acute respiratory insufficiency – OSA – and two
with chronic respiratory insufficiency, COPD and bronchiectasis
(BE). All of the patients were elderly. Although the OSA patients
were – as a group – obese (body mass index >30), the mean
BMI of the COPD patients was normal, while the BE patients
were classified as being overweight but not obese. Spirometric
data for the OSA patients were normal, but both the COPD and
BE patients had clear evidence of severe respiratory insufficiency:
forced vital capacity was significantly below normal – 1.80 ± 0.15
and 1.89 ± 0.22 l for the two groups – with forced expiratory vol-
ume in 1 s (FEV1) being only 0.82 ± 0.07 l in the COPD patients
and 1.03 ± 0.15 l in the BE patients. Blood gas analysis revealed
evidence of significant hypoxemia (69.3 ± 5.3 mmHg) and hyper-
capnia (59.0 ± 3.3 mmHg) in the patients with COPD, but not in
those with BE or OSA. Table 1 provides clinical details from the
patients, together with data from a group of older healthy con-
trol subjects. Mean heart rates were within the normal range in
all patients, although heart rates in the patients were significantly
higher than in the older healthy subjects. As a group, those with
OSA had hypertension: resting systolic and diastolic blood pres-
sures were 145 ± 5 and 96 ± 5 mmHg, respectively – significantly
higher than those of the healthy older subjects. Conversely, neither
the patients with COPD or bronchiectasis (BE) had elevated blood
pressures.

MSNA IN RESPIRATORY DISEASE: MULTI-UNIT RECORDINGS
Compared with healthy subjects with low levels of MSNA, who
had an average burst incidence of 21 ± 2%, MSNA was high (burst

Table 1 | Clinical details of the patients with obstructive sleep apnea

(OSA; Elam et al., 2002), obstructive pulmonary disease (COPD;

Ashley et al., 2010), or bronchiectasis (BE; Ashley et al., 2010), relative

to a group of older healthy control subjects (OHC; Hart et al., 2009).

OHC

(n = 17)

OSA

(n = 18)

COPD

(n = 18)

BE

(n = 5)

Age (years) 60 ± 2 65 ± 4 71 ± 2* 70 ± 3*

BMI (kg/m2) 26 ± 1 32 ± 2* 25 ± 1 29 ± 2

Systolic BP (mmHg) 136 ± 7 145 ± 5*** 138 ± 4 131 ± 4

Diastolic BP (mmHg) 71 ± 2 96 ± 5*** 73 ± 3 64 ± 2*

Heart rate (bpm) 58 ± 2 67.4** 70 ± 2** 76 ± 8**

Burst incidence (%) 64 ± 4 77 ± 5** 86 ± 2*** 78 ± 4***

Significantly different from OHC: *P < 0.05; **P < 0.01; ***P < 0.001.

incidence >75%) in all patients with respiratory disease. While it is
known that MSNA is higher in older subjects, the levels expressed
by the patients were significantly higher than those of a group of
older healthy subjects (64 ± 4%). Moreover, the levels of activity
were comparable to those seen in patients with CHF. Mean data
are provided in Table 1. However, high resting levels of MSNA
can also be found in young healthy subjects. Indeed, a group of
healthy subjects with a burst incidence of 75 ± 1% had levels that
were statistically identical to those recorded in patients with OSA
(77 ± 5%) or BE (78 ± 4%). As seen in Table 1, burst incidence
was significantly higher in COPD (85 ± 2%) and CHF (88 ± 5%).

MSNA IN RESPIRATORY DISEASE: SINGLE-UNIT
RECORDINGS
A characteristic feature of the firing pattern of human muscle
vasoconstrictor neurons is that they tend to fire only once in a
multi-unit burst of impulses, i.e., only once per cardiac interval.
And while they can fire multiple times, this is relatively rare. The
same is true in patients with respiratory disease. An example of a
unitary recording from a 65-year-old patient with COPD is shown
in Figure 1. Typical of what we find in COPD, this unit was active
in many cardiac intervals, i.e., it possessed a fairly high firing prob-
ability. However, in bronchiectasis – despite the high overall level
of MSNA – the average firing probability was not significantly dif-
ferent from that of individual neurons recorded in healthy subjects
with normally high levels of MSNA (37.8 ± 6.8 vs. 34.9 ± 3.6%);
the same was true for burst incidence (77.6 ± 4.3 vs. 74.9 ± 0.5%).
Despite this, mean firing rates in BE were more than double those
seen in the healthy subjects (0.72 ± 0.11 vs. 0.33 ± 0.04 Hz). How
can this be? Well, if one compares the firing distribution in BE
and the healthy subjects with high levels of MSNA, it can be seen
that there was a significant shift away from individual neurons fir-
ing only once per cardiac interval in the healthy subjects to firing
two or more spikes per burst in the patients with BE. The same
trend was seen in patients with OSA and COPD: the percentage of
solitary spikes was 60.0 ± 6.2, 58.7 ± 2.8, and 63.4 ± 3.3% in BE,
OSA, and COPD, compared to 77.6 ± 3.8% in the healthy sub-
jects with high levels of MSNA. However, there was a difference
between BE on the one hand and OSA and COPD on the other:
while firing probability was low in BE, it was elevated (>50%) in
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FIGURE 1 | Unitary recording from a single muscle vasoconstrictor

