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To investigate peroxisome assembly and human peroxisome biogenesis disorders (PBDs)
such as Zellweger syndrome, thirteen different complementation groups (CGs) of Chinese
hamster ovary (CHO) cell mutants defective in peroxisome biogenesis have been isolated
and established as a model research system. Successful gene-cloning studies by a forward
genetic approach utilized a rapid functional complementation assay of CHO cell mutants
led to isolation of human peroxin (PEX ) genes. Search for pathogenic genes responsible
for PBDs of all 14 CGs is now completed together with the homology search by screening
the human expressed sequence tag database using yeast PEX genes. Peroxins are divided
into three groups: (1) peroxins including Pex3p, Pex16p, and Pex19p, are responsible for
peroxisome membrane biogenesis via classes I and II pathways; (2) peroxins that function
in matrix protein import; (3) those such as three forms of Pex11p, Pex11pα, Pex11pβ, and
Pex11pγ, are involved in peroxisome proliferation where DLP1, Mff, and Fis1 coordinately
function. In membrane assembly, Pex19p forms complexes in the cytosol with newly
synthesized PMPs including Pex16p and transports them to the receptor Pex3p, whereby
peroxisomal membrane is formed (Class I pathway). Pex19p likewise forms a complex with
newly made Pex3p and translocates it to the Pex3p receptor, Pex16p (Class II pathway). In
matrix protein import, newly synthesized proteins harboring peroxisome targeting signal
type 1 or 2 are recognized by Pex5p or Pex7p in the cytoplasm and are imported to
peroxisomes via translocation machinery. In regard to peroxisome-cytoplasmic shuttling
of Pex5p, Pex5p initially targets to an 800-kDa docking complex consisting of Pex14p
and Pex13p and then translocates to a 500-kDa RING translocation complex. At the
terminal step, Pex1p and Pex6p of the AAA family mediate the export of Pex5p, where
Cys-ubiquitination of Pex5p is essential for the Pex5p exit.
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INTRODUCTION
Molecular mechanisms of peroxisome biogenesis, including
peroxisomal import of newly synthesized matrix and membrane
proteins, have been one of the major foci in the peroxisome
research. Studies at the molecular level on both peroxisome
assembly and peroxisome biogenesis disorders (PBDs) rapidly
progressed in the last three decades. Studies on cloning of genes,
particularly including those of a very low-level expression, have
benefited from so-called functional cloning of genes, mostly
cDNAs in mammalian cases, by phenotype complementation
assay using cell mutants defective of biological pathways. The
identification and characterization of numerous essential genes,
termed PEXs encoding peroxisome biogenesis factors termed per-
oxins, by means of the genetic phenotype-complementation of
peroxisome assembly-defective cell mutants, named pex mutants
impaired in PEX genes. Such mutants from Chinese hamster
ovary (CHO) cells (Table 1; see below) (Fujiki, 1997, 2000), sev-
eral yeast species including Saccharomyces cerevisiae (Erdmann

Abbreviations: CG, complementation group; CHO, Chinese hamster ovary;
DLP1, dynamin-like protein 1; EST, expressed sequence tag; PBD, peroxisome
biogenesis disorder; PTS, peroxisomal targeting signal; ZS, Zellweger syndrome.

et al., 1989), Pichia pastoris (Gould et al., 1992; Liu et al., 1992),
Hansenula polymorpha (Cregg et al., 1990), and Yarrowia lipoly-
tica (Nuttley et al., 1993) (also see reviews Van Der Klei and
Veenhuis, 1996; Kunau, 1998; Tabak et al., 1999; Subramani et al.,
2000; Titorenko and Rachubinski, 2001; Lazarow, 2003), and
plant Arabidopsis thaliana (Hayashi and Nishimura, 2006) have
made invaluable contributions to the investigations of peroxi-
some biogenesis and protein trafficking in eukaryotes (Schatz and
Dobberstein, 1996; Wickner and Schekman, 2005). We herein
summarize mammalian model cell systems in studying biogen-
esis, physiology, and human disorders of peroxisomes.

