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Troponin plays a central role in regulating the contraction and relaxation of vertebrate
striated muscles. This review focuses on the isoform gene regulation, alternative RNA
splicing, and posttranslational modifications of troponin subunits in cardiac development
and adaptation. Transcriptional and posttranscriptional regulations such as phosphorylation
and proteolysis modifications, and structure-function relationships of troponin subunit
proteins are summarized. The physiological and pathophysiological significances are
discussed for impacts on cardiac muscle contractility, heart function, and adaptations in
health and diseases.
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The primary contractile unit of striated muscles, e.g., the verte-
brate cardiac and skeletal muscles, is the sarcomere. A sarcomere
is comprised of overlapping myosin thick filaments and actin thin
filaments. The interaction between myosin and actin activates
myosin ATPase and powers myofilament sliding and muscle con-
traction. This process is regulated by the level of cytosolic Ca2+
through the thin filament-associated troponin-tropomyosin sys-
tem (Gordon et al., 2000).

Troponin plays a central role in regulating the contraction
and relaxation of striated muscles. The structure and function
of troponin have been extensively investigated in the past four
decades as comprehensively summarized in several recent review
articles (Murphy, 2006; Jin et al., 2008; Wei and Jin, 2011). To
provide an overview of the current understanding of the func-
tion and regulation of troponin in cardiac muscle, the present
review focuses on the isoform genes, splice-forms and posttrans-
lational modifications of troponin in cardiac function during
postnatal development and physiological and pathophysiological
adaptations.

THE THREE SUBUNITS OF TROPONIN COMPLEX IN
VERTEBRATE STRIATED MUSCLE
The troponin complex is a heterotrimer consisting of three pro-
tein subunits. Named according to their functions, they are the
Ca2+-binding subunit troponin C (TnC), the actomyosin ATPase
inhibitory subunit troponin I (TnI), and the tropomyosin-
binding subunit troponin T (TnT) (Greaser and Gergely, 1971)
(Figure 1). Low-resolution X-ray crystallography (White et al.,
1987) and electron microscopic (Flicker et al., 1982) studies
demonstrated that the troponin complex may be divided into two
structural domains: The TnT extension that binds tropomyosin
and the core domain that bears most of the regulatory function
of troponin. High-resolution crystallographic structure further
revealed that the core domain of cardiac troponin contains two
structurally distinct subdomains that are the regulatory head

(amino acid residues 3–84 of TnC and amino acid residues 150–
159 of TnI) and the I-T arm (residues 93–161 of TnC, residues
42–136 of TnI and residues 203–271 of TnT). They are domi-
nated with α-helices connected by flexible linkers that make the
molecule asymmetric and highly flexible, a crucial feature for the
function of troponin in the regulation of muscle contraction and
relaxation (Takeda et al., 2003; Vinogradova et al., 2005).

The three troponin subunits are encoded by separate genes.
Each of the genes had evolved into muscle type-specific iso-
form genes. Their expression is regulated during embryonic and
postnatal development as well as physiological and pathological
adaptations (Jin et al., 2008; Chong and Jin, 2009; Wei and Jin,
2011). TnI and TnT both have three muscle type-specific isoforms
encoded by slow skeletal muscle TnI (TNNI1), fast skeletal mus-
cle TnI (TNNI2), cardiac TnI (TNNI3), slow skeletal muscle TnT
(TNNT1), fast skeletal muscle TnT (TNNT3), and cardiac TnT
(TNNT2) genes. These TnI and TnT isoform genes are closely
linked in three tandem pairs in the vertebrate genomes: Fast
TnI-fast TnT (TNNI2-TNNT3), cardiac TnI-slow TnT (TNNI3-
TNNT1) and slow TnI-cardiac TnT (TNNI1-TNNT2) (Jin et al.,
2008; Chong and Jin, 2009; Feng et al., 2009b), supporting the
hypothesis that TnI and TnT genes were duplicated from one
common ancestral gene.

In contrast to the presence of three muscle type-specific TnI
and TnT isoform genes, TnC is present in only two isoforms in
the three striated muscle fiber types. Whereas fast skeletal muscle
expresses fast TnC encoded by TNNC2, mature cardiac mus-
cle and slow skeletal muscle share one isoform, the cardiac/slow
skeletal muscle TnC encoded by TNNC1 (Schreier et al., 1990;
Collins, 1991; Prigozy et al., 1997).

The diversity of isoform genes encoding the subunits of tro-
ponin endues the heart with adaptation during development.
Discussed in more details in later sections, embryonic heart
expresses solely slow TnI paired with cardiac TnT. An isoform
transition from slow TnI to solely cardiac TnI in adult heart
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FIGURE 1 | Schematic structure of cardiac troponin. Troponin is a
protein complex consisting of three subunits: TnC, TnI, and TnT. The
structure of troponin can be divided into two structural domains: the core
domain and the TnT extension. High resolution crystallographic structure
(Takeda et al., 2003) further revealed that the core domain contains two

structural subdomains: the regulatory head (residues 3–84 of TnC and
residues 150–159 of TnI) and the I-T arm (residues 93–161 of TnC,
residues 42–136 of TnI, and residues 203–271 of TnT). The crystal
structure portion of the illustration was redrawn from Takeda et al. (2003)
using UCSF (Chimera software, alpha version 1.3).

occurs during development. Cardiac TnI has a heart-specific N-
terminal extension that is a regulatory structure specific to the
adult cardiac muscle (Chong and Jin, 2009). On the other hand,
slow TnI expression in embryonic hearts increases Ca2+ sensi-
tivity of myofilament and the tolerance to acidosis, although it
diminishes length dependence of Ca2+ activation (Arteaga et al.,
2000). Cardiac TnT also has an N-terminal variable region that
undergoes developmentally regulated alternative splicing (Jin and
Lin, 1988, 1989) whereas no alternative RNA splicing is found for
the transcripts of any of the three TnI isoform genes.

TROPONIN C
Troponin C belongs to the calmodulin super family of genes, con-
taining four EF-hand helix coil-helix divalent metal ion-binding
sites (Collins, 1991; Kawasaki et al., 1998). TnC is a dumbbell-
shaped molecule with the N- and C-terminal globular domains
connected by a nine turn α-helix (Herzberg and James, 1985).
The C-terminal domain of TnC contains two high affinity Ca2+
or Mg2+ binding sites (Site III and Site IV), which are primar-
ily occupied by Mg2+ in resting muscle cells and can become
partially bound with Ca2+ during the activation of contraction
(Robertson et al., 1981). The C-terminal domain of TnC plays a
structural role of maintaining the anchoring affinity of the whole
troponin complex to the thin filament (Zot and Potter, 1982).

The N-terminal domain of fast skeletal muscle TnC contains
two low affinity metal ion-binding sites designated as Site I and
Site II that are regulatory Ca2+-binding sites responsible for the
regulation of muscle contraction (Sheng et al., 1990; Sweeney
et al., 1990). The transient rise of cytosolic Ca2+during the acti-
vation of contraction results in Ca2+ binding to the N-terminal
domain of TnC and induces a cascade of conformational changes
in the troponin complex and sarcomeric thin filament (Robertson
et al., 1981; Collins, 1991; Gordon et al., 2000; Solaro, 2010). The
conformational changes increase the binding affinity of TnC for
TnI, promoting a detachment of TnI from actin, which releases

the inhibition of actomyosin ATPase and activates myofilament
sliding and shortening of the sarcomere (Grabarek et al., 1992).

