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Oscillatory breathing (OB) patterns are observed in pre-term infants, patients with
cardio-renal impairment, and in otherwise healthy humans exposed to high altitude.
Enhanced carotid body (CB) chemoreflex sensitivity is common to all of these populations
and is thought to contribute to these abnormal patterns by destabilizing the respiratory
control system. OB patterns in chronic heart failure (CHF) patients are associated with
greater levels of tonic and chemoreflex-evoked sympathetic nerve activity (SNA), which
is associated with greater morbidity and poor prognosis. Enhanced chemoreflex drive
may contribute to tonic elevations in SNA by strengthening the relationship between
respiratory and sympathetic neural outflow. Elimination of CB afferents in experimental
models of CHF has been shown to reduce OB, respiratory-sympathetic coupling, and renal
SNA, and to improve autonomic balance in the heart. The CB chemoreceptors may play
an important role in progression of CHF by contributing to respiratory instability and OB,
which in turn further exacerbates tonic and chemoreflex-evoked increases in SNA to the
heart and kidney.
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INTRODUCTION
Abnormal oscillatory breathing (OB) patterns are frequently
observed in diverse populations, including infants born pre-
maturely (Copeman et al., 1964), patients with heart failure
(Ponikowski et al., 1999), or end stage renal disease (Hanly and
Pierrato, 2001), and in otherwise healthy humans who travel
to high altitude (Lahiri et al., 1983). These abnormal breath-
ing patterns most commonly occur during non-REM sleep when
chemical control of breathing predominates; however, some heart
failure patients exhibit OB during waking hours as well (Brack
et al., 2007). OB is characterized by oscillations in tidal volume
and/or respiratory frequency and is thought to occur as a result
of physiological or environmental challenges that de-stabilize the
respiratory control system. These challenges may include alter-
ations in arterial blood gases and pH (decreased PaO2, decreased
PaCO2, and increased pH), circulatory delay and reductions
in systemic oxygen transport, and enhancement of respiratory
chemoreflex function (Fanfulla et al., 1998). The etiology of OB
is diverse; however a significant body of research indicates that
enhanced chemoreflex sensitivity is a common element of most
types of OB (Lahiri et al., 1983; Ponikowski et al., 1999; Al-Matary
et al., 2004; Nock et al., 2004; Hering et al., 2007).

CHEMOREFLEX SENSITIVITY AND DISORDERED BREATHING
IN HEART FAILURE
Cheyne–Stokes respiration (CSR), a form of OB in which oscil-
lations in tidal volume are separated by apneic episodes, is

highly prevalent in patients with chronic heart failure (CHF)
(Mortara et al., 1997; Ponikowski et al., 1999; Giannoni et al.,
2008). CSR is associated with increased morbidity and mortal-
ity, and decreased quality of life in this population (Hanly and
Zuberi-Khokhar, 1996; Lanfranchi et al., 1999; Brack et al., 2007;
Carmona-Bernal et al., 2008). Accumulating evidence suggests
that enhanced central and/or peripheral chemoreflex sensitivity
(Javaheri, 1999; Narkiewicz et al., 1999; Giannoni et al., 2008) as
well as persistent hyperventilation/hypocapnia (Naughton et al.,
1993; Fanfulla et al., 1998) contribute to the pathogenesis of CSR
by causing instability of the respiratory control system (Naughton
et al., 1993; Lorenzi-Filho et al., 1999, 2005; Pinna et al., 2000).
The significance of the relationship between chemosensitivity and
CSR is further underscored by the finding that high peripheral
chemosensitivity is independently associated with poor prognosis
and higher mortality risk in CHF patients but not in comparable
CHF patients with low chemosensitivity (Ponikowski et al., 1999,
2001).

Numerous studies indicate that carotid body (CB)
chemoreceptor-mediated responses to hypoxia and hyper-
capnia are augmented in CHF (Wilcox et al., 1993; Chua
et al., 1996, 1997; Javaheri, 1999; Ponikowski and Banasiak,
2001; Ciarka et al., 2006; Giannoni et al., 2008). In a group
of 60 CHF patients, approximately 60% had increased CB
chemoreflex sensitivity (Giannoni et al., 2008). Most impor-
tantly, patients without augmented chemosensitivity did
not exhibit CSR, and the incidence of CSR progressively
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increased with enhancement of the CB chemoreflex. In
other studies, deactivation of CB chemoreceptors with
transient hyperoxia, or pharmacological attenuation of
chemosensitivity with dihydrocodeine or acetazolamide sig-
nificantly reduced central apnea incidence in CHF patients
(Ponikowski et al., 1999; Fontana et al., 2011). These find-
ings indicate an important relationship between CSR or
cyclical breathing patterns and enhanced CB chemoreflex
sensitivity.

