
OPINION ARTICLE
published: 13 January 2015

doi: 10.3389/fphys.2014.00528

The effects of 3,5-diiodothyronine on energy balance
Fernando Goglia*

Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Benevento, Italy
*Correspondence: goglia@unisannio.it

Edited by:

Jean-Pierre Montani, University of Fribourg, Switzerland

Reviewed by:

Francesco S. Celi, National Institutes of Health, USA

Keywords: thyroid hormone, resting metabolism, 3-5-diiodothyronine, mitochondria,energy balance

INTRODUCTION
Thyroid hormones (THs) have been
known to affect energy metabolism
(calorigenic effect) for over a century
(Magnus-Levy, 1895; Thompson et al.,
1929). In 1985 Magnus-Levy observed
that patients with mixedema exhibited
an abnormal low oxygen consumption
when compared to normal individuals
and that unusually higher amount of
oxygen was consumed by hyperthyroid
patients. 3,3′,5-triiodo-L-thyronine (T3)
is the active form of THs and it is a major
regulator of growth and development and
of cellular and tissue metabolism (both
intermediate and energy metabolism)
throughout the body. Metabolic actions
include regulation of: basal metabolic rate
in homeotherms, synthesis of mitochon-
drial respiratory enzymes and membranes,
oxidative phosphorylation and energy
transduction, movement of water and Na+
ions across cell membranes; calcium and
phosphorus metabolism, lipids synthe-
sis and storage, catabolism of fatty acids,
cholesterol, carbohydrate; and nitrogen
(urea, creatine) metabolism; growth and
developmental actions include actions on:
rate of postnatal growth of many mam-
malian and avian tissue, maturation of
fetal brain and bone, amphibian larval
metamorphosis, and molting in birds. It
is now recognized that T3 affects gene
expression in target tissues/cells by bind-
ing to its cognate nuclear receptors (TR)
which are ligand-inducible transcription
factors. Two TR genes α and β encode
four T3-binding receptor isoforms (α1,
β1, β2, and β3). The transcriptional activ-
ity of TRs is regulated at multiple levels.
Besides being regulated by T3, transcrip-
tional activity is also regulated: (i) by
the type of thyroid hormone response

elements located on the promoters of T3
target genes, (ii) by the developmental-
and tissue-dependent expression of TR
isoforms, and (iii) by a host of nuclear
coregulatory proteins (corepressors and
coactivators). These nuclear proteins
modulate the transcription activity of TRs
in a T3-dependent manner. In the absence
of T3, corepressors act to repress the basal
transcriptional activity, whereas in the
presence of T3, coactivators act to activate
transcription. The activities regulated via
the previous described mechanisms are
described as “genomic actions.” However,
between the mid-1980’s and the begin-
ning of the 1990’s it became evident that
some TH effects are non-genomic in ori-
gin. Indeed, high-affinity binding sites for
thyroid hormones have for many years
been recognized on the plasma membrane
and other cellular sites such as mitochon-
dria and cytoplasm (for review see Cheng
et al., 2010). Recently, a structural pro-
tein of the plasma membrane, integrin
αvβ3, has been shown to contain a bind-
ing domain for iodothyronines that is an
initiation site for hormone-directed com-
plex cellular events, such as cell division
and angiogenesis (Bergh et al., 2005) and
this qualifies the binding site for char-
acterization as a receptor. Examples of
non-genomic action of thyroid hormones
are activation of: membrane Ca2-ATPase
activity, 2-Deoxyglucose transport, Na,
K-ATPase activity, Na+ current in myocar-
diocytes, Na+ current in sensory neuron,
Na+/H+ exchanger, cancer cell prolifera-
tion, angiogenesis (for review see Cheng
et al., 2010). In addition to this, it is now
recognized that other iodothyronines or
THs analogs/derivatives are able to exert
relevant biological actions (for recent
review, see Moreno et al., 2008; Senese

et al., 2014; Zucchi et al., 2014). This arti-
cle is particularly intended to describe the
effects of the 3,5 diiodo-L-thyronine (T2)
on energy balance (Moreno et al., 1997;
Goglia, 2005).

