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The insulin/insulin-like growth factor signaling (IIS) pathway is well-established as a critical
regulator of growth and metabolic homeostasis across the animal kingdom. Insulin-like
peptides (ILPs), the functional analogs of mammalian insulin, were initially discovered
in the silkmoth Bombyx mori and subsequently identified in many other insect species.
Initial research focused on the role of insulin signaling in metabolism, cell proliferation,
development, reproduction and aging. More recently however, increasing attention has
been given to the role of insulin in the regulation of neuronal function and behavior.
Here we review the role of insulin signaling in two specific insect behaviors: feeding and
locomotion.
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INTRODUCTION
In both vertebrates and invertebrates, insulin is a key metabolic
hormone that modulates carbohydrate and lipid metabolism in
response to an organisms’ nutritional state. Dysregulation of
insulin production, release, or downstream signaling leads to
metabolic disease, including diabetes and obesity (Baker and
Thummel, 2007; Hoffmann et al., 2013). The role of insulin in
metabolic homeostasis as well as development, fertility and lifes-
pan is well-established, whereas the function of insulin in the
brain and behavior is not as well-understood (Britton et al., 2002;
Ikeya et al., 2002; Rulifson et al., 2002; Broughton and Partridge,
2009). In mammals, insulin is known to act on the brain to mod-
ulate behaviors relating to reproduction, feeding, and memory
(Gerozissis and Kyriaki, 2003). However, given the complexities
inherent to the study of mammals, the use of simpler organisms,
such as insects, provides an excellent opportunity to elucidate
the role of insulin signaling in neuronal function and behavior
(Teleman, 2010).

Insulin-like peptides (ILPs) were originally discovered in the
silkmoth Bombyx mori and subsequently identified in migra-
tory locusts, mosquitos, and scarab beetles among other insects
(Lagueux et al., 1990; Riehle et al., 2006; Lavine et al., 2013). The
study of insulin signaling in insects was significantly advanced by
the identification of eight insulin-like genes in the genome of the
fruit fly, Drosophila melanogaster (Brogiolo et al., 2001; Grönke
et al., 2010; Colombani et al., 2012). In mammals, insulin and
insulin-like growth factors signal through several different recep-
tors whereas in Drosophila all ILPs signal through a single insulin
receptor (InR) (Fernandez et al., 1995; Yamaguchi et al., 1995;
Brogiolo et al., 2001). In the adult fly, three of these ILPs (2, 3,
and 5), are expressed in the dorso-medial protocerebrum by two
clusters of neurosecretory cells known as the Insulin-Producing
Cells (IPCs). The IPCs are located in the pars intercerabalis, a
brain region analogous to the mammalian hypothalamus, and

their axons project to other regions in the brain and to the fly
heart (Rulifson et al., 2002). Secreted ILPs can activate insulin sig-
naling in the brain or head or enter the fly circulatory system to
activate systemic insulin signaling in peripheral tissues. The reg-
ulation of ILP production and release has recently been reviewed
by Nässel et al. (2013).

In Drosophila, the field of behavioral genetics began with
the identification of the period gene as a critical regulator of
rest:activity rhythms in the fly (Konopka and Benzer, 1971). Since
then the fruit fly has been used extensively to identify genes
and pathways underlying many complex behaviors. This review
will focus primarily on Drosophila largely because of its simple
and well-studied neuroanatomy as well as its genetically tractable
nature, both of which facilitate the study of insulin’s role in the
brain and complex behavior.

THE IPCs AND INSULIN SIGNALING PATHWAY INFLUENCE
FEEDING BEHAVIOR
Maintaining adequate energy stores is critical for animal survival
and reproduction. As a result, neural and molecular mechanisms
have evolved to modulate feeding behavior in response to an
animal’s internal physiological state as well as changes in food
availability in the environment. Feeding begins with the moti-
vation to eat, followed by a search for a suitable food source,
which can be influenced by smell and taste among other factors.
Feeding is terminated upon reaching a satiated state. In mam-
mals it has long been known that insulin signaling suppresses
food intake (Woods et al., 1979; Williams and Elmquist, 2012).
Similarly, insulin has also been shown to play an important role at
several stages of feeding behavior in insects, including Drosophila
melanogaster. Studies in insects have also identified neuropep-
tides, many of which have mammalian orthologs, involved in the
regulation of physiology and behavior, including feeding behavior
(Nässel and Winther, 2010). Many of these other molecules and
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mechanisms regulating feeding behavior in fruit flies are reviewed
by Itskov and Ribeiro (2013). Here we will focus solely only
on instances in which insulin-signaling modulates Drosophila
feeding behavior.