Recent studies in animal models of CHF have further delin-
eated the role of the CB chemoreceptors in OB. Studies from
our laboratory have demonstrated enhanced ventilatory, sym-
pathetic nerve, and carotid sinus nerve responses to isocapnic
hypoxia as well as a tonic increase in resting afferent chemore-
ceptor discharge during normoxia in both rabbit and rat mod-
els of heart failure (Sun et al., 1999a,b; Li et al., 2005; Del
Rio et al., 2013b; Haack et al., 2014; Marcus et al., 2014a).
These increases in CB chemoreceptor activity coincide with
an increase in measures of OB and the development of CHF
(Marcus and Schultz, 2011). Denervation of the CB chemore-
ceptors (CBD) by CB ablation after the development of CHF
results in abolition of chemoreflex responses, reduction of resting
ventilation and sympathetic nerve activity (SNA), and reduc-
tion of apnea/hypopnea frequency and respiratory variability
(Del Rio et al., 2013b; Marcus et al., 2014a). In other stud-
ies, pharmacologic attenuation of CB chemoreceptor activity
with Simvastatin or an inhibitor of hydrogen sulfide produc-
tion had similar efficacy in reducing apnea/hypopnea frequency
and respiratory variability (Del Rio et al., 2013a; Haack et al.,
2014).

Ablation of CB afferent activity in the aforementioned studies
(Del Rio et al., 2013b; Marcus et al., 2014a) resulted in signif-
icant reductions in resting ventilation, which in turn would be
expected to increase resting PaCO2. CHF-CBD rabbits exhibited
significant hypoventilation relative to normal animals for up to 9
days post CBD, the endpoint of the study (Marcus et al., 2014a).
CHF-CBD rats exhibited hypoventilation compared to the ven-
tilatory parameters obtained in normal animals when measured
2 days post denervation, but no hypoventilation was found at
14 weeks post CBD (Del Rio et al., 2013b). Thus, the salutary
effect of CBD to stabilize the respiratory pattern in CHF could
stem from an increase in PaCO2 above the apneic threshold, at
least in the short-term, but abrogation of the elevated ventila-
tory loop gain mediated by the CB chemoreflex is likely to play
an important role in reestablishing respiratory stability in CHF in
the long-term.

Resting ventilation and sympathetic outflow are increased in
CHF (Naughton et al., 1993; van de Borne et al., 1998). In
our studies, CBD-reduced resting sympathetic outflow as well as
ventilation, indicating that CB chemoreceptors play an impor-
tant role in the tonic increases in both of these parameters in
CHF. Central neural coupling between respiratory and sympa-
thetic neural drive has been described in the literature (Haselton
and Guyenet, 1989). It is possible that the elevated tonic input
from CB chemoreceptors exacerbates respiratory-sympathetic
coupling to account in part for their marked increase in CHF
patients.

RESPIRATORY-SYMPATHETIC COUPLING IN HEART FAILURE
It is well-known that sympathetic discharge is actively modu-
lated by respiration (Adrian et al., 1932; Haselton and Guyenet,
1989), and a growing body of evidence indicates that this modu-
latory influence may be altered in several different pathological
states. Evidence of enhanced respiratory-sympathetic coupling
has been found in three different animal models of hyperten-
sion (Zoccal et al., 2008; Simms et al., 2009; Toney et al., 2010)
with differing etiologies (spontaneously hypertensive rat-SHR,
Ang II/salt, and chronic intermittent hypoxia-CIH). Interestingly,
in two of these models (SHR and CIH), enhanced CB chemore-
flex sensitivity and tonic CB chemoreceptor afferent input to the
brain stem have been shown to play a seminal role in mediating
increased SNA and the development of hypertension (Fletcher
et al., 1992; Peng et al., 2003; Del Rio et al., 2010; Marcus
et al., 2010; Tan et al., 2010; Abdala et al., 2012). Furthermore,
sympathetic drive increases in tandem with respiratory neural
output after exposure to CIH (Zoccal et al., 2008). No studies
have examined CB chemoreflex tone in the Ang II/salt model,
however Ang II has been shown to play a role in enhancing
CB chemosensitivity (Li et al., 2006), and thus it is plausible
that tonic CB chemoreceptor input is elevated in this model
as well. Evidence from these studies suggests that enhanced
afferent activity arising from the CBs promotes respiratory-
sympathetic coupling that in turn perpetuates sympathetic over
activity.