Different from the fast skeletal muscle TnC, the N-terminal
domain of cardiac/slow TnC contains only one active Ca2+ bind-
ing site (Site II), whereas Site I had lost the ability of binding
Ca2+ (Van Eerd and Takahashi, 1976). Elimination of Ca2+ bind-
ing Site II in cardiac/slow TnC renders a cardiac fiber insensitive
to Ca2+, whereas reengineering an active Ca2+-binding Site I
does not compensate for the effect of Site II mutation. Therefore,
Site II plays a critical role responsible for the regulatory func-
tion of cardiac/slow TnC (Sweeney et al., 1990). Nonetheless,
engineered cardiac/slow TnC in which both Site I and Site II
are actively binding to Ca2+ showed increased Ca2+ sensitivity
than that of wild type cardiac TnC in which only Site II is active
(Sweeney et al., 1990). The Ca2+ sensitivity of cardiac/slow TnC
can also be regulated by other myofilament proteins, such as TnI,
TnT, tropomyosin, actin, myosin binding protein-C, and myosin
(Blumenschein et al., 2001; Burkart et al., 2003a). No alternative
splicing or posttranslational regulation of TnC has been observed
during development or pathological adaptations.

TROPONIN I
Troponin I is the inhibitory subunit of the troponin complex.
In the absence of Ca2+, its inhibitory region binds with actin,
and thereby inhibits actomyosin ATPase (Farah et al., 1994). In
the presence of Ca2+, the C-terminal domain of TnC interacts
with TnI to induce conformational changes of TnI, releases the
inhibitory effect, and initiates muscle contraction (Farah et al.,
1994; Perry, 1999).

In vertebrate striated muscles, the three TnI isoform genes
(Hastings, 1997; Perry, 1999; Chong and Jin, 2009) are differ-
entially expressed under fiber type-specific and developmentally
regulated transcriptional control. Fast skeletal muscle fibers only
express fast TnI, and slow skeletal muscle fibers express only slow
TnI. Accordingly, a slow to fast TnI (and TnT) isoform switching
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occurs during the slow to fast fiber type transition in muscle
adaptation to unloading (Stevens et al., 2002; Yu et al., 2007).

As indicated above, cardiac muscle switches TnI isoforms
during development (Saggin et al., 1989). The slow skeletal mus-
cle TnI gene is expressed in the embryonic heart and switches
off during development. Around birth, the expression of car-
diac TnI gene up-regulates to completely replace slow TnI in
adult cardiac muscle (Saggin et al., 1989; Sasse et al., 1993).
The adult heart expresses cardiac TnI as the sole isoform and it
does not change under pathological conditions such as ischemic
heart disease, dilated cardiomyopathy, or end-stage heart failure
(Sasse et al., 1993). This developmental TnI isoform transi-
tion may contribute to the differences in the Ca2+ sensitivity
and pH responsiveness of force development of cardiomyocytes
(Westfall et al., 1999). Over-expression of slow TnI in cardiac
muscle of adult transgenic mice impaired cardiomyocyte relax-
ation and diastolic cardiac function due to increased Ca2+ sen-
sitivity (Fentzke et al., 1999). On the other hand, slow TnI
increased the tolerance of cardiomyocytes to acidosis-induced
decrease in myofilament Ca2+ sensitivity (Westfall et al., 2000).
These findings indicate that slow TnI produces a higher Ca2+
affinity of the troponin complex than that of cardiac TnI, which
may maintain Ca2+ sensitivity of myofilament at the lower
pH (6.5 vs. 7.0) in embryonic cardiomyocytes (Solaro et al.,
1988).

STRUCTURAL FEATURES OF CARDIAC TnI
Based on in vitro structure-function relationship studies, the
structure of cardiac TnI can be divided into six functional seg-
ments (Li et al., 2004) (Figure 1): (a) cardiac-specific N-terminal
extension (amino acids 1–30) that is not present in fast TnI and
slow TnI; (b) an N-terminal region (amino acids 42–79) that
binds the C domain of TnC; (c) a TnT-binding region (amino
acids 80–136); (d) the inhibitory peptide (amino acids 128–147)
that interacts with TnC and actin–tropomyosin; (e) the switch or
triggering region (amino acids 148–163) that binds the N domain
of TnC; and (f) the C-terminal region (amino acids 164–210)
that binds actin–tropomyosin and is the most conserved segment
highly similar among isoforms and across species (Jin et al., 2001,
2008). Recent studies demonstrated that the last 20 amino acids
of the C-terminal end segment of TnI (amino acids 191–210),
encoded by exon 8 is a Ca2+-modulated allosteric structure (Jin
et al., 2001; Zhang et al., 2011a). Protein binding experiments
showed that this segment functions through Ca2+-regulated con-
formational changes and interactions with tropomyosin (Solaro
et al., 2008; Zhang et al., 2011a).

PHOSPHORYLATION OF CARDIAC TnI
There is no alternative RNA splicing found for the transcripts
of any TnI genes. In the meantime, posttranslational modifica-
tions have major roles in regulating the structure and function
of cardiac TnI (Solaro et al., 2008). The mechanisms include
amino acid side chain modifications and cleavages of the polypep-
tide chain, which induce conformational changes that modify
the interaction with cardiac TnC and effects on cardiac muscle
contractility (Pi et al., 2003; Layland et al., 2005; Westfall et al.,
2005; Solaro and Van Der Velden, 2010; Akhter et al., 2012).

Phosphorylation also regulates the degradation of cardiac TnI (Di
Lisa et al., 1995).

It is well-accepted that phosphorylation of cardiac TnI at
Ser23 and Ser24 in the adult heart-specific N-terminal extension
regulates the diastolic function of cardiac muscle (Solaro and
Kobayashi, 2011). Compiling evidences showed that Ser23 and
Ser24 are sequentially phosphorylated by protein kinase A (PKA)
under the regulation of adrenergic signaling cascades (Quirk
et al., 1995; Solaro et al., 2008; Solaro and Kobayashi, 2011; Rao
et al., 2012), reducing the Ca2+-binding affinity of the N domain
regulatory site of cardiac TnC (Zhang et al., 1995b) and enhanc-
ing diastolic function of cardiac muscle (Zhang et al., 1995a;
Stelzer et al., 2007; Li et al., 2010). Bisphosphorylation at Ser23

and Ser24 results in weakening interactions of cardiac TnI with the
N-lobe of cardiac TnC and favoring the intra-molecular interac-
tion between the N-terminal extension and the inhibitory region
of cardiac TnI (Howarth et al., 2007). These two serine residues
have also been reported to be phosphorylated in vitro by PKC-β,
PKC-ε (Kobayashi et al., 2005), PKD (previously named PKCμ)
(Haworth et al., 2004; Cuello et al., 2007; Bardswell et al., 2010)
and PKG (Layland et al., 2002).

While PKA phosphorylation of cardiac TnI at Ser23/Ser24

increases myocardial relaxation, PKC phosphorylation of car-
diac TnI exerts an antithetic role (Sakthivel et al., 2005; Kooij
et al., 2011). PKC phosphorylates cardiac TnI at Ser43 and Ser45

(residue # in mouse sequence) in the region binding the C domain
of TnC and Thr144 in the inhibitory region, slowing cardiac relax-
ation and increasing the duration of calcium transient and twitch
contraction (Macgowan et al., 2001; Pi et al., 2002; Burkart et al.,
2003b; Westfall et al., 2005). In mouse heart, phosphorylation of
Thr144 of cardiac TnI by PKC-βII increased myofilament Ca2+
sensitivity (Wang et al., 2006). Substitution with Pro at Thr144

delayed relaxation, suggesting a role of Thr144 in accelerating
relaxation in cardiomyocytes (Westfall et al., 2005). However,
another study found that Thr144 phosphorylation did not mod-
ify the thin filament Ca2+ sensitivity, but depressed cooperative
activation of thin filaments (Lu et al., 2010). The mechanism how
phosphorylation of Thr144 regulates cardiac troponin requires
further investigation.