Hunger or deprivation due to limited food availability pro-
vokes animals to acquire food. Initiation of motivated foraging
is crucial for survival so animals have developed mechanisms to
ensure that this response occurs under appropriate conditions.
The insulin signaling pathway links the fly’s internal metabolic
state with the initiation of feeding behavior. In larval IPCs, con-
stitutive activation of a downstream effector of the InR, p70/S6
kinase (dS6K), reduces foraging motivation and food acquisition
(Oldham and Hafen, 2003; Wu et al., 2005a). This attenuated
feeding response may be mediated by increased ILP release since
pan-neuronal overexpression of ilp2 or ilp4 also reduced moti-
vated foraging (Wu et al., 2005a). Overall these data indicate that
hunger normally downregulates S6K activity in the IPCs to reduce
insulin release and drive deprived animals to search for and
acquire food. Starvation-induced food acquisition is also mod-
ulated by insulin signaling in mushroom body neurons known
as Kenyon cells (Zhao and Campos, 2012). Inhibition of insulin
signaling in Kenyon cells throughout development reduces food
intake following starvation. Interestingly, temporary suppression
of synaptic transmission by these neurons also partially reduces
food intake. Thus, insulin signaling in Kenyon cells during devel-
opment may modulate the synaptic activity of these neurons to
ultimately regulate food acquisition.

After assuming motivated foraging, animals must utilize their
sense of smell in order to find an adequate food source. Starvation
decreases the amount of time a fly takes to find food by heighten-
ing their sense of smell, or in more technical terms, by enhancing
odor representation in neurons that process olfactory input,
known as odorant receptor neurons (ORNs) (Root et al., 2011).
Enhancement of odor representation is facilitated by the expres-
sion of short neuropeptide F (sNPF) and its receptor (sNPFR)
in specific ORNs (Carlsson et al., 2010; Root et al., 2011). Both
sNPF and its mammalian orthologue, Neuropeptide Y (NPY), are
known to promote feeding behavior (Lee et al., 2004; Kageyama
et al., 2012). Intriguingly, Root and colleagues found that insulin
interacts with the sNPF pathway by acting as a satiety signal
to decrease sNPFR expression in ORNs and in turn decrease
motivated feeding (Root et al., 2011). Hence during starvation
when insulin signaling is low, sNPFR levels are high to medi-
ate increased ORN sensitivity to odors and to encourage food
acquisition.

The gustatory system also plays a role in feeding behavior pri-
marily by influencing food choice. When determining what to
eat, animals must assess both the nutritional content and palata-
bility of a food source. A hungry fly initially decides what to
eat based on taste; choosing the sweeter option over the more
calorie dense option. However, over time, this preference shifts
toward the more calorie rich option (Stafford et al., 2012). This
change in preference is at least partially mediated by insulin. Ilp2
and ilp3 mutants and decreased insulin signaling throughout the
brain all show an increased initial preference for the more caloric
food source instead of the sweeter option (Stafford et al., 2012).
This suggests that insulin contributes to calorie sensing and

food source preference by acting directly on neurons in feeding
circuits.