GENETIC APPROACHES TO STUDYING MAMMALIAN
PEROXISOME BIOGENESIS
Basically two mutually complementary approaches have been
taken for isolation of PEX genes encoding peroxins, i.e., the
genetic phenotype-complementation of peroxisome biogenesis-
defective mutants of mammalian somatic cells such as CHO cells
and a combination of the human ortholog isolation by homology
search on the human expressed sequence tag (EST) database using
yeast PEX genes and cells derived from the patients with PBDs
of 14 different genotypes, i.e., complementation groups (CGs)
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(Table 1; see below) (Fujiki, 1997, 2000, 2003; Gould and Valle,
2000; Weller et al., 2003).

MAMMALIAN CELL MUTANTS DEFICIENT OF PEROXISOME
Genetic heterogeneity consisting of 14 CGs were identified in
PBDs by cell-fusion CG analysis using fibroblast cell lines derived
from PBD patients (Fujiki, 2000; Ghaedi et al., 2000a; Gould
and Valle, 2000; Matsumoto et al., 2001), where CGs 4 and 7
were revealed to be the same CGs as CGs 6 and 5, respectively
(Table 1). A new CG, CG15, of ZS was also identified (Shimozawa
et al., 2004), hence indicative of totally 13 genotypes of PBDs. The
primary defect for PBDs was revealed to be the impaired biogen-
esis of peroxisomes (Fujiki, 2000; Gould and Valle, 2000). With
respect to somatic animal cell mutants, 12 CGs of peroxisome-
deficient CHO cell mutants were isolated, including a mutant
ZP114 of a CG distinct from human CGs (Figure 1; Table1).
A PBD patient of the 14th CG, CG16, was recently identified
with pathogenic gene PEX11β (Ebberink et al., 2012). Together,
genetic heterogeneity comprising 15 CGs are currently identified
in mammals including humans and CHO cells.

PEROXISOME BIOGENESIS GENES
Genetic phenotype-complementation screening
PEXs were isolated by genetic phenotype complementation of
peroxisome biogenesis-deficient mutants of mammalian somatic
cells including CHO cells (Figure 1A) and of several yeast species
including S. cerevisiae, P. pastoris, H. polymorpha, and Y. lipolytica
(Distel et al., 1996; Subramani et al., 2000; Fujiki et al., 2006b).
Two mutually distinct but complementary approaches have been
taken to identify and clone mammalian PEX genes.

A direct cloning approach has been taken by means of genetic
complementation with peroxin cDNA essential for assembly of

FIGURE 1 | Morphology of peroxisomes in CHO cell mutants defective

in peroxisome biogenesis and cloning pathogenic genes of PBDs. (A)

Cells are stained with antibodies to PTS1 (a–c) and PMP70 (d–f). Cells are
as indicated at the top. Scale bar, 20 μm. In contrast to the wild-type
CHO-K1 cells, PTS1 proteins are discernible in the cytosol in pex2 Z65 and
pex19 ZP119. Z65 contains PMP70-positive peroxisomal remnants, whilst
ZP119 is absent from such peroxisome ghosts, indicative of the defect of
membrane protein import. (B) Cloning of pathogenic gene of PBD.
Peroxisome-restoring PEX gene were isolated by functional
complementation assay using CHO mutant. Restoration of peroxisomes in
Z65 (a) by transfection of rat liver cDNA library (b). Transformed cells
positive in catalase import contained PAF-1 (PEX2). In fibroblasts from a
patient with ZS of CG10 (c), expression of PAF-1 restored the impaired
import of catalase (d). Scale bar, 20 μm (a,b); 30 μm (c,d).

Table 1 | Complementation groups (CGs) and PEX genes of peroxisome deficiencies.