It was reported that phosphorylation of cardiac TnI at Thr143

by PKC impaired the interaction between the inhibitory region
and TnC, leading to depressed actomyosin ATPase activity and
contractility (Lindhout et al., 2002; Li et al., 2003). PKC phos-
phorylation of cardiac TnI also inhibited ATPase activity (Noland
and Kuo, 1991) and thin filament sliding velocity, which may pro-
tect the heart from ischemia-reperfusion injury (Macgowan et al.,
2001).

Ser150 has also been found to be a phosphorylation site
in cardiac TnI, which can be phosphorylated by P21-activated
kinase (Pak) to increase the Ca2+ sensitivity of cardiac myofib-
rils (Buscemi et al., 2002; Ke et al., 2004). Recently, it was
demonstrated that AMP-activated Protein Kinase (AMPK) phos-
phorylates cardiac TnI in vitro at Ser150 (Oliveira et al., 2012)
adjacent to the inhibitory loop (Sancho Solis et al., 2011),
which increased sensitivity of calcium-dependent force develop-
ment (Nixon et al., 2012), prolonged relaxation (Oliveira et al.,
2012), and increased the effect of adrenergic-induced myocardial
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hypertrophy (Taglieri et al., 2011). As AMPK is thought to act as
a cellular energy sensor, phosphorylation of Ser150 may provide
an adaptive mechanism in energy deprivation.

In vitro studies showed that human cardiac TnI was phospho-
rylated by mammalian sterile 20-like kinase 1 (Mst1) at Thr31,
Thr51, Thr129, and Thr143, among which Thr31 is a preferen-
tial site (You et al., 2009). Several new phosphorylation sites in
the N-terminal region (Ser5/Ser6/Tyr26) have also been identified
with decreased phosphorylation in heart failure, whereas phos-
phorylation of Ser166/Thr181/Ser199 in the C-terminal region and
Ser77/Thr78 at the TnI-TnT interface (I-T arm) was increased
(Zhang et al., 2012).

In human end-stage dilated cardiomyopathy, baseline phos-
phorylation of cardiac TnI was diminished with increased myofil-
ament Ca2+ affinity (Zakhary et al., 1999). In failing human
heart, the PKA sites Ser23/Ser24 in cardiac TnI are dephospho-
rylated (Bodor et al., 1997) and the PKC site Ser43/Ser45/Thr144

are increasingly phosphorylated (Zhang et al., 2012), result-
ing in ventricular diastolic dysfunction. Cardiac TnI R21C
mutation in transgenic mouse heart showed dephosphoryla-
tion of Ser23/Ser24 and developed cardiac hypertrophy and
fibrosis (Wang et al., 2012b). In remodeling myocardium after
myocardial infarction, expression of PKA was significantly down-
regulated in cardiomyocytes and thus PKA-mediated phos-
phorylation of cardiac TnI was consequently decreased (Van
Der Velden et al., 2004). Dephosphorylation of Ser23/Ser24 in
cardiac TnI could also account for the contractile defect in
end-stage heart failure (Messer et al., 2007), and the signifi-
cantly reduced inotropic responsiveness to β-adrenergic stimu-
lation in decompensated cardiac hypertrophy (McConnell et al.,
1998).

The structural-functional domains of cardiac TnI, phospho-
rylation sites, and proteolytic modifications (see below) are sum-
marized in Figure 2 (all residue #s reflected that in human cardiac
TnI and included Met1).

PROTEOLYTIC MODIFICATIONS OF CARDIAC TnI
The half-life of cardiac TnI in adult cardiomyocytes is estimated
to be ∼3.2 days and there is a pool of unassembled cardiac
TnI in the cytoplasm (Martin, 1981), indicating that cardiac
TnI is synthesized in excess. Study on transgenic mouse hearts
over-expressing modified cardiac TnI demonstrated that the sto-
ichiometry of total TnI is determined by the incorporation into
myofilaments (Feng et al., 2009a).

Cardiac TnI is also a substrate of intracellular modifying pro-
teases, with a demonstrated sensitivity to μ-calpain (Di Lisa
et al., 1995). Its degradation by μ-calpain was modulated by
phosphorylation, in which phosphorylation by PKA reduced
the sensitivity of cardiac TnI whereas phosphorylation by PKC
increased the sensitivity of cardiac TnI to μ-calpain (Di Lisa et al.,
1995).

C-terminal truncation
The C-terminal end segment is the most conserved region of the
TnI polypeptide (Jin et al., 2001). As an allosteric structure regu-
lated by Ca2+ (Jin et al., 2001; Zhang et al., 2011a), it binds and
stabilizes tropomyosin in the absence of Ca2+ (Galiñska et al.,
2010; Zhang et al., 2011a). Mutations R193H and R205H in the
C-terminal end segment altered conformation and function of
the I-T interface and increased cardiac TnI binding affinity for
TnT, indicating the regulatory role of the C-terminal end segment
(Akhter et al., 2014).

FIGURE 2 | Structural and functional domains of cardiac TnI and

posttranslational modifications. Indicated on this linear map of cardiac TnI
polypeptide (residue # corresponds to that in human sequence including
Met1), Ser23/Ser24 are phosphorylated by PKA (Solaro and Kobayashi, 2011),
decreasing Ca2+ sensitivity and accelerating relaxation. They have also been
reported to be phosphorylated by PKC-β, PKC-ε (Kobayashi et al., 2005), PKD
(Haworth et al., 2004; Cuello et al., 2007; Bardswell et al., 2010) and PKG
(Layland et al., 2002). Ser42/Ser44, Thr143, and Ser150 are phosphorylated by
PKC, Pak or AMPK, decreasing Ca2+ sensitivity and slowing relaxation
(Macgowan et al., 2001; Buscemi et al., 2002; Pi et al., 2002; Burkart et al.,
2003b; Westfall et al., 2005). Thr31 and Thr51 are phosphorylated by Mst1

(You et al., 2009) with unknown function. New phosphorylation sites have
been identified in the N-terminal region (Ser5/Ser6, with decreased levels in
heart failure) and in the C-terminal region (Ser166/Thr181/Ser199, with unknown
kinases and functions) (Zhang et al., 2012). A restrictive N-terminal truncation
of cardiac TnI occurs in adaptation to hemodynamic stresses to selectively
remove the adult heart-specific N-terminal extension with an effect on
increasing myocardial relaxation, similar to the effect of PKA phosphorylation
at Ser23/Ser24 (Barbato et al., 2005). A deletion of the C-terminal 19 amino
acids was found in myocardial ischemia-reperfusion injury (McDonough et al.,
1999) and myocardial stunning (McDonough et al., 2001), slowing down the
rates of force development and relaxation (Narolska et al., 2006).
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A deletion of the C-terminal 19 amino acids was found during
myocardial ischemia-reperfusion injury in Langendorff perfused
rat hearts (McDonough et al., 1999). It was also seen in myocar-
dial stunning in coronary bypass patients (McDonough et al.,
2001). Over-expression of the C-terminal truncated cardiac TnI
(cTnI1−192) in transgenic mouse heart resulted in a phenotype
of myocardial stunning, and systolic and diastolic dysfunctions
(Murphy et al., 2000). 50% replacement of intact cardiac TnI
with cTnT1−192 in myofibrils in vitro and cardiomyocytes ex vivo
did not affect maximal tension development but slowed down
the rates of force redevelopment as well as relaxation (Narolska
et al., 2006). cTnI1−192 significantly increased Ca2+-activated
actomyosin ATPase and sliding velocity as compared with tro-
ponin containing intact cardiac TnI (Foster et al., 2003).