In the absence of a preferred food source, animals will feed
on less palatable food sources. Drosophila larvae prefer to feed
on rich liquid food as opposed to solid food. This preference is
partially mediated by insulin signaling in cells that promote food
intake through signaling downstream of the receptor for NPF,
a distinct peptide from sNPF but also a fly orthologue of NPY.
Downregulating insulin signaling in NPFR neurons causes fed
larvae to be hungry and also increases their consumption of the
less preferred solid food (Wu et al., 2005b). Conversely, upregula-
tion of the insulin pathway in NPFR neurons of deprived animals
elicits attenuated feeding of solid food (Wu et al., 2005b). In
states of starvation, animals adapt by undertaking risky behaviors
including searching for food under less than optimal conditions
and consuming normally aversive noxious food. Under unfa-
vorable conditions like cold temperature, the NPF/IIS signaling
cascade enables starving Drosophila larvae to adapt and continue
searching for food in order to survive (Lingo et al., 2007). This
pathway also regulates risk-sensitive food acquisition with respect
to noxious or bitter compounds. Overexpression of NPFR as well
as down regulation of insulin signaling in NPFR neurons both
increase consumption of noxious or bitter compounds in non-
deprived larvae (Wu et al., 2005b). These results indicate that the
NPF and ILP signaling mediate foraging responses under adverse
conditions presumably to promote survival.

After determining what to eat, animals must also determine
how much they will eat. Under very poor nutrient conditions
flies will compensate by eating more. Interestingly this change in
feeding behavior does not occur in IPC ablated flies (Broughton
et al., 2010). Similarly, inhibition of IPCs also results in attenu-
ation of food intake under poor nutrient conditions (Cognigni
et al., 2011). However, given that IPC ablation or inhibition pre-
sumably affects the expression levels of ILPs as well as other
peptides expressed in these cells; alterations in feeding behavior
may not simply be due to changes in insulin signaling. In addition
to ILPs, the IPCs also express the cholecystokinin-like peptide,
drosulfakinin (DSK) (Park et al., 2008; Söderberg et al., 2012).
IPC specific reduction of dsk increases food consumption and
alters the ability of the fly to discriminate between food choices.
However, this effect is not independent of insulin because reduc-
tion of dsk also alters ilp transcript levels (Söderberg et al., 2012).
Nonetheless, DSK likely modulates the amount of food a fly con-
sumes by acting in conjunction with DILPs to convey fullness to
the animal.

In addition to feeding behavior, Drosophila has also been
used to investigate the mechanisms underlying physiological
and behavioral responses to alcohol consumption (Devineni and
Heberlein, 2013). The IPCs and insulin signaling in the brain are
implicated in ethanol sensitivity and the behavioral response to
this addictive drug. Inhibiting protein kinase A (PKA) activity in
the IPCs increases ethanol sensitivity as does decreasing insulin
receptor signaling suggesting that reduced PKA activity in IPCs
results in decreased insulin production and/or release which ulti-
mately causes increased ethanol sensitivity (Corl et al., 2005).
On the other hand, exposure to ethanol can affect insulin sig-
naling. Developmental ethanol exposure in the fly, as in many
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other organisms, has been shown to have detrimental effects. Flies
that experienced developmental ethanol exposure are less viable,
developmentally delayed, smaller in body size, and respond differ-
ently to alcohol as adults. These phenotypes are all due to reduced
insulin signaling in exposed animals (McClure et al., 2011).

Some of the mechanisms involved in the regulation of feed-
ing behavior discussed above have also been found to play a
role in feeding behavior regulation in other insects not discussed
here such as the African malaria mosquito Anopheles gambia and
honey bees (Arsic and Guerin, 2008; Wang et al., 2010). Generally
insulin conveys the organism’s nutritional state, whether starved
or fed, and accordingly drives feeding behavior in response to that
state.

EFFECTS OF INSULIN SIGNALING ON LOCOMOTOR ACTIVITY
Many insects, including Drosophila, are crepuscular; they are
primarily active at twilight or dawn and dusk. An internal
clock entrained to the external environment largely through
light and temperature cues, tightly regulates the timing of loco-
motor activity [Reviewed in Allada and Chung (2010)]. This
well-conserved molecular oscillator is comprised of interlocked
transcriptional/translational feedback loops, in which clock pro-
teins negatively regulate their own transcription to create an
endogenous rhythm of roughly 24 h [Reviewed by Zheng and
Sehgal (2012)]. Briefly, in Drosophila, the core molecular oscil-
lator consists of two transcription factors, CLOCK (CLK) and
CYCLE (CYC), which drive the expression of the clock genes
period (per) and timeless (tim). Eventually PER and TIM proteins
re-enter the nucleus and inhibit the activity of CLK/CYC, thus
preventing their own transcription. Ultimately the inhibition of
CLK/CYC is relieved following the degradation of PER and TIM,
allowing the cycle to begin again.