Gene CG Phenotype CHO mutants Peroxisome ghosts Peroxin

US/EU Japan (kDa) Characteristics

PEX1 1 E ZS, NALD*, IRD* Z24, ZP107 + 143 AAA family

PEX2 10 F ZS, IRD* Z65 + 35 PMP, RING

PEX3 12 G ZS ZPG208 − 42 PMP, PMP-DP

PEX5 2 ZS, NALD ZP105*, ZP139 + 68 PTS1 receptor, TPR family

PEX6 4(6) C ZS, NALD* ZP92 + 104 AAA family

PEX7 11 R RCDP ZPG207 + 36 PTS2 receptor, WD motif

PEX10 7(5) B ZS, NALD + 37 PMP, RING

PEX11β 16 ZS + 28 PMP

PEX12 3 ZS, NALD, IRD ZP109 + 40 PMP, RING

PEX13 13 H ZS, NALD* ZP128 + 44 PMP, PTS1-DP, SH3

PEX14 15 K ZS ZP110 + 41 PMP, PTS1-DP, PTS2-DP

PEX16 9 D ZS − 39 PMP, PMP-DP

PEX19 14 J ZS ZP119 − 33 CAAX motif, PMP receptor

PEX26 8 A ZS, NALD*, IRD* ZP124, ZP167 + 34 PMP, Pex1p-Pex6p recruiter

ZP114 +
*,Temperature-sensitive phenotype.

ZS, Zellweger syndrome; IRD, infantile Refsum disease; NALD, neonatal adrenoleukodystrophy; RCDP, rhizomelic chondrodysplasia punctata; DP, docking protein;

PMP, peroxisome membrane protein; TPR, tetratricopeptide repeat.
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peroxisomes in CHO cells. Establishment of an effective method,
termed P12 (12-(1′-pyrene)dodecanoic acid)/ultraviolet selection
method, made it feasible to isolate revertant (transfectant)
cells showing a morphologically and biochemically normal
peroxisome-phenotype, whereby PEX2 (formerly PAF-1) encod-
ing the 35-kDa membrane peroxin Pex2p with RING zinc-finger
motif was cloned for the first time (Tsukamoto et al., 1991)
(Figure 1B). Expression of PEX2 (called Zellweger gene) in fibrob-
lasts from a ZS patient of CG10 (F) complemented the impaired
peroxisome biogenesis (Shimozawa et al., 1992) (Figure 1B).
Dysfunction of PEX2 caused by a homozygous nonsense point
mutation at R119ter was shown for the first time to be respon-
sible for ZS, a prototype of the PBDs (Shimozawa et al., 1992).
A more practical approach, i.e., a transient expression assay, was
also developed for further isolation of PEX cDNAs including nine
others, PEX1, PEX3, PEX5, PEX6, PEX12, PEX13, PEX14, PEX19,
and PEX26 (Fujiki, 2003; Fujiki et al., 2006b) (Figure 2). These
PEXs were shown to be the pathogenic genes involved in PBDs
of nine CGs (Weller et al., 2003; Fujiki et al., 2006b; Fujiki, 2011)
(Table 1).

Expressed sequence tag homology search
As an alternative method, the homology search by screening the
human EST database using yeast PEX genes successfully led to
isolation of human ortholog genes responsible for PBDs: PEX1,
PEX3, PEX5, PEX6, PEX7, PEX10, PEX12, PEX13, and PEX16
(Weller et al., 2003; Fujiki et al., 2006b).

All of pathogenic genes responsible for PBDs of cur-
rently identified 13 CGs have been successfully cloned within
about 10 years after the first isolation of the ZS gene, PEX2,
by such extensive search using the mutually complementary
methods.