3,5-DIIODO-L-THYRONINE (T2)
T2, a naturally occurring diiodothyronine,
is a product of a currently unknown enzy-
matic process most probably utilizing T3
as its precursor (Moreno et al., 2002).
Some years ago surprising results were
published showing that (among a lot of
iodothyronines tested) T2, at a very low
concentration (pM), induced a rapid stim-
ulation of oxygen consumption in per-
fused livers isolated from hypothyroid rats.
In the same study, it was shown that
T3 showed a similar effect but this effect
was largely abolished by the addition of
an inhibitor of D1 deiodinase, while the
effect of T2 was not. Moreover, T2 exerted
its effect more rapidly than T3 (Horst
et al., 1989). Stimulated by that report
and another study showing an interaction
of a diiodothyronine with mitochondria
(Goglia et al., 1981) some laboratories
started to investigate more deeply on pos-
sible specific biological actions of T2.
Initially, energy metabolism was the major
area of interest. Indeed, several reports
from various laboratories showed that
acute or chronic administration of T2

to rats resulted in significant changes in
energy metabolism. When either T3 or
T2 were acutely injected to hypothyroid
rats, T2 had a more rapid effect on rest-
ing metabolic rate than T3 (Lanni et al.,
1996). The experimental design used in
this study was basically the same as that
employed by Tata in the early 1960’s (Tata
et al., 1962; Tata, 1963) and the only dif-
ference was that in the study of Lanni
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et al. hypothyroidism was achieved by the
simultaneous administration of propylth-
iouracil (PTU) and iopanoic acid (IOP).
This treatment produces animals with
severe hypothyroidism and at the same
time, with a powerful inhibition of all
three types of deiodinase enzymes. In such
conditions the effects of T2 were evident
as soon as 1 h after its injection reaching
the maximal value after 24 h, while that of
T3 became evident only after 24 h reaching
the maximal value after 72 h (these effects
of T3 were overlapping to those obtained
by Tata, 1963). Moreover, while the effect
of T3 was inhibited by a inhibitor of tran-
scription such as actinomycin D (as shown
also by Tata, 1963). the effect of T2 was not
(Lanni et al., 1996; Moreno et al., 1997)
(see Figure 1).

Following these results studies con-
tinued to try to clarify the mechanisms
underlying the previous described results.
In light of the effects of T2 on energy
metabolism, the mitochondria became
the obvious candidates to study such
mechanisms. In this context, some years
ago, by top-down elasticity analysis, it
was showed a stimulation of the activity
of both cytochrome c-oxidizers and the
cytochrome c-reducers components of the
respiratory chain, 1 h after the injection
of 3,5-T2 (Lombardi et al., 1998). These
data indicate a possible direct interaction
of T2 with some components of the respi-
ratory chain. Indeed, this hypothesis was

FIGURE 1 | Time course of variation in the resting metabolic rate of hypothyroid rats

following administration of a single dose of iodothyronines (25 μg/100 g BW for both T2 and

T3) with or without a concomitant administration of actinomycin D (8 μg/100 g BW) (AD).

Hypothyroidism was induced by combined treatment with PTU and IOP (P + I). Resting metabolic
rate (RMR) is reported as % increase [vs. time 0 (immediately before the injection)].

in agreement with previous results show-
ing a direct stimulation of the enzyme
cytochrome oxidase (COX) activity iso-
lated from bovine heart (Goglia et al.,
1994). Arnold and Kadenbach (1997)
showed that (in addition to the mito-
chondrial membrane potential, the sub-
strate pressure in the respiratory chain and
the oxygen concentration) the respiration
of animal cells is also controlled by the
matrix ATP/ADP ratio, via an interaction
of nucleotides with COX. In fact, ATP pro-
duces an allosteric inhibition of the COX
activity. In a further investigation, Arnold
et al. (Arnold et al., 1998) showed that
3,5-T2 specifically binds to subunit Va of
the COX complex and completely abol-
ishes the allosteric inhibition of respira-
tion induced by ATP. Subunit Va of the
COX complex is therefore a mitochondrial
site through which T2 may directly affect
mitochondrial activities. In addition to
activating mitochondrial substrate oxida-
tion, 3,5-T2 also stimulates skeletal muscle
mitochondrial uncoupling in a very rapid
manner (Lombardi et al., 2007, 2009). By
discriminating between proton-leak and
redox-slip processes, an increased mito-
chondrial proton conductance has been
addressed as the “pathway” underlying the
effect of T2 on mitochondrial uncoupling.
Thus, activation of COX complex above
described associated to changes in the effi-
ciency of the skeletal muscle mitochon-
drial energy-transduction apparatus, may

explain, at least in part, the rapid effect of
T2 on metabolic rate.