However, the pathological significance of the C-terminal trun-
cation of cardiac TnI remains controversial. No C-terminal trun-
cated cardiac TnI was found in swine hearts subjected to in vivo
regional ischemia-reperfusion (Thomas et al., 1999). Another
study suggested that the myocardial stunning in pigs induced by
regional ischemia was due to dephosphorylation of phospholam-
ban without degradation of cardiac TnI (Kim et al., 2001). No
significant degradation of cardiac TnI was detected in the hearts
of conscious dogs after reversible ischemia (Lüss et al., 2000;
Sherman et al., 2000). A hypothesis is that the marked elevation
of preload after global ischemia in Langendorff perfused heart
(>30 mmHg) rather than ischemia per se activated μ-calpain and
caused cardiac TnI proteolysis (Feng et al., 2001).

Restrictive N-terminal truncation
Different from the C-terminal truncation, a selective removal
of the N-terminal extension of cardiac TnI has been found to
be a regulatory mechanism in cardiac adaptation in physiolog-
ical and pathological stress conditions. The N-terminal exten-
sion of approximately 30 amino acids is an adult heart-specific
structure absent in fast and slow skeletal muscle TnI (Perry,
1999; Chong and Jin, 2009). The N-terminal extension contains
the PKA phosphorylation sites and plays a role in modulat-
ing the overall molecular conformation and function of cardiac
TnI (Akhter et al., 2012). A restrictive N-terminal truncation
of cardiac TnI occurs at low levels in normal hearts of many
species examined including human and significantly increases in
adaptation to hemodynamic changes such as that in a tail sus-
pension rat model of simulated microgravity (Yu et al., 2001)
and Gsα deficiency-caused failing mouse hearts (Feng et al.,
2008b).

Experimental evidence showed that the N-terminal extension
truncated cardiac TnI (cTnI-ND) increased myocardial relax-
ation and improved ventricular filling, similar to the effect
of PKA phosphorylation (Barbato et al., 2005). While expres-
sion of a similarly N-terminal truncated cardiac TnI did not
cause functional defect in cardiomyocytes (Guo et al., 1994),
over-expression of cTnI-ND improved the diastolic function
of ex vivo working hearts of Gsα deficiency mice (Feng et al.,
2008b) and cardiac function in vivo in aging mice (Biesiadecki
et al., 2010). Co-expression of cTnI-ND corrected the dias-
tolic dysfunction of restrictive cardiomyopathy hearts caused by
cTnI193His mutation (Li et al., 2010). Isolated cardiomyocytes

from cTnI-ND mouse hearts showed larger shortening ampli-
tude and higher systolic and diastolic velocities (Wei and Jin,
2013). Whereas the N-terminal extension of cardiac TnI does
not directly interact with other known proteins in the thin
filament regulatory system, the molecular mechanism of cTnI-
ND’s function involves alterations of the conformation and
function of the middle region of cardiac TnI (Akhter et al.,
2012).

A study on trout cardiac TnI that lacks the N-terminal exten-
sion showed that troponin complex containing trout cardiac TnI
had a greater Ca2+ affinity than human troponin (Kirkpatrick
et al., 2011). Although trout cardiac TnI lacks the two sub-
strate residues of PKA phosphorylation, myofilament Ca2+ affin-
ity decreased when treated with PKA, similar to the response
of mammalian cardiac TnI with the N-terminal extension
(Kirkpatrick et al., 2011). This apparently N-terminal extension-
independent PKA regulation and enhancement of relaxation is
worth further investigation.

TROPONIN T
Troponin T is a striated muscle-specific protein of ∼250–305
amino acids with molecular weights ranging from 31-kDa to
36-kDa. Same as the differentiated TnI isoform genes, three mus-
cle type-specific TnT isoform genes are present in vertebrates and
expressed in fiber-specific and developmentally regulated manner
(Jin et al., 2008; Wei and Jin, 2011). In addition to specific expres-
sion in cardiomyocytes, cardiac TnT also expresses at significant
levels in embryonic skeletal muscle (Anderson et al., 1991; Jin,
1996) and myopathic skeletal muscle of patients and Duchenne
muscular dystrophy (Ricchiuti and Apple, 1999), likely indicating
active growth or regeneration.

STRUCTURAL AND FUNCTIONAL DOMAINS OF TnT
Earlier studies had dissected the structure of TnT into two func-
tional regions based on fragmentation using limited cleavages
with chymotrypsin and CNBr, i.e., the T1 and T2 fragments
(amino acids1–158 and 159–259, respectively, in rabbit skele-
tal muscle TnT) (Tanokura et al., 1983; Perry, 1998) (Figure 3).
The T1 fragment binds the head-tail junction of tropomyosin
mainly through a 39 amino acids segment in the N-terminal
portion of the conserved middle region of TnT (Jin and
Chong, 2010). The C-terminal T2 fragment contains binding
sites for TnC, TnI, and F-actin (Heeley et al., 1987; Schaertl
et al., 1995; Perry, 1998) as well as another tropomyosin-
binding site in a segment of 25 amino acids near the begin-
ning of the T2 region (Jin and Chong, 2010), which binds
the central region of tropomyosin (Morris and Lehrer, 1984)
(Figure 3). The current model states that TnT plays an anchor-
ing role and transmits the signal from Ca2+-TnC binding to
the thin filament regulatory system in striated muscles (Perry,
1998).

The N-terminal region of TnT is a “hypervariable” region
(Perry, 1998). This region has variable lengths and variable amino
acid sequences. Cardiac TnT is of larger size than fast and slow
skeletal muscle TnT, mainly due to a longer N-terminal variable
region (Perry, 1998; Wei and Jin, 2011). The N-terminal variable
region of TnT does not contain any binding sites for other known
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FIGURE 3 | Structural and functional domains of cardiac TnT, alternative

spliced exons, and posttranslational modifications. Outlined on this linear
map of cardiac TnT polypeptide (residue #s are those published in the original
papers, which used various isoforms from different species), the functional
segments T1, T2, and the N-terminal hypervariable region as well as the
alternatively spliced exons 4, 5, and 13 are indicated. Ser2 is a highly
conserved residue constitutively and phosphorylated in cardiac TnT in vivo
(Perry, 1998; Sancho Solis et al., 2008). In vitro studies demonstrated that

cardiac TnT could be phosphorylated by PKC at Thr197, Ser201, Thr206, and
Thr287 in the C-terminal region that contains binding sites for TnI, TnC, and
tropomyosin (Jideama et al., 1996). Thr206 can also be phosphorylated by
Raf-1 (Pfleiderer et al., 2009) and Ser278 and Thr287 by ROCK2, which
inhibited tension development and ATPase activity in skinned fibers (Vahebi
et al., 2005). Thr194 and Ser198 of cardiac TnT have been found to be
phosphorylated by ASK1 with decreases in cardiomyocyte contractility (He
et al., 2003).

myofilament proteins (Perry, 1998; Jin et al., 2008; Wei and Jin,
2011).

Taking advantage of the presence of a cluster of transition
metal ion-binding sites in the N-terminal variable region of fast
skeletal muscle TnT of avian species in the orders of Galliformes
and Craciformes (Jin and Smillie, 1994), antibody epitope analyses
showed that Zn2+-binding to the N-terminal region of chicken
breast muscle fast TnT altered the molecular conformation of
epitopes outside of the N-terminal region, demonstrating a long-
range modulatory effect (Wang and Jin, 1998). Fluorescence
spectral analysis further showed that Cu2+ binding to the N-
terminal region of chicken fast TnT induced changes in fluo-
rescence intensity and anisotropy of Trp234, Trp236, and Trp285

or fluorescein-labeled Cys263 in the C-terminal region (Jin and
Root, 2000). Protein-binding studies showed that the binding of
Zn2+ to the N-terminal region of chicken fast TnT decreased the
binding affinity for tropomyosin, TnI, and TnC (Ogut and Jin,
1996; Jin et al., 2000). These data indicated that the N-terminal
variable region modulates the conformation and function of TnT
core structure to fine-tune muscle contractility (Biesiadecki et al.,
2007a).