The anatomical and functional organization of the roughly 150
clock neurons in each hemisphere of the adult fly brain is well-
established (Allada and Chung, 2010). Clock neurons located
within the ventral lateral regions of the brain, known as the small
ventral lateral neurons (sLNvs), are sufficient for driving locomo-
tor rhythms under conditions where no external cues are present
(constant darkness and temperature). The sLNvs produce the
neuropeptide pigment dispersing factor (PDF) which rhythmi-
cally accumulates in the dorsal projections of the sLNvs. These
axonal projections terminate near the PI, the aforementioned
neuroendocrine center that encompasses the IPCs among other
neurosecretory cells. The PI is implicated in the control of circa-
dian rest:activity rhythms; however, neither the IPCs or the ILPs
produced by these cells have been reported to directly regulate
rest:activity rhythms (Helfrich-Forster et al., 2000). Nevertheless,
there is data implicating insulin signaling in modulating the sen-
sitivity of the circadian clock to oxidative stress, as measured in
response to the redox cycling agent paraquat (Zheng et al., 2007).
Activation of the insulin receptor initiates a signaling cascade that
results in the retention of the forkhead transcription factor FOXO
in the cytoplasm (Puig et al., 2003). Drosophila FOXO mutants
and, by extension, perhaps elevated insulin signaling (which leads
to the deactivation of FOXO), display increased sensitivity to
oxidative stress. Thus, the metabolic state of the fly can influence
the clock to affect behavioral rhythms.

In contrast to mammals, circadian regulation of the endocrine
system has not been as extensively investigated in insects (Bloch
et al., 2013). Neurohormones are excellent candidates for convey-
ing temporal information from neuronal pacemakers to periph-
eral tissues because they are released from the brain and circulate
in the blood allowing them to reach distal tissues and cells.
ILPs are one such potential time-conveying neurohormone, but
whether they are indeed regulated by the circadian system has yet
to be definitively established in insects. In the blood feeding bug,
Rhodnius prolixus, brains have been found to release ilps with a
24 h rhythm in vitro (Vafopoulou and Steel, 2002). Additionally,
IPC projections in Rhodnius are described as closely associating
with the axonal projections of PDF positive neurons in the cir-
cadian system, but whether these associations are indicative of
functional synapses has not yet been determined (Vafopoulou
and Steel, 2012). In Drosophila, microarray studies suggest the
insulin signaling pathway may be regulated by the circadian sys-
tem through the circadian expression of susi, a negative regulator
of Phosphatidylinositol-3 kinase (PI3K) activity (Claridge-Chang
et al., 2001; McDonald and Rosbash, 2001; Ueda et al., 2002;
Wittwer et al., 2005). Additionally, slowpoke binding protein
(SLOB) is expressed in a circadian manner in the IPCs and slob
mutants have altered insulin-signaling, however a function for
SLOB in behavior is unclear (Jaramillo et al., 2004; Sheldon et al.,
2011).

In addition to being under circadian control, rest:activity
behavior is also under the control of the homeostatic system
which regulates rest duration and quality. Short sleep duration
and poor sleep quality are associated with metabolic dysfunc-
tion (Spiegel et al., 2009). In Drosophila, octopamine, the insect
equivalent of norepinephrine, promotes wakefulness by bind-
ing to octopamine receptors on the cell membranes of IPCs
(Crocker and Sehgal, 2008; Crocker et al., 2010). Given that the
major output of the IPCs is ILPs, we asked whether octopamine
signaling in the IPCs promotes wakefulness by modulating the
insulin signaling pathway. We found that this is not the case
as increasing octopaminergic signaling in a ilp2-3 mutant back-
ground still results in decreased nighttime sleep similar to increas-
ing octopaminergic signaling in a wildtype background (Erion
et al., 2013). In addition, manipulations that either decreased
or increased insulin signaling in the brain or fat body did not
decrease sleep (Erion et al., 2013). These data do not rule out the
possibility that sleep homeostasis is modulated by insulin signal-
ing but does strongly suggest that it is not responsible for relaying
the wake-promoting effects of octopamine.