The stimulatory effects exerted by T2
on RMR prompted my group to investi-
gate on a possible effect of this iodothy-
ronine in counteracting overweight and
lipid accumulation without deleterious
side effects in particular on hearth and
skeletal muscle such as those showed by
T3 when tested as slimming agent. To
test this idea, we administered T2 for 30
days to rats on a high fat diet (HFD)
and then we measured the adipose tis-
sue mass, the body weight gain, the liver
adiposity, the liver fatty acid oxidation
rate, and the serum levels of triglyceride,
fatty acids, and cholesterol. In this study
we also looked at a possible effect of
T2 on HPT axis (Lanni et al., 2005).
The results showed that, except a slight
decrease (−20%) in T4 serum level, no
variation in the Hypothalamus-Pituitary-
Thyroid axis (HPT) was evident mea-
sured by the “TRH-test.” In this study rats
treated with T2 showed lower body weight,
a higher liver fatty acid oxidation rate,
less fat mass, an almost complete disap-
pearance of fat from the liver, and signif-
icant reductions in the serum triglyceride
and cholesterol levels. Recently, most of
these results have been confirmed also in
animals with a standard laboratory diet
and with a prolonged time of treatment
(Padron et al., 2014). In addition, several
studies from both our and others labora-
tories showed relevant biological effects of
T2 and some of them reported beneficial
effects of T2, among others:

Moreno et al. (2011) and de Lange et al.
(2011) showed that T2 prevented high-
fat-diet-induced insulin resistance in
rat whose action involved activation of
sirtuin 1 (SIRT1).
Markova et al. (2013) showed an
antidepressant-like effect of T2 in rats
after a bolus administration of T2 at the
doses 75 and 150 μg/100 g b.w.
Shang et al. (2013) showed that T2
was a protective agent against renal
damage in diabetic nephropathy in
streptozotocin-induced diabetic rats,
confirming the involvement of sirtuin 1
(SIRT1).

These effects were observed in absence
of deleterious side effects. However, some
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studies have shown some deleterious effect
at cardiac level and on HPT axis (Goldberg
et al., 2012; Jonas et al., 2014) but in these
studies unusual very high doses of T2 were
studied and unspecific interaction of T2

with nuclear TRs may have occurred.
Further details about the actions of T2

can be found in some reviews (Goglia,
2005; Coppola et al., 2014; Senese et al.,
2014).

Of Note, the understanding of the
physiological and pathophysiological role
of T2 would benefit from development and
standardization of new methods for ana-
lytical measurement of T2 and other TH
derivatives. Actually, measurements of T2
in human tissue and sera have been so
far taken using immunoassays (Kirkegaard
et al., 1981; Nishikawa et al., 1981).
However, the lack of labeled iodothy-
ronines with high specific activity as well
as of specific antibodies has represented an
important limitation to the application of
such approach. Promising developments
in this field have recently emerged from the
optimization of a new competitive chemi-
luminescence immunoassay (CLIA) based
on the use of one selected mouse mon-
oclonal anti-T2 antibody with very low
cross-reactivity to structurally related THs
and thyronamines (Lehmphul et al., 2014).
Mass spectrometry techniques have also
drawn attention to the analyses of iodothy-
ronines (Köhrle et al., 2013), however,
intrinsic instrumental limits still restrain
the application of such approaches as
routine tools.

CONCLUSION AND PERSPECTIVES
The data reported and discussed in this
article have generated a large inter-
est in the possibility of identifying
analogs/derivatives of thyroid hormone
that may prove effective as therapeutic
agents to counteract some major diseases
that are growing in importance world-
wide. But, before this perspective can be
realized further studies are needed to elu-
citade the cellular/molecular mechanisms
of action of these agents and, in addi-
tion, a possible therapeutic use of these
agents need deep investigations on possi-
ble deleterious side effects especially when
administered for a long time. As for T2 it
remains to be established whether it has a
physiological role or not and in an affir-
mative case it remains unclear what are

the possible physiological roles that differ-
entiate the actions of T2 and T3. Another
aspect is related to the problem of pos-
sible TR-mediated genomic effect of T2.
It has been recently proven that T2 is a
specific ligand for a long isoform of TRβ

in tilapia (Mendoza et al., 2013) affecting
the growing processes in this specie. T3
and T2 both participate in the growth pro-
cess, however their effects are mediated by
different, specific TRβ1 isoforms (STRβ1

and LTRβ1 respectively). However, no data
are present at the moment showing that a
such binding can affect energy metabolism
in higher species and further studies are
needed to verify this possibility. Further
studies may also be useful to try to develop
new concepts that could help toward a
better understanding of some of the effects
of thyroid hormones and those of their
analogs/derivatives.