neuron in an awake female patient with COPD. This unit generally
fired only one spike (indicated by asterisks) per cardiac interval, but
occasionally fired multiple spikes within a burst of MSNA. Superimposed

spikes show a uniform spike morphology, indicating that the action
potentials originated from the same single sympathetic axon. The
RMS-processed nerve signal primarily reflects far-field activity of many
sympathetic neurons firing.

OSA and COPD. Indeed, firing probabilities in OSA and COPD
were comparable to those seen in CHF.

Histograms of the firing distributions for patients with BE,
OSA, and COPD are shown in Figure 2, together with compari-
son data for healthy subjects and patients with CHF. Data for the
healthy subjects have been pooled from those with low levels of
resting MSNA (Macefield et al., 1994) and those with high levels
(Macefield and Wallin, 1999). It can be seen that the spike fir-
ing distribution in patients with CHF was not different to that of
the healthy subjects, whereas there was a clear shift away toward
multiple firing in each of the respiratory diseases shown.

ACUTE INCREASES IN MSNA
In five healthy subjects with high levels of resting MNSA, unitary
recordings were made from nine neurons during quiet breath-
ing and during a manouevre that causes an acute increase in
MSNA – an inspiratory-capacity apnea (Macefield and Wallin,
1995). Using paired data the mean firing probabilities of the 9 units
increased significantly from 32.5 ± 6.2% at rest to 56.3 ± 3.1%
during the static phase of a maximal inspiratory breath-hold. As
seen in Table 1, this firing probability is comparable to that seen
in OSA, COPD, and CHF. Moreover, during this acute increase in
muscle vasoconstrictor drive the percentage of cardiac intervals in
which a solitary spike was generated decreased from 85.1 ± 4.5%
at rest to 61.3 ± 5.6% during the apnea (p < 0.01). Correspond-
ingly, the percentage of cardiac intervals in which a unit fired twice
increased from 11.5 ± 2.7 to 26.7 ± 2.2% (p < 0.01). The percent-
age of intervals in which a unit generated three or four spikes also
increased during the apnea, although these changes failed to reach
statistical significance. It is notable that the spike distribution was
comparable to that seen in BE, OSA, and COPD (Table 2).

DISCUSSION
Standard multi-unit recordings have shown that elevated levels of
MSNA feature in many diseases. In addition to CHF, OSA, COPD,
and bronchiectasis, MSNA is increased in many different forms of
hypertension: essential (Grassi et al., 1998; Schlaich et al., 2004),
pregnancy-induced (Schobel et al., 1996; Fischer et al., 2004), ren-
ovascular (Johansson et al., 1999; Miyajima et al., 2001), and that
associated with chronic kidney disease (Hausberg et al., 2002;
Tuncel et al., 2002; Schlaich et al., 2009). However, it should be
emphasized that a high level of MSNA does not, on its own, mean
there is any underlying pathology: many healthy young individ-
uals have high MSNA at rest yet normal blood pressures and no
evidence of cardiovascular disease (Macefield and Wallin, 1999).
This is one of the advantages of single-unit recordings: because of
the quantal nature of unitary recordings, the firing properties of
individual neurons can be compared across subjects and diseases.
This means that by providing evidence of increases in firing prob-
ability, mean firing rate or multiple firing one can see whether the
elevated level of MSNA reflects an increase in central sympathetic
drive that may be being driven by some underlying pathology.
Individual muscle vasoconstrictor neurons in healthy subjects with
elevated resting levels of MSNA have low firing probabilities, low
firing rates, and a low incidence of multiple firing (Macefield and
Wallin, 1999). Conversely, pathophysiological increases in MSNA
are associated with at least one of the following features: high firing
probabilities, high firing rates, and a high incidence of multiple fir-
ing of individual neurons. Moreover, the patterns of increase differ
according to the type of pathology.