BIOGENESIS OF PEROXISOMES
MEMBRANE BIOGENESIS
Three mammalian peroxins, Pex3p, Pex16p, and Pex19p, were
isolated by the functional phenotype-complementation assay on
CHO cell mutants (Matsuzono et al., 1999; Ghaedi et al., 2000b)
and the EST database search using yeast PEX genes (Kammerer
et al., 1997, 1998; Honsho et al., 1998; South and Gould,
1999) and were shown to be exclusively required for membrane

FIGURE 2 | A schematic view of peroxisome biogenesis in mammalian

cells. The subcellular localization and molecular characteristics of peroxins
are shown. Peroxins are classified into three groups: (1) peroxins that are
required for matrix protein import; (2) those including Pex3p, Pex16p and
Pex19p, responsible for peroxisome membrane assembly via classes I and II
pathways (see in this figure); (3) those such as three forms of Pex11p,
Pex11pα, Pex11pβ, and Pex11pγ, apparently involved in peroxisome
proliferation where DLP1, Mff, and Fis1 coordinately function. PTS1 and PTS2
proteins are recognized by Pex5p and Pex7p, respectively, in the cytoplasm.
Two isoforms, Pex5pS and Pex5pL, of Pex5p are identified in mammals. PTS1
proteins are transported by homo- and hetero-oligomers of Pex5pS and
Pex5pL to peroxisomes, where Pex14p functions as a convergent, initial
docking site of the “protein import machinery” translocon. Pex5pL directly

interacts with the PTS2 receptor, Pex7p, carrying its cargo PTS2 protein in
the cytosol and translocates the Pex7p–PTS2 protein complex to Pex14p.
PTS1 and PTS2 proteins are then released at the inner surface and/or inside
of peroxisomes, downstream Pex14p and upstream Pex13p. Pex5p and
Pex7p subsequently translocate to other translocon components, named
translocation complex comprising the RING peroxins, Pex2p, Pex10p, and
Pex12p. Both Pex5p and Pex7p finally shuttle back to the cytosol. In regard to
peroxisome-cytoplasmic shuttling of Pex5p, Pex5p initially targets to an
800-kDa docking complex containing Pex14p and then translocates to a
500-kDa translocation complex comprising RING peroxins. At the terminal
step of the protein import reaction, Pex1p and Pex6p of the AAA family
catalyze the export of Pex5p, where Cys-ubiquitination of Pex5p is
prerequisite to the Pex5p exit.
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assembly of peroxisomes. Mechanistic insights on membrane
biogenesis are addressed here.

Peroxins essential for membrane assembly of peroxisomes
Of 13 peroxins of which mutations are responsible for PBDs,
Pex3p, Pex16p, and Pex19p were identified as essential factors
for PMP assembly in several species including humans (Baerends
et al., 1996; Götte et al., 1998; Honsho et al., 1998; Matsuzono
et al., 1999; South and Gould, 1999; Ghaedi et al., 2000a; Hettema
et al., 2000; Sacksteder et al., 2000; South et al., 2000; Otzen et al.,
2004) (Figure 1). Pex19p is a predominantly cytoplasmic protein
that shows a broad PMP-binding specificity; Pex3p serves as the
membrane-anchoring site for Pex19p-PMP complexes (Class I
pathway); and Pex16p—a protein absent in most yeasts (Eitzen
et al., 1997; South and Gould, 1999) functions as the receptor for
Pex19p complexes with newly synthesized Pex3p (Matsuzaki and
Fujiki, 2008) (Class II pathway) (Figures 2, 3). The function of
Pex16p is not conserved between different species. In addition,
under debate remains whether Pex19p has a chaperone-like role
in the cytosol or at the peroxisome membrane and/or functions
as a cycling import receptor for newly synthesized PMPs (Fujiki
et al., 2006a).

Gene defects of peroxins required for both membrane biogenesis
and matrix protein import
Impairment of Pex3p, Pex16p, and Pex19p, causes the most severe
PBD, ZS, of three CGs, CG12 (G), CG9 (D), and CG14 (J), respec-
tively (Weller et al., 2003; Fujiki et al., 2006b, 2012; Fujiki, 2011)
(Table 1).