Recent work from our lab (Figure 1) has shown that
respiratory-sympathetic coupling is enhanced in CHF, and that
the enhanced coupling coincides with sensitization of the CB
chemoreflex (Marcus et al., 2014a). Furthermore, we demon-
strated that respiratory-sympathetic coupling in CHF is critically
dependent on the CB since it was markedly reduced or abolished
after CBD (Marcus et al., 2014a). Taken together, these findings
strongly suggest a central role for enhanced tonic CB chemorecep-
tor drive in the development of respiratory-sympathetic coupling
in disease conditions characterized by autonomic imbalance and
abnormal respiratory rhythms.

The mechanisms underpinning the relationship of CB
chemoreflex drive to respiratory-sympathetic coupling in CHF
are still unclear. A plausible hypothesis is that the entrain-
ment between the respiratory and sympathetic neural drive may
result from alterations in the neurons integrating CB affer-
ents and initiating respiratory rhythm and sympathetic outflow
in the brainstem. Indeed, there is evidence that CIH-induced
sympatho-excitation results in an increase in the strength of
the excitatory synapses at the level of the nucleus of the soli-
tary tract, the paraventricular nucleus, and the rostral medulla
(Kc et al., 2010; Kline, 2010; Silva and Schreihofer, 2011; Costa-
Silva et al., 2012). Enhanced respiratory-sympathetic coupling
is of major relevance in CHF patients in which hyperventi-
lation is common, and in which frequent respiratory oscilla-
tions occur during CSR (Figure 1). Previous investigators have
observed surges in SNA during the hyperpneic phase of CSR
(Leung et al., 2006) which may be indicative of enhanced
respiratory-sympathetic coupling, and which likely has impor-
tant impact on downstream targets such as the heart and
kidneys.
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FIGURE 1 | Respiratory-sympathetic coupling in CHF. Oscillatory breathing
patterns were apparent in CHF animals (middle panel) that were
accompanied by concomitant oscillations in renal sympathetic nerve activity
(RSNA). Respiratory and RSNA oscillations were not observed in CHF

animals after carotid body denervation (bottom panel). CHF-chronic heart
failure, CBD-carotid body denervation, Vt-tidal volume, RSNA-renal
sympathetic nerve activity, iSNA-integrated renal sympathetic nerve activity.
Reproduced with permission from Marcus et al. (2014a).

ROLE OF ENHANCED CHEMOREFLEX SENSITIVITY AND
DISORDERED BREATHING IN CARDIAC AND RENAL
DYSFUNCTION IN HEART FAILURE
In CHF patients, renal dysfunction is common and is associated
with poor prognosis (Bock and Gottlieb, 2010). Development
of renal dysfunction in CHF is particularly ominous because
it can precipitate further decline in cardiac function, initiating
a downward spiral of deteriorating cardiac and renal function,

known as cardiorenal syndrome. While the etiology of cardiore-
nal syndrome is diverse, excessive sympathetic activation, volume
retention and venous congestion, renal ischemia secondary to
reductions in renal perfusion, and neuro-hormonal activation are
thought to play central roles (Bock and Gottlieb, 2010). Tonic
chemoreflex activation in CHF may contribute to cardiorenal syn-
drome by increasing sympathetic stimulation of the heart (Xing
et al., 2014) and kidneys (Sun et al., 1999a) leading to increases
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in peripheral vascular resistance and myocardial oxygen demand,
increases in sodium and water retention, and activation of the
renin-angiotensin system. In addition, the development of OB
mediated by enhanced CB chemoreflex sensitivity may further
exacerbate renal ischemia by eliciting additional chemoreflex-
evoked renal vasoconstriction in addition to episodic hypoxemia
(Figure 1).