The overall burst incidence in COPD (86%) was comparable
to that seen in CHF (88%), which for both conditions was greater
than either the patients with bronchiectasis (78%) or OSA (77%).
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FIGURE 2 | Firing distributions of single muscle vasoconstrictor neurons

in healthy subjects [data combined from subjects with low (Macefield

et al., 1994) or high (Macefield and Wallin, 1999) resting levels of MSNA],

and in patients with congestive heart failure (CHF; Macefield et al., 1999),

bronchiectasis (BE; Ashley et al., 2010), obstructive sleep apnea (OSA;

Elam et al., 2002), or chronic obstructive pulmonary disease (COPD;

Ashley et al., 2010). The histograms showing pooled data on the percentage
of cardiac intervals in which units were quiescent, fired a single spike or 2, 3,
or 4 spikes. In the top panel, all cardiac intervals have been included: the open
columns represent those cardiac intervals in which the neurons were silent.
The lower panels show data in which only those cardiac intervals were
included in which a unit was active.

Table 2 | Firing properties (mean ± SE) of muscle vasoconstrictor neurons in healthy subjects with low (Macefield et al., 1994) or high (Macefield

andWallin, 1999) resting levels of MSNA, during an acute increase in MSNA caused by a maximal inspiratory breath-hold (Macefield andWallin,

1999), and in patients with bronchiectasis (BE; Ashley et al., 2010), obstructive sleep apnea (OSA; Elam et al., 2002), chronic obstructive

pulmonary disease (COPD; Ashley et al., 2010), or congestive heart failure (CHF; Macefield et al., 1999).

Units (n) burst

incidence %

Firing

probability %

Mean

frequency Hz

One

spike %

Two

spikes %

Three

spikes %

Four

spikes %

Healthy – low MSNA 14 21.0 ± 2.2* 25.3 ± 3.0* 0.49 ± 0.06* 65.9 ± 5.5 18.9 ± 2.6 7.1 ± 2.2 6.0 ± 2.4*

Healthy – high MSNA 19 74.9 ± 0.5 34.9 ± 3.6 0.33 ± 0.04 77.6 ± 3.8 18.1 ± 2.9 3.6 ± 1.1 0.5 ± 0.3

Healthy – acute increase 9 100* 56.3 ± 3.1* 1.04 ± 0.14* 61.3 ± 5.6* 26.7 ± 2.2* 9.5 ± 3.4* 2.0 ± 1.0

BE 6 77.6 ± 4.3 37.8 ± 6.8 0.72 ± 0.17* 60.0 ± 6.2* 23.2 ± 2.6* 10.6 ± 1.9* 1.5 ± 0.7

OSA 12 77.2 ± 5.2 50.7 ± 4.4* 0.96 ± 0.11* 58.7 ± 2.8* 27.3 ± 1.3* 9.7 ± 1.5* 2.9 ± 0.7

COPD 17 85.1 ± 1.9* 52.2 ± 4.9* 0.92 ± 0.12* 63.4 ± 3.3* 24.8 ± 2.0* 8.7 ± 1.0* 2.2 ± 0.6

CHF 16 88.1 ± 4.7* 55.1 ± 5.1* 0.98 ± 0.22* 70.6 ± 5.8 18.2 ± 2.4 7.3 ± 2.6* 3.0 ± 1.6

*Indicates significantly different (P < 0.05) from healthy subjects with high levels of resting MSNA. P < 0.0.05.

Indeed, COPD and CHF represent two of the highest pathophys-
iological causes of augmented spontaneous MSNA ever recorded.
The firing probability of muscle vasoconstrictor neurons was also
as high in COPD (52%) as in CHF (55%), as was also the case for
OSA (51%). It is interesting that the firing probability of single
neurons in BE (38%) was no different from that of the healthy
subjects with high levels of MSNA (35%). We know that hypox-
emia and hypercapnia are not clinical features of bronchiectasis,
so perhaps this accounts for the low firing probabilities seen in this
disease. Nevertheless, given that the overall burst incidence were
comparable in the two groups, one can conclude that, unless one

of the firing properties is elevated, a high level of MSNA does not
equate to an increase in central sympathetic drive.