Pex19p. PEX19 encodes 33-kDa farnesylated protein harboring
farnesylation CAAX box motif localized mostly in the cytosol
and only partly anchored to peroxisomal membranes (Matsuzono
et al., 1999). PEX19 expression complemented impaired peroxi-
some assembly in fibroblasts from a patient with CG14 (J) PBD.
This patient was a homozygote for inactivating mutation: a one-
base insertion, A764, in a codon for Met255, thereby resulting
in a frameshift. Upon transfection of PEX19 into a CHO pex19
mutant ZP119 devoid of peroxisomal remnants called ghosts,
most striking was formation of peroxisomal membranes, prior to
the import of matrix proteins (Matsuzono et al., 1999; Sacksteder
et al., 2000). This was the first demonstration of the membrane
assembly process during peroxisome biogenesis, particularly dif-
ferentiated from the soluble protein import.

Pex16p. Fibroblasts from a ZS patient of CG9 (D) are deficient in
peroxisomal membrane remnants, as in PEX19-defective fibrob-
lasts of CG14 (J). Expression of PEX16 encoding 336-amino-acid
peroxisomal membrane protein restored peroxisomal membrane
biogenesis and matrix protein import in CG9 (D) fibroblasts
(Honsho et al., 1998; South and Gould, 1999), of which mutation
was a homozygous nonsense mutation R176ter (Honsho et al.,
1998). More recently, other mutations are identified: exon 10 skip
(Shimozawa et al., 2002) and five novel homozygous mutations
(Ebberink et al., 2010).

Pex3p. Mammalian PEX3 encodes 42-kDa integral membrane
protein of peroxisomes (Ghaedi et al., 2000a,b). Upon expression

FIGURE 3 | A model for early stages of peroxisomal membrane

biogenesis involving mutually dependent targeting of Pex3p and Pex16p,

named classes I and II pathways. The initial membranes harboring Pex3p or
Pex16p culminate in indistinguishable, matured peroxisomes. Pex19p forms
complexes in the cytosol with newly synthesized PMPs including Pex16p and
C-tailed anchored membrane proteins such as Pex26p and transports them to
the membrane protein receptor Pex3p, whereby peroxisome membrane is
assembled (Class I pathway). With respect to biogenesis of Pex3p, Pex19p
likewise forms a complex with newly synthesized Pex3p and translocates it to
the Pex3p receptor, Pex16p (Class II pathway). Of note, peroxisomes are
assembled no matter which pathway initially proceeds.

of PEX3 in a CHO pex3 mutant (Ghaedi et al., 2000b) and
fibroblasts from three ZS patients of CG12 (G) (Ghaedi et al.,
2000a), peroxisomal membrane vesicles were assembled prior to
the import of soluble proteins (Ghaedi et al., 2000a; Muntau
et al., 2000; Shimozawa et al., 2000; South et al., 2000; Fujiki
et al., 2006a; Fujiki, 2011), as in pex19 and pex16 patients-
derived cells (see above), likewise implying the temporally
differentiated translocation of matrix proteins into peroxiso-
mal membrane vesicles. Two types of mutations, exon 11
deletion and a single-nucleotide insertion in the codon for
Val182 in exon 7, in PEX3 were identified in the ZS patients
(Ghaedi et al., 2000a; Muntau et al., 2000; Shimozawa et al.,
2000).

Taken together, Pex3p, Pex16p, and Pex19p are categorized as
a peroxin exclusively required for the assembly of peroxisome
membranes. They function as essential factors in the transport
process of membrane proteins and membrane vesicle assembly
in a concerted manner. Two distinct pathways were recently sug-
gested for the import of PMPs: a Pex19p- and Pex3p-dependent
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class I pathway for PMP-import complex, except for Pex3p (Fang
et al., 2004; Matsuzono et al., 2006) and a Pex19p- and Pex16p-
dependent class II pathway for Pex3p (Matsuzaki and Fujiki,
2008) (Figures 2, 3). It is noteworthy that C-tailed anchor-type
peroxin Pex26p, the recruiter of Pex1p-Pex6p complex, is trans-
ported in a Pex19p-dependent (Halbach et al., 2006), class I
pathway (Yagita et al., 2013), which is distinct from the GET3-
dependent topogenesis of yeast Pex15p, a functional ortholog of
Pex26p (Schuldiner et al., 2008).