EVOLUTIONARILY SELECTED UTILIZATION OF SLOW SKELETAL
MUSCLE TnT IN TOAD HEART
We recently found that the heart of adult toads (Bufo) exclusively
expresses slow skeletal muscle TnT instead of cardiac TnT while
all other myofilament proteins, including cardiac TnI and cardiac
myosin, remain to be the normal cardiac isoform (Feng et al.,
2012). This unique biochemical content of toad cardiac muscle
is correlated to a striking physiological feature of toads, i.e., it
is highly adaptive to large changes in the volumes of body fluid
and blood between rain and dry seasons (Boral and Deb, 1970)
or under experimental conditions (Deb et al., 1974).

Functional studies demonstrated that toad hearts had faster
contractile and relaxation velocities and a significantly higher tol-
erance to afterload (Feng et al., 2012). These findings demonstrate

that the selective utilization of slow skeletal muscle TnT in toad
heart was an adaptive change with significantly functional advan-
tage and fitness value during evolutionary selection. This obser-
vation suggests that altering TnT function may be targeted for the
improvement of systolic function and the treatment of congestive
heart failure.

No expression of cardiac TnT was detected in either heart or
skeletal muscle of the toad (Feng et al., 2012). Despite the unusual
expression in the heart, slow skeletal muscle TnT is normally
expressed specifically in toad slow twitch skeletal muscles (Feng
et al., 2012). The mechanism of selectively activating the slow
skeletal muscle TnT gene in toad heart and the inactivation of
cardiac TnT gene remains to be further investigated.

REGULATION OF CARDIAC TnT EXPRESSION VIA ALTERNATIVE RNA
SPLICING
Multiple alternative splice forms are expressed from each of the
three TnT isoform genes to add structural and functional varia-
tions that fine-tune muscle contractility. Alternative splice forms
of cardiac TnT are expressed in a regulated pattern during embry-
onic and postnatal heart development, and are found in diseased
hearts (Jin and Lin, 1988, 1989; Townsend et al., 1995; Ricchiuti
and Apple, 1999). In addition to physiological or pathophysiolog-
ical adaptations, aberrant splicing has been found to cause dilated
cardiomyopathy in turkeys and dogs (Biesiadecki and Jin, 2002;
Biesiadecki et al., 2002).

Mammalian cardiac TnT gene contains 17 exons including 3
alternatively spliced exons (exon 4, exon 5, and exon 13) (Jin et al.,
1992, 1996) (Figure 3). Exon 4 and exon 5 encode segments in the
N-terminal variable region, and exon 13 encodes a variable seg-
ment between the T1 and T2 functional domains (Jin et al., 1996).
Multiple splice forms of cardiac TnT are expressed in mammalian
hearts (Jin and Lin, 1988, 1989; Anderson et al., 1991; Jin et al.,
1992, 1996). The alternative splicing pattern of cardiac TnT is syn-
chronized in developing cardiac and skeletal muscle independent
of functional demands (Jin, 1996). It was further demonstrated
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that the abundant cardiomyocytes present in the walls of devel-
oping and adult rat and mouse thoracic veins exhibit patterns
of cardiac TnT alternative splice forms identical to that in the
heart (Kracklauer et al., 2013; Liu et al., 2014). These findings
strongly support that the regulation of cardiac TnT alternative
splicing during development and differentiation is under systemic
control rather than directly responding to functional demands or
adaptation.

Combinations of alternative splicing of exons 4 and 5 in the
N-terminal variable region yield four cardiac TnT isoforms dif-
fering in size and charge: TnT1 (all exon present), TnT2 (splice
out exon 4), TnT3 (splice out exon 5), and TnT4 (splice out exon
4 and 5), numbered in the order of decreasing molecular weight
(Gomes et al., 2002). In vitro studies showed that both TnT1 and
TnT2 reduced the ability of troponin to inhibit force develop-
ment and ATPase activity, causing less relaxation of fibers (Gomes
et al., 2002). Whether the expression of cardiac TnT splice forms
is altered and plays a role in failing heart is controversial and an
area of active investigation (Anderson et al., 1991, 1992; Mesnard
et al., 1995).

Abnormal splice isoforms of cardiac TnT have been reported.
Turkeys with inherited dilated cardiomyopathy and heart fail-
ure have an aberrant splice-out of the normally conserved exon
8-encoded segment in cardiac TnT (Biesiadecki and Jin, 2002).
Similar abnormality (splice out of the equivalent exon 7) has
been found in cardiac TnT of dog, pig and cat, which also have
high incidence of dilated cardiomyopathies (Biesiadecki et al.,
2002). In the heart of adult guinea pig, exon 6 that is signifi-
cantly larger than exon 7 is spliced out (Biesiadecki et al., 2002).
Overexpression of exon 7-deleted cardiac TnT in the heart of
transgenic mice impaired systolic function (Wei et al., 2010).

In addition to the deletion of exon 7, embryonic exon 5 is
abnormally included at significant levels in adult cardiac TnT in
dilated cardiomyopathy dogs (Biesiadecki et al., 2002). Although
the continuing expression of this embryonic specific exon in the
N-terminal region of cardiac TnT in adult heart may have a value
to compensate for the abnormality of exon 7 deletion, we have
shown that the heterogeneity of TnT in adult ventricular muscle
due to the co-presence of more TnT variants reduces cardiac effi-
ciency by desynchronizing the Ca2+-activation of thin filaments
(Feng and Jin, 2010) (discussed in more details below).

Aberrant splicing of cardiac TnT also occurs in chronic
stress conditions. Splice out of the exon 4-encoded segment was
increased in failing human heart (Anderson et al., 1991, 1995),
diabetic rat heart (Akella et al., 1995), and familial hypertrophic
cardiomyopathy human hearts (Thierfelder et al., 1994). In a
rabbit model of mild cardiac hypertrophy, cardiac TnT splic-
ing shifted toward the fetal pattern (Chen et al., 1997). Further
investigations are needed to understand the function as well as
regulatory mechanisms of such potentially adaptive alternative
splicing of cardiac TnT under stress conditions.

The mechanism for the aberrantly spliced cardiac TnT to
produce dilated cardiomyopathy has been investigated. Different
alternative splice forms of cardiac TnT are of different functional
properties (Gomes et al., 2002). As mentioned above, a hypoth-
esis is that chronic co-existence of TnT variants in adult heart
would produce split Ca2+ sensitivity among troponins in the thin

filament, which will desynchronize activation of ventricular mus-
cle and decrease the efficiency of cardiac pumping (Feng and Jin,
2010). Different from skeletal muscles that normally express mul-
tiple TnT isoforms and splice forms corresponding to the func-
tion of tetanic contractions, the ventricular muscle is electrically
activated as a syncytium to produce uniform rhythmic contrac-
tions. Consistently, only adult isoform of cardiac TnT is present in
adult heart after the developmental switch (Jin and Lin, 1988; Jin,
1996), corresponding to a uniform sensitivity to Ca2+ activation.

Studies on transgenic mice demonstrated that co-existence of
a non-mutant fast TnT and the endogenous cardiac TnT in adult
heart significantly impaired contractile functions (Huang et al.,
2008; Yu et al., 2012). Therefore, the desynchronized troponin
activity, other than a mutant structure in TnT, imposed negative
impacts on myocardial function. Further studies on transgenic
mice expressing one or more functionally distinct cardiac TnT
variants in addition to the endogenous normal adult cardiac TnT
produced lower left ventricular pressure development, slower
contractile and relaxation velocities, and decreased stroke vol-
ume as compared with wild-type controls, further supporting the
hypothesis that coexistence of functionally different cardiac TnT
variants in adult ventricular muscle reduces cardiac efficiency due
to desynchronized thin filament activation (Feng and Jin, 2010).