Mean firing rates in the COPD patients (0.92 Hz) were similar
to those found in OSA (0.96 Hz) and CHF patients (0.98 Hz), but
higher than those in the bronchiectasis patients (0.72 Hz) and the
healthy subjects (0.33 Hz). However, unlike the CHF patients, who
showed no decrease in the proportion of solitary spikes generated
within a burst, the patients with COPD, OSA, and BE each showed
a significant trend toward multiple firing. We had already demon-
strated that a shift toward multiple firing can occur in CHF, but
only during the prolonged cardiac intervals following ventricular
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ectopic beats (Elam and Macefield, 2001). While the shift toward
multiple firing can be explained by the elevated chemical drive in
COPD and OSA, it is difficult to account for the increase seen in
BE; perhaps it is related to the increased work of breathing in this
disease. Regardless of the underlying mechanisms by which mul-
tiple within-burst firing occurs, it is not unreasonable to posit that
a shift toward multiple firing will increase the liberation of nora-
drenaline (and co-localized neurotransmitters) from the vasocon-
strictor nerve terminals – thereby increasing the degree of neurally
mediated vasoconstriction. In addition, as discussed previously
(Macefield et al., 1994), the generation of intermittently high
instantaneous frequencies associated with multiple firing may have
physiological consequences: for instance, it is known that electri-
cal stimulation of muscle vasoconstrictor neurons in the cat with
an irregular pattern is more effective at contracting arterioles than
is a regular pattern of stimulation (Andersson, 1983), and similar
results have been found for the mesenteric (Nilsson et al., 1985)
and gastric (Polenov et al., 1991) vessels in the rat. In humans,
electrical stimulation of sudomotor neurons with irregular stim-
ulus trains is more effective at liberating sweat than is stimulation
with regular trains (Kunimoto et al., 1991, 1992), and it has been
argued that – compared to sudomotor neurons active in thermally
induced sweating – the firing patterns of sudomotor neurons in
patients with hyperhidrosis show a significant shift toward mul-
tiple firing which would be expected to increase the release of
acetylcholine from the nerve terminals and hence the liberation
of sweat from the skin (Macefield et al., 2008). Similar arguments
have been made by Murai et al. (2006, 2009) with respect to the
firing of single muscle vasoconstrictor neurons in heart failure.
Morever, Lambert et al. (2011) recently showed that cardiac nora-
drenaline spillover is higher when muscle vasoconstrictor neurons
(and presumably, in parallel, cardiac sympathetic neurons) exhibit
an increase in multiple firing, arguing that multiple firing does
indeed cause an increase in neurotransmitter release.

Pharmacological treatment was not withdrawn prior to the
study, so as to avoid rebound cardiovascular responses and associ-
ated effects on MSNA. Nevertheless, despite the ongoing treatment
MSNA remained high in all patients. Unlike the high incidence
of OSA with obesity, the COPD subjects had, on average, a nor-
mal BMI. It is known that obesity itself increases the resting level
of MSNA, but the levels typically encountered (burst incidence
53%) are much lower than those we see in COPD, OSA, BE, or
CHF; moreover, individual muscle vasoconstrictor neurons do not
show an increased incidence of multiple firing in obesity (Lambert
et al., 2007), so we do not believe that the firing characteristics
observed in OSA, COPD, or BE can be accounted for by body
weight. Interestingly, despite the elevated levels of central sym-
pathetic drive evident in COPD and BE, none of these patients
had high blood pressure. So, why does the increase in MSNA in
OSA lead to hypertension? Perhaps, it is because the hypoxia and
hypercapnia seen in COPD act directly on blood vessels to cause
vasodilatation, thereby counteracting the neutrally mediated vaso-
constriction. Indeed, it is known that in brain-dead patients, who
have no central sympathetic drive, asphyxia causes vasodilatation,
and hypotension (Lahana et al., 2005). However, why patients with
BE do not develop hypertension is unknown, given that they are
not chronically asphyxic.

CONCLUSION
In conclusion, each of the respiratory diseases herein examined
showed evidence of an elevated central sympathetic outflow –
as judged by the firing properties of single muscle vasocon-
strictor neurons. While the overall level of sympathoexcitation
seen in OSA, COPD, and BE, as measured from multi-unit
burst incidence, is comparable to that seen in CHF, the uni-
tary firing properties observed in OSA, COPD, and BE are more
closely aligned with each other than with the firing properties
seen in CHF.
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