Under normal circumstances, CB chemoreflex activation elic-
its a reduction in renal blood flow and glomerular filtration
rate that is mediated by renal sympathetic nerves (Karim et al.,
1987). In CHF, tonic elevations in renal SNA mediate sustained
reductions in renal blood flow and alterations in angiotensin sig-
naling (Clayton et al., 2011). Our preliminary findings indicate
that the reduction in renal blood flow to CB chemoreflex acti-
vation is markedly accentuated in CHF animals. Further, CBD
in CHF animals reduces renal SNA, increases renal blood flow,

and decreases markers of renal injury and fibrosis (Marcus et al.,
2014b), in addition to the reduction in disordered breathing and
improvement in cardiac function mentioned previously (Marcus
et al., 2014a). These findings suggest that tonic CB chemore-
flex activation in CHF may contribute to renal pathology in part
by its influence on sympathetic outflow (Hering et al., 2007) to
the heart and kidneys (Sun et al., 1999b; Xing et al., 2014). In
addition to the influence of tonic CB chemoreflex activation on
resting renal SNA, additional surges in SNA may be superimposed
by episodic hypoxemia associated with apneic episodes during
sleep (van de Borne et al., 1998), augmented by an enhanced
CB chemoreceptor sensitivity to hypoxia in CHF (Marcus et al.,
2014a). This notion is supported by evidence from studies in
clinical populations (Ryan et al., 2005).

Normalization of abnormal breathing patterns in CHF
patients with continuous positive airway pressure (CPAP) or

FIGURE 2 | Role of carotid body chemoreceptors in cardiac and renal

dysfunction. Enhanced tonic afferent activity from carotid body (CB)
chemoreceptors drives neuronal activity in brainstem centers that integrate
peripheral afferents and control respiratory and sympathetic neural outflow.
Hyperventilation due to the enhanced CB chemoreflex activation precipitates
oscillatory breathing, which exacerbates sympathetic activation through
respiratory-sympathetic coupling, in addition to exposing the heart and
kidneys to intermittent hypoxia and oxidative stress. The CB-mediated

enhanced respiratory-sympathetic coupling results in increased sympathetic
and decreased vagal efferent outflow to the heart, which over time worsens
cardiac function and development of fibrosis. Similarly, CB-mediated
increases in renal SNA cause reductions in renal perfusion and activation of
the renin-angiotensin system (RAS), which over time lead to worsening renal
function and development of fibrosis. The combined deleterious effects of
CB-mediated respiratory-sympathetic coupling on the heart and kidney
advances the cardiorenal syndrome.
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adaptive servo-ventilation (ASV) is associated with reduced tonic
levels of sympathetic activation (Ryan et al., 2005), improved
cardiac function, improved renal function, and improved prog-
nosis (Koyama et al., 2011; Yoshihisa et al., 2011; Kasai et al.,
2013; Owada et al., 2013). These improvements may be due
to secondary effects of CPAP or ASV treatments to improve
cardiac function via direct mechanical effects of pressure sup-
port ventilation on the heart (Takama and Kurabayashi, 2011),
however they also likely reflect the reduction in CB chemore-
flex sensitivity (Spicuzza et al., 2006), and consequent reduc-
tion in CB chemoreflex-mediated sleep disordered breathing
and sympathoexcitation (Naughton et al., 1995; Despas et al.,
2009). Our findings in an animal model of CHF support this
notion of the functional consequences of enhanced respiratory-
sympathetic coupling in CHF mediated by the CB. The reduction
of disordered breathing patterns with CBD was sufficient to
reduce renal SNA, increase renal blood flow, and improve car-
diac function (Marcus et al., 2014a,b) and survival (Del Rio
et al., 2013b), independent of any confounding effects of pres-
sure support ventilation used in the aforementioned clinical
studies.

CONCLUSION
Accumulating evidence suggests a critical role for the CB
chemoreceptors in the etiology of several important pathophys-
iological aspects of CHF. CB chemoreceptors are a major driv-
ing force in the development of autonomic dysfunction and
breathing abnormalities in CHF. Ablation of the CB chemore-
ceptors is sufficient to improve these parameters and leads to
improved cardiac function (Marcus et al., 2014a) and survival
(Del Rio et al., 2013b). The mechanisms by which the CB
chemoreflex exacerbates cardiac deterioration and morbidity in
CHF remain to be better elucidated, but disordered breathing,
enhanced respiratory-sympathetic coupling, tonic and episodic
increases in cardiac and renal SNA, and reductions in renal
function likely play an important role (Figure 2). A case report
published recently showed that unilateral CBD in a CHF patient
resulted in modest improvements in autonomic function, car-
diac function, and exercise tolerance, and reduced resting ven-
tilation (Niewinski et al., 2013). This study supports findings
from pre-clinical animal models and confirms the potential of
CBD or other forms of CB modulation as a therapeutic option
in CHF patients. Taken together, these findings suggest that
CB-mediated disordered breathing and respiratory-sympathetic
coupling in CHF plays an important role in the abnormalities
of sympathetic outflow observed in CHF with negative clini-
cal implications for cardiac and renal function (Marcus et al.,
2014a,b).
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