The alternative splice forms found in avian and mammalian
cardiac TnT are summarized in Table 1. The molecular mecha-
nism that regulates alternative splicing of TnT remains to be fully
understood, in which both cis-regulatory elements (Biesiadecki
and Jin, 2002) and trans-regulatory factors (Ward and Cooper,
2010) have been suggested for roles in regulating the alternative
splicing of cardiac TnT.

PHOSPHORYLATION MODIFICATIONS
Ser2 is a highly conserved residue in all three isoforms of avian
and mammalian TnT (Jin et al., 2008) and is constitutively phos-
phorylated in cardiac TnT in vivo (Perry, 1998; Sancho Solis
et al., 2008). Little is known regarding the kinase, regulation and
functional significance of cardiac TnT Ser2 phosphorylation.

In vitro studies demonstrated that cardiac TnT could be
phosphorylated by PKC at Thr197, Ser201, Thr206, and Thr287

(residue numbers in mouse cardiac TnT), which are located in
the C-terminal region containing binding sites for TnI, TnC, and
tropomyosin (Jideama et al., 1996). PKC-mediated phosphoryla-
tion of cardiac TnT has been shown to depress myofilament func-
tion, myocyte contractility, and ventricular pumping (Belin et al.,
2007). PKC phosphorylation of cardiac TnT inhibited the Ca2+-
stimulated Mg2+-ATPase activity without alteration of Ca2+-
sensitivity (Noland and Kuo, 1993). When cardiac TnT was par-
tially replaced with fast skeletal muscle TnT in transgenic mouse
heart, which is not phosphorylated by PKC, the PKC-mediated
depression of cardiac function was blunted (Montgomery et al.,
2001). Studies with mutations at PKC phosphorylation sites sup-
ported the hypothesis that Thr206 is a regulatory site whose
phosphorylation by PKCα or substitution with Glu to mimic
phosphorylation significantly suppressed tension development,
actomyosin Mg2+-ATPase activity, and myofilament Ca2+ sensi-
tivity and cooperativity while Thr197, Ser201, and Thr287 had no
significant effect (Sumandea et al., 2003).
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Table 1 | Physiological and abnormal alternative splice forms of

cardiac TnT.

Splice forms Physiological and pathophysiological significance

Exon 4 splice-out This exon encodes 4–5 amino acids and its alternative
splicing results in relatively small change of N-terminal
charge of cardiac TnT. Alternative splicing is normally
found in rabbit, rat, mouse, and bovine hearts
(Biesiadecki and Jin, 2002) and is increased in human
heart failure (Anderson et al., 1991, 1995), human
familial hypertrophic cardiomyopathy (Thierfelder et al.,
1994), and the heart of diabetic rats (Akella et al., 1995).

Exon 5 splice-in This exon encodes 9–10 mainly acidic amino acids. It is
normally included in embryonic avian and mammalian
cardiac TnT (Jin et al., 1992) and abnormally expressed
in adult canine hearts of dilated cardiomyopathy
(Biesiadecki et al., 2002). Its inclusion equips myofibrils
with a higher tolerance to acidosis and higher Ca2+
sensitivity.

Exon 6 splice-out This exon encodes 25 amino acids and its alternative
splicing corresponds to a rather large structural change,
abnormally occurring in adult Guinea pig hearts
(Biesiadecki et al., 2002) with unknown functional
effects.

Exon7 splice-out This exon encodes 12 amino acids and is abnormally
excluded in adult canine hearts with dilated
cardiomyopathy, causing impairing systolic function
(Biesiadecki et al., 2002).

Exon 8 splice-out This exon encodes 12 amino acids equivalent to
mammalian exon 7. Its abnormal exclusion in adult
turkey hearts with dilated cardiomyopathy alters
molecular conformation and binding affinity of cardiac
TnT for cardiac TnI and tropomyosin (Biesiadecki and
Jin, 2002).

Exon 13
splice-in/out

This exon encodes 2–3 amino acids. Its alternative
splicing is independent of development and the
functional significance is unknown (Jin et al., 1992).

Thr206 can also be phosphorylated by Raf-1, which links
growth factor-dependent signaling to dynamic changes in car-
diac contractile function (Pfleiderer et al., 2009). Ser278 and
Thr287 of cardiac TnT were also found to be phosphorylated by
Rho-dependent kinase (ROCK2), which inhibited tension devel-
opment and ATPase activity in skinned fibers (Vahebi et al., 2005).
Phosphorylation of cardiac TnT by ASK1 (a stress-activated
kinase that has been implicated in TNFα and oxidant stress
responses) at Thr194 and Ser198 has also been found with a
decrease in cardiomyocyte contractility (He et al., 2003).

Protein phosphatase 1 (PP1) has been found to dephosphory-
late cardiac TnT (Jideama et al., 2006). A coimmunoprecipitation
study indicated that Pak1 (p21 activated kinase 1) is associated
with cardiac TnT and regulates the phosphorylation level of car-
diac TnT (Monasky et al., 2012). Hearts of Pak1 knockout mice
showed a significant increase in TnT phosphorylation as com-
pared with wild type controls (Ke et al., 2012). This modification

may contribute to cardioprotection through Pak1 signaling and
merits further investigation.

The phosphorylation of cardiac troponin could also be mod-
ulated by structure alterations. Deletion of Lys210 in cardiac TnT
(�K210) decreased the phosphorylations of cardiac TnT by 30%
and cardiac TnI by 46%, mainly at Ser23/24, in vivo as compared
with wild-type controls (Sfichi-Duke et al., 2010). In vitro kinase
assay indicated that �K210 increased phosphorylation propen-
sity of Thr203 in cardiac TnT by three-fold, without changing
Ser23/24 phosphorylation in cardiac TnI. Yeast two-hybrid stud-
ies indicated that cardiac TnT-�K210 bound stronger to cardiac
TnI than that of wild type cardiac TnT (Sfichi-Duke et al., 2010),
suggesting a possible explanation for cardiac TnT-�K210 muta-
tion to correlate with dilated cardiomyopathy (Kamisago et al.,
2000).

PROTEOLYTIC REGULATIONS
Rapid degradation of non-myofilalemt associated TnT
Cardiac TnT has a half-life of 3.5 days in vivo (Martin, 1981)
and non-myofilament-associated TnT is rapidly degraded in car-
diomyocytes (Wang et al., 2005; Jeong et al., 2009). The potent
proteolysis capacity in cardiomyocytes may be critical to main-
taining the integrity of myofilament contractile apparatus as well
as to protecting cardiomyocytes from the cytotoxicity of TnT frag-
ment (Jeong et al., 2009). In the absence of myofilaments, the
C-terminal and middle fragments of TnT effectively induced cell
apoptosis (Jeong et al., 2009). A hypothesis is that a peak release of
cardiac TnT or cardiac TnT fragments from myofilaments exceed-
ing the protective capacity of the proteolytic degradation would
result in cytotoxicity and cause the death of cardiomyocytes in
myocardial ischemia-reperfusion injury. No apoptosis-effect of
N-terminal variable region was observed (Jeong et al., 2009).
Along this line, an in vitro study showed that cardiac TnT was
cleaved by activated caspase 3 to remove the N-terminal 92 amino
acids and resulted in contractile dysfunction before cell death
(Communal et al., 2002).

Restrictive N-terminal truncation
Restrictive deletion of the N-terminal 71 residues of mouse car-
diac TnT was found in hearts after ischemia reperfusion (Zhang
et al., 2006) and left ventricular pressure overload in vitro (Feng
et al., 2008a). Amino acid sequencing and protein fragment
reconstruction determined that this restrictive N-terminal pro-
teolysis selectively removes the entire N-terminal variable region
but preserves the conserved core structure of cardiac TnT intact
(Zhang et al., 2006). Myofilament associated μ-calpain is found
to contribute the restrictive N-terminal truncation of cardiac TnT
(Zhang et al., 2006).