Involvement of ER in peroxisome biogenesis
In regard to involvement of the ER in peroxisome biogenesis, ER
was postulated to provide the initial “seed” for recruiting other
components required for peroxisome assembly (Kim et al., 2006;
Ma et al., 2011; Tabak et al., 2013). Several groups suggested a
different view of peroxisomal membrane biogenesis that peroxi-
somes are formed from ER upon induction of Pex3p (Hoepfner
et al., 2005; Kragt et al., 2005; Kim et al., 2006), although the sig-
nificance of such observations remains under debate. Recently, a
study (Motley and Hettema, 2007) suggest that peroxisomes are
generally formed by growth and division under normal condi-
tions and that only under a condition where no peroxisome is
present in a cell, they can be formed from the ER after the expres-
sion of the complementing PEX gene, whilst another study (Van
Der Zand et al., 2010) proposes that all peroxisomal membrane
proteins are transported via ER. Meanwhile, we demonstrated
that Pex3p, the membrane receptor for Pex19p-complexes with
PMPs including Pex16p, is directly targeted to peroxisomes in a
Pex19p-Pex16p dependent class II pathway in mammalian cells
such as CHO and human cell lines (Matsuzaki and Fujiki, 2008).
Moreover, it is noteworthy that several peroxisomal membrane
proteins might be transported to peroxisomes via ER (Lam et al.,
2010; Agrawal et al., 2011; Yonekawa et al., 2011), likely implying a
sort of semi-autonomous property of peroxisomes. At any event,
the issue with respect to how peroxisome membrane is assembled
is one of the important and of highly interesting problems to be
tackled (Ma et al., 2011; Fujiki et al., 2012; Tabak et al., 2013).

MATRIX PROTEIN IMPORT
Ten peroxins including Pex1p, Pex2p, Pex5p, Pex6p, Pex7p,
Pex10p, Pex12p, Pex13p, Pex14p, and Pex26p are involved in pro-
tein import into peroxisomal matrix (Figure 2) (Fujiki et al.,
2006a).

Peroxisome-cytoplasmic shuttling of import receptors
PTS1 and PTS2 proteins are recognized by Pex5p and Pex7p,
respectively, in the cytoplasm. In mammalian cells, PTS1 pro-
teins are transported by homo- and hetero-oligomers of Pex5pS
and Pex5pL to peroxisomes, where Pex14p functions as the ini-
tial site of an 800-kDa “docking complex.” Pex5pL translocates
the Pex7p–PTS2 protein complex to Pex14p (Otera et al., 2002;
Miyata and Fujiki, 2005). After releasing the cargoes, Pex5p and
Pex7p translocate to a 500-kDa “translocation complex” com-
prising the RING peroxins, Pex2p, Pex10p and Pex12p (Miyata
and Fujiki, 2005). Both Pex5p and Pex7p finally translocate back
to the cytosol (Dammai and Subramani, 2001; Gouveia et al.,
2003; Nair et al., 2004; Miyata and Fujiki, 2005; Platta et al.,

2005; Miyata et al., 2009). At the terminal step of the pro-
tein import reaction, AAA peroxins, Pex1p and Pex6p, recruited
to Pex26p (Pex15p in yeast) on peroxisomes catalyze the ATP-
dependent export of Pex5p (Miyata and Fujiki, 2005; Platta et al.,
2005). Ubiquitination of Pex5p is prerequisite for the Pex5p exit
(Carvalho et al., 2007; Williams et al., 2007; Okumoto et al.,
2011).

Mono-ubiquitination of the conserved cysteine residue at
position 11 in the N-terminal region of mammalian Pex5p plays
an essential role in the recycling, especially in the export step from
peroxisomes to the cytosol (Grou et al., 2009; Okumoto et al.,
2011; Miyata et al., 2012), as in yeast (Platta et al., 2009). A cytoso-
lic factors, AWP1/ZFAND6 involved in the recycling of Pex5p is
recently identified in mammals (Miyata et al., 2012); USP9X and
Ubp15 are suggested as a potential deubiquitinase in mammals
(Grou et al., 2012) and yeast (Debelyy et al., 2011), respectively.
A distinct redox state may affect the recycling of Pex5p requir-
ing Cys-ubiquitination, thereby leading as a possible cause to the
phenotype of deficiency in protein import in PEX-defective cells.