Aspects of locomotor activity are sexually dimorphic in
Drosophila. Males move more steadily compared to females as
indicated by fewer activity/inactivity periods (or start/stop bouts),
while the total distance traveled is similar for both sexes (Gatti
et al., 2000; Belgacem and Martin, 2002). Restricted expression
of the sex-determination transcription factor, transformer (tra),
identified a subset of neurons in the PI, henceforth called fem-
inizing cells (FCs), capable of feminizing the locomotor activity
pattern of male flies (Gatti et al., 2000). The axonal projections
of both FCs and IPCs terminate at the corpus cardiacum/corpus
allatum (cc/ca) (Gatti et al., 2000; Ikeya et al., 2002). This
gland synthesizes juvenile hormone (JH) which regulates many
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FIGURE 1 | Regulation of behavior by the Insulin-Producing Cells (IPCs)

in Drosophila. The IPCs modulate feeding and locomotor (shaded)
behavior through the insulin pathway. Decreased insulin production/release
from the brain IPCs results in decreased downstream insulin signaling and
leads to increased ethanol (EtOH) sensitivity and motivated foraging.
Decreased insulin signaling in sNPFR (short Neuropeptide F Receptor)
expressing odor receptor neurons (ORNs) and in NPFR (Neuropeptide F
Receptor) expressing neurons, increases the sensitivity of ORNs to odors

and increases the attraction of flies towards normally aversive or noxious
food sources, respectively. With respect to locomotion, octopaminergic
neurons signal through the IPCs to promote wake; however, this effect is
independent of insulin signaling. Insulin signaling in the corpus allatum
(CA), a non-neuronal endocrine gland (indicated by square), drives sexual
dimorphism of locomotor patterns. Lastly, insulin signaling in the circadian
small ventrolateral neurons (sLNVs) modifies the sensitivity of rest:
Lactivity rhythms to oxidative stress.

important processes in insects including metamorphosis, repro-
duction, and aging (Tu et al., 2005). JH and insulin have both
been implicated in the sexual dimorphism of locomotor behav-
ior. Feeding male flies an inhibitor of 3-Hydroxy-3-Methylgluaryl
CoA Reductase (HMGCR), a key JH biosynthesis enzyme,
feminizes their locomotor activity (Belgacem and Martin, 2002).
HMGCR mutants and targeted reduction of HMGCR in the ca
both abolish sexual dimorphism. Similarly, sexual dimorphism
in locomotor activity is eliminated in insulin receptor mutants
and flies with ablated IPCs. Interestingly, the insulin receptor is
expressed in the ca and insulin receptor mutants have altered
JH levels suggesting that there is a link between the insulin and
JH pathways (Tatar et al., 2001; Belgacem and Martin, 2006).
Furthermore, targeted reduction of the insulin receptor in the
ca suppresses HMGCR expression in this tissue (Belgacem and
Martin, 2007). Lastly, male mutants of takeout, a putative JH
binding protein and known circadian output gene, also display
feminization of their locomotor activity (Meunier et al., 2007).
Thus, it appears that insulin, JH, and takeout may interact to reg-
ulate sexual dimorphism of locomotor behavior in flies; however
their exact relationship remains unclear.

CONCLUSION
Given that behavior is so intricate, model organisms like
Drosophila melanogaster as well as other insect species provide
researchers with a framework to begin to teasing apart the many

different pathways and molecules that contribute to behavior. In
this review we have described the progress that has been made
with respect to the regulation of feeding and locomotion by
insulin, however many questions still remain (Figure 1). Future
investigations will hopefully give us additional insight into the
interactions between insulin and neural circuits responsible for
regulating behavior.
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