The selective removal of the N-terminal variable region had
no significant effect on the binding affinities of cardiac TnT for
TnI and tropomyosin. This observation demonstrates that the N-
terminal variable region is not essential for the core function of
TnT, and the restrictive N-terminal truncation of cardiac TnT
may be a regulatory mechanism. In contrast, extended deletion
to remove the N-terminal 91 residues of mouse cardiac TnT
including a segment of the conserved middle region weakened
the binding to tropomyosin (Biesiadecki et al., 2007a) as well
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as increased the Ca2+ sensitivity of troponin (Sumandea et al.,
2009).

The restrictive cleavage of cardiac TnT can be induced with
calcium overloading. The level of N-terminal truncated cardiac
TnT (cTnT-ND) increased in primary cultures of adult mouse
cardiomyocytes upon ouabain-produced Ca2+ overload (Zhang
et al., 2011b). No degradation of cardiac TnI, a known substrate of
μ-calpain, was detected and no significant alteration of phospho-
rylation was seen in cardiac TnT when Ca2+ overload produced
cTnT-ND (Zhang et al., 2011b). These observations support a
hypothesis that the induction of cTnT-ND in calcium overload
is neither due to elevated overall activity of μ-calpain nor phos-
phorylation level of cardiac TnT. On the other hand, the structure
of N-terminal region per se exhibited a role in determining the
restrictive μ-calpain proteolysis. Deletion of exon 7-encoded seg-
ment made cardiac TnT more sensitive to μ-calpain modification
(Zhang et al., 2011b).

Although the restrictive removal of the N-terminal variable
region of cardiac TnT does not abolish the core function of tro-
ponin (Hinkle et al., 1999; Biesiadecki et al., 2007a), it results in
conformational changes of cardiac TnT, modulates TnT’s bind-
ing affinity for TnI, TnC, and tropomyosin, and alters Ca2+
activation of actomyosin ATPase (Wang and Jin, 1998; Jin and
Root, 2000; Jin et al., 2000; Gomes et al., 2002). Using pyrene-
labeled tropomyosin, studies demonstrated that N-terminal trun-
cated cardiac TnT strengthened the interactions between cardiac
TnT77−289 and tropomyosin and stabilized cardiac myofilaments
in a sub-maximally activated state (Chandra et al., 1999).

Consistent with the notion that the N-terminal variable region
of TnT is non-essential but a regulatory structure, overexpres-
sion of cTnT-ND in transgenic mouse hearts effectively replaced
endogenous intact cardiac TnT and supported cardiac function.
The hearts showed a slightly but statistically significant decrease
in contractile velocity, which resulted in elongated time of left
ventricular rapid ejection phase especially at high afterload (Feng
et al., 2008a). This effect produced a significant increase in stroke
volume and demonstrated that the restrictive N-terminal trunca-
tion of cardiac TnT is a mechanism to modulate thin filament
function and alter myosin cross-bridge kinetics, suggesting a
novel approach to compensating for cardiac output in energetic
crisis (Feng et al., 2008a).

The structural-functional domains of cardiac TnT, alternative
spliced exons, phosphorylation sites, and proteolytic modifica-
tions are summarized in Figure 3.

LEARNING FROM MYOPATHIC MUTATIONS IN CARDIAC
TROPONIN
Numerous mutations in the genes encoding the three subunits
of cardiac troponin have been found to cause cardiomyopathies.
By increasing or decreasing Ca2+ sensitivity and force gener-
ation, troponin mutations contribute to the pathogeneses of
inherited hypertrophic, restrictive and diastolic cardiomyopathies
(Seidman and Seidman, 2001).

MUTATIONS IN CARDIAC TnC
Mutations in cardiac/slow TnC account for approximately 0.4%
of hypertrophic cardiomyopathy (Landstrom et al., 2008). L29Q

mutation in TNNC1 was the first such mutation identified
(Hoffmann et al., 2001). L29Q mutation in cardiac TnC hin-
dered the PKA-dependent phosphorylation of cardiac TnI at
Ser22/Ser23, and reduced Ca2+ sensitivity of myofilaments in
ATPase assays using reconstituted skeletal muscle myofibrils con-
taining cardiac troponin (Schmidtmann et al., 2005). However,
the same mutation increased Ca2+ sensitivity of force develop-
ment when it was used to replace endogenous TnC in skinned
mouse cardiomyocytes (Liang et al., 2008). This difference may
have resulted from the different experimental conditions or the
intrinsic difference between cardiac and skeletal muscles.

More missense mutations, for example A8V, C84Y, E134D, and
D145E, in TNNC1 have been reported in hypertrophic cardiomy-
opathies (Landstrom et al., 2008). Functional studies showed
that A8V, C84Y, and D145E increased Ca2+ sensitivity of force
development (Pinto et al., 2009). In addition, E59D, D75Y and
G159D mutation in TNNC1 are found in dilated cardiomyopathy
patients. E59D and D75Y localized in the regulatory Ca2+ binding
site II decrease myofilament calcium responsiveness (Lim et al.,
2008). G159D is localized in a metal ion-binding site and, there-
fore, alters the function of troponin complex in regulating cardiac
muscle contractility (Mogensen et al., 2004).

Besides altering Ca2+-induced conformational changes, muta-
tions in cardiac TnC may alter molecular conformations involved
in Ca2+ affinity and binding to cardiac TnI. An example is that
L48Q substitution in human cardiac TnC made the hydropho-
bic core more exposed to cardiac TnI, thus increased the binding
affinity for TnI (Wang et al., 2012a). Mutation A31S in TNNC1
increases Ca2+ sensitivity, which may contribute to causing
hypertrophic cardiomyopathy and arrhythmogenesis (Parvatiyar
et al., 2012). Although G159D mutation in the C-lobe of cardiac
TnC did not alter myofilament function, it blunted the myofila-
ment desensitization induced by phosphorylation of cardiac TnI
at Ser23/Ser24 (Finley et al., 1999; Biesiadecki et al., 2007b).

It is worth noting that mutations in the region of the inac-
tive Ca2+-binding Site I of cardiac TnC are found at a much
higher rate than that in the active Site II region (Hoffmann et al.,
2001; Landstrom et al., 2008; Parvatiyar et al., 2012; Wang et al.,
2012a). This observation suggests that most of the myopathic
mutations in TnC fixed in the population are those causing rel-
atively mild functional changes other than drastically destructive
at critical sites of function, such as the sole regulatory site II of
cardiac/slow TnC.

MUTATIONS IN CARDIAC TnI
Cardiac TnI mutations account for approximately 5% of familial
hypertrophic cardiomyopathy cases and at least 20 mutations of
cardiac TnI have been reported to link to inherited restrictive car-
diomyopathy with increased Ca2+ sensitivity and reduced ATPase
activity and force development (Gomes and Potter, 2004; Gomes
et al., 2005; Yumoto et al., 2005). These cardiac TnI mutations
are mainly found in the inhibitory region and the C-terminal end
segment, indicating functional relevance.

Cardiac TnI mutation R21C in the N-terminal extension asso-
ciated with hypertrophic cardiomyopathy abolishes in vivo phos-
phorylation of Ser23/Ser24 (Wang et al., 2012a). The phenotype
of this mutation supports the regulatory role of the N-terminal
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extension of cardiac TnI in diastolic function of the heart. Cardiac
TnI mutation R145G found in familial hypertrophic cardiomy-
opathy is within the inhibitory region and alters the interaction
of cardiac TnI with cardiac TnC. This mutation reduces the inhi-
bition of actomyosin ATPase and thus increases Ca2+ sensitivity
(Kimura et al., 1997; Lindhout et al., 2002). Lys184 deletion in
the C-terminal region of cardiac TnI impairs relaxation kinetics
and results in hypercontractility when overexpressed in mouse
cardiomyocytes (Iorga et al., 2008). Similarly, transgenic mice
over-expressing cardiac TnI with R193H mutation demonstrated
impaired relaxation similar to that in human restrictive car-
diomyopathy patient (Du et al., 2008). The negative impact of this
cardiac TnI mutation on heart function showed a dose depen-
dence (Li et al., 2013). These findings indicate the critical role of
the C-terminal domain of TnI in muscle relaxation and diastolic
function of the heart (Davis et al., 2007).