REDOX STATE OF NORMAL AND PEROXISOME-DEFICIENT CELLS
In peroxisomes possessing a fatty acid β-oxidation system in wild-
type CHO cells, the redox state within the peroxisomes is more
reductive than that in the cytosol, despite the fact that reac-
tive oxygen species are generated within the peroxisomes (Yano
et al., 2010). Moreover, to our surprise, the redox state in the
cytosol of pex cell mutants is more reductive than that of the
wild-type CHO cells (Yano et al., 2010). Such distinct redox state
may affect the recycling of Pex5p requiring Cys-ubiquitination,
thereby leading as a possible cause to the phenotype of defi-
ciency in protein import in PEX-defective cells including cell
lines from patients with PBDs. A potential way to cure the PBD
patients may be a screening for agents that moderate the abnor-
mal cytosolic redox state in the pex cell lines including the cells
with nonredox-sensitive mutations in PEXs. It is noteworthy that
in P. pastoris PTS1-cargo release from Pex5p is achieved by a
redox-regulated oligomer to dimer transition of Pex5p and aided
by Pex8p (Ma et al., 2013). Interestingly, intraperoxisomal redox
status is strongly influenced by environmental growth conditions
(Ivashchenko et al., 2011).

GENE DEFECTS OF PROTEINS FOR PEROXISOMAL
MORPHOGENESIS
Three isoforms of Pex11p family, Pex11pα (Abe et al., 1998; Li
et al., 2002a), Pex11pβ (Abe and Fujiki, 1998; Schrader et al.,
1998; Li et al., 2002b), and Pex11pγ (Li et al., 2002a; Tanaka
et al., 2003), are identified as factors involved in morphogenesis
of peroxisomes in mammals (Kobayashi et al., 2007; Delille et al.,
2010; Koch et al., 2010; Itoyama et al., 2013). In mammalian cells,
dynamin-like protein 1 (DLP1) (Koch et al., 2003; Li and Gould,
2003; Tanaka et al., 2006; Waterham et al., 2007), fission 1 (Fis1)
(Koch et al., 2005; Kobayashi et al., 2007), and mitochondrial fis-
sion factor (Mff) (Gandre-Babbe and Van Der Bliek, 2008; Otera
et al., 2010; Koch and Brocard, 2012; Itoyama et al., 2013) are
shown to be involved in the fission of peroxisomes.

In regard to peroxisomal dysmorphogenesis in humans, only
two patients have been identified with a different defect in any
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of the proteins involved in the proliferation and division of per-
oxisomes. The first reported patient was a severely affected female
patient, who died 1 month after birth and postmortally was found
to have a dominant-negative heterozygous mutation in the DLP1
gene, which resulted in a severe fission defect of both peroxisomes
and mitochondria (Waterham et al., 2007). More recently, the first
patient with a defect of peroxisomal division due to a homozygous
nonsense mutation in the PEX11β gene was reported as the 14th
CG (CG16) of PBDs (Ebberink et al., 2012) (Table 1).

PERSPECTIVE
Mammalian cell mutants of 15 CGs defective of peroxisome bio-
genesis have been identified, including PBD patients’ fibroblasts
and CHO mutant cell lines (Table 1). Pathogenic genes are now
elucidated for all of PBD CGs. Biochemical functions of peroxins
involved in the import of matrix proteins are better elucidated,
whilst molecular mechanisms underlying the membrane assem-
bly are less understood. Defects in peroxisomal morphogenesis
have also been recently reported. Investigations using the cloned
peroxins and pex mutants including CHO mutants and those
from PBD patients will shed light on the mechanisms involved in
biogenesis and morphogenesis of peroxisomes and pathogenesis
of PBDs.
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