It is intriguing that over 94% of known disease-causing single
nucleotide polymorphisms (SNPs) in cardiac TnI are located in
the C-terminal half of the polypeptide chain (residues 128–210)
(Palpant et al., 2010). This observation may indicate more strin-
gent structure-function relationships in this region. Alternatively,
this pattern may reflect that this region of TnI has a tolerance
to structural modifications, allowing more mutations fixed in
the population without reproductive lethality. These hypotheses
require further investigation.

MUTATIONS IN CARDIAC TnT
Mutations in cardiac TnT account for approximately 15% of
familial hypertrophic cardiomyopathy cases. These mutations are
characterized by severe myocardial disarray, relatively mild and
often subclinical hypertrophy, and a high incidence of sudden car-
diac death (Thierfelder et al., 1994; Watkins et al., 1995; Maron
et al., 1996; Tardiff et al., 1998; Varnava et al., 2001; Sehnert et al.,
2002). Together with the aberrant splicing of cardiac TnT found
in turkey and dog cardiomyopathies, at least 52 point mutations
of cardiac TnT have been reported to cause human heart diseases,
including 50 missense mutations, one deletion and one splicing
donor site mutation (Willott et al., 2010).

Mutations in different regions of cardiac TnT may contribute
to the pathogenesis of cardiomyopathies via different mecha-
nisms, including increasing the Ca2+-sensitivity of troponin com-
plex, changing the binding affinity of cardiac TnT for cardiac TnI
and the affinity of cardiac TnI for cardiac TnC, and perturbing
the proper response of myocardial contraction to changes in pH
(Harada and Potter, 2004).

Dilated cardiomyopathy is a major cause of heart failure,
and genetic defects are a significant contributor to the disease
(Lakdawala et al., 2012). Up to date, at least five cardiac TnT
mutants: R131W (Mogensen et al., 2004), R141W (Li et al., 2001),
R205L (Mogensen et al., 2004), Lys210 deletion (Kamisago et al.,
2000), and D270N (Mogensen et al., 2004), all in the conserved
core structure of cardiac TnT, are found to reduce Ca2+ sensi-
tivity and produce phenotypes of dilated cardiomyopathy (Mirza
et al., 2005).

It is worth noting that some troponin mutations have been
reported with clinical phenotypes of more than one types of car-
diomyopathy. A possible explanation is that while hypertrophic or

restrictive cardiomyopathies may be the primary disease, dilated
cardiomyopathy can develop in the later stages as the pathology
progresses into congestive heart failure. It is also interesting to
note that no clinical case of human cardiomyopathy mutation has
been found in the N-terminal domain of cardiac TnT correspond-
ing to the hypervariable region of TnT, which is naturally tolerant
to structural variations (Jin et al., 2008; Wei and Jin, 2011).

As the mutations of different troponin subunits have differ-
ent functional impacts, their combined phenotypes may indicate
structural and functional relationships among the troponin sub-
units. For example, a mutation R111C is found in cardiac TnI of
wild turkeys co-existing with the dilated cardiomyopathy-related
aberrantly splice-out of exon 8 in cardiac TnT (Biesiadecki et al.,
2004). By lowering the binding affinity of cardiac TnI for the
mutant cardiac TnT that showed increased affinity for TnI, mutu-
ally compensatory effects were observed. While the mouse coun-
terparts, cardiac TnI-K118C mutation and exon 7-deleted cardiac
TnT, each alone has dominant negative phenotypes in transgenic
mice, double transgenic mouse hearts co-expressing cardiac TnI-
K118C mutation and exon 7-deleted cardiac TnT showed that
the systolic abnormality of cardiac TnT exon 7 deletion and the
diastolic abnormality of cardiac TnI-K118C mutation mutually
canceled each other (Wei et al., 2010).

Another example is that the S69D and D73N mutations of
cardiac TnC corrected the abnormal Ca2+ sensitivity increased
by cardiac TnI-R192H mutation or ischemia-induced C-terminal
truncation (cTnI1−192) of cardiac TnI (Liu et al., 2012).

Figure 4 summarizes most of the characterized human car-
diomyopathic mutations found in cardiac TnC, cardiac TnI and
cardiac TnT.

SUMMARY AND PERSPECTIVE REMARKS
The TnC, TnI, and TnT subunits of cardiac troponin func-
tion interactively as regulators of myofilament activation and
force generation. Based on biochemical, biophysical, physio-
logical and pathophysiological studies, mounting evidence for
the molecular evolution, gene regulation, alternative splicing,
and posttranslational modifications of cardiac troponin subunits
has laid a solid foundation for understanding their structural
diversity, structure-function relationships, adaptive regulations,
and pathogenic mutations. For troponin’s central role in mus-
cle thin filament regulation and contractility, further elucidation
of troponin structure and function will powerfully forward the
prevention, diagnosis, and treatment of heart diseases.

In order to advance troponin research and translate the knowl-
edge into clinical applications, there are several important ques-
tions remain to be answered. With modern molecular engineering
methodology, it is important and feasible to fine map the inter-
action sites between troponin subunits and the allosteric and
conformational relationships that are essential in regulation of
cardiac muscle contraction. Alternative splicing is an important
regulatory pathway of cardiac TnT and aberrant splicing of it
has close relation with cardiomyopathy. However, the mecha-
nism of cardiac TnT expression via alternative splicing is not well
understood. The cell signaling pathway that controls RNA splic-
ing and the production of cardiac TnT variants remains to be
investigated. Restrictive N-terminal truncations of cardiac TnI
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FIGURE 4 | Myopathic mutations in troponin subunits. Amino acid
substitutions and deletions found in human cardiomyopathies are indicated
on the linear maps of cardiac TnC (cTnC, NP_003271.1), cardiac TnI (cTnI,
NP_000354.4), and cardiac TnT (cTnT, NP_001263276.1). Different fonts were

used to indicate that each of the mutations causes hypertrophic, restrictive
(Italic), and dilated (boxed) cardiomyopathies. It is worth noting that no
myopathic mutation was found in the N-terminal hypervariable region of
cardiac TnT. The residue #s are counted including Met1.

and cardiac TnT are novel posttranslational regulatory mech-
anisms that have potent roles in cardiac adaptation to stress
conditions. However, the cellular mechanisms that induce restric-
tive N-terminal truncations of cardiac TnI and cardiac TnT have
not been established. It is worth noting that no single stress
condition has been found to be able to produce restrictive N-
terminal truncations of both cardiac TnI and cardiac TnT, indi-
cating distinct mechanisms in the posttranslational regulation
of the two troponin subunits that are structurally and func-
tionally closely related. It is also an intriguing observation that
the N-terminal truncation of cardiac TnI selectively enhances
diastolic function whereas the N-terminal truncation of car-
diac TnT selectively reduces systolic velocity of the hearts. To
understand how structural modifications of the two subunits of
troponin regulate muscle contraction and relaxation in a highly
selective manner would lead to development of new therapeu-
tic approaches for the treatments systolic and diastolic heart
failures.

Continued in depth research is required to answer these and
new emerging questions toward the goal of fully understanding
the function of troponin in cardiac muscle contraction in order
to improve the treatment and prevention of myocardial diseases
and heart failure.
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