REFERENCES
Arnold, S., Goglia, F., and Kadenbach, B. (1998).

3,5-Diiodothyronine binds to subunit Va
of cytochrome-c oxidase and abolishes
the allosteric inhibition of respiration by
ATP. Eur. J. Biochem. 252, 325–330. doi:
10.1046/j.1432-1327.1998.2520325.x

Arnold, S., and Kadenbach, B. (1997). Cell respira-
tion is controlled by ATP, an allosteric inhibitor
of cytochrome-c oxidase. Eur. J. Biochem. 249,
350–354

Bergh, J. J., Lin, H. Y., Lansing, L., Mohamed, S.
N., Davis, F. B., Mousa, S., et al. (2005). Integrin
αvβ3 contains a cell surface receptor site for
thyroid hormone that is linked to activation of
mitogen-activated protein kinase and induction of
angiogenesis. Endocrinology 146, 2864–2871 doi:
10.1210/en.2005-0102

Cheng, S. Y., Leonard, J. L., and Davis, P. J. (2010).
Molecular aspects of thyroid hormone actions.
Endocr. Rev. 31, 139–170. doi: 10.1210/er.2009-
0007

Coppola, M., Glinni, D., Moreno, M., Cioffi, F.,
Silvestri, E., and Goglia, F. (2014). Thyroid
hormone analogues and derivatives: actions in
fatty liver. World J. Hepatol. 6, 114–129. doi:
10.4254/wjh.v6.i3.114

de Lange, P., Cioffi, F., Senese, R., Moreno, M.,
Lombardi, A., Silvestri, E., et al. (2011).
Nonthyrotoxic prevention of diet-induced
insulin resistance by 3,5-diiodo-L-thyronine
in rats. Diabetes 60, 2730–2739. doi: 10.2337/
db11-0207

Goglia, F., Lanni, A., Barth, J., and Kadenbach,
B. (1994). Interaction of diiodothyronines
with isolated cytochrome c oxidase. FEBS Lett.
346, 295–298. doi: 10.1016/0014-5793(94)
00476-5

Goglia, F., Torresani, J., Bugli, P., Barletta, A., and
Liverini, G. (1981). In vitro binding of triiodothy-
ronine to rat liver mitochondria. Pflugers Arch.
390, 120–124. doi: 10.1007/BF00590193

Goglia, F. (2005). Biological effects of 3,5-
diiodothyronine (T(2)). Biochemistry (Mosc)
70, 164–172. doi: 10.1007/s10541-005-0097-0

Goldberg, I. J., Huang, L. S., Huggins, L. A., Yu,
S., Nagareddy, P. R., Scanlan, T. S., et al. (2012).
Thyroid hormone reduces cholesterol via a non-
LDL-receptor-mediated pathway. Endocrinology
153, 5143–5149. doi: 10.1210/en.2012-1572

Horst, C., Rokos, H., and Seitz, H. J. (1989). Rapid
stimulation of hepatic oxygen consumption by 3,5-
di-iodo-L-thyronine. Biochem. J. 261, 945–950.

Jonas, W., Lietzow, J., Wohlgemuth, F., Hoefig, C.
S., Wiedmer, P., Schweizer, U., et al. (2014). 3,5-
diiodo-L-thyronine (3,5-T2) exerts thyromimetic
effects on hypothalamus-pituitary-thyroid axis,
body composition, and energy metabolism in
male diet-induced obese mice. Endocrinology 1,
389–399. doi: 10.1210/en.2014-1604

Kirkegaard, C., Faber, J., Siersbæk-Nielsen, K., and
Friis, T. (1981). A radioimmunoassay of serum
3,5-diiodothyronine. Acta Endocrinol. 97, 196–201.

Köhrle, J., Martin, C., Renko, K., and Hoefig, C. S.
(2013). “Simultaneous analysis of all nine possible
iodothyronines by liquid chromatography-tandem
mass spectrometry,” in 37th Annual Meeting of
European Thyroid Association, eds J. Smit and T
Visser (Leiden, The Netherlands; Basel, Reinhhardt
Druck: Karger, P241), 176

Lanni, A., Moreno, M., Lombardi, A., de Lange, P.,
Silvestri, E., Ragni, M., et al. (2005). 3,5-Diiodo-
L-thyronine powerfully reduces adiposity in rats
by increasing the burning of fats. FASEB J. 19,
1552–1554. doi: 10.1096/fj.05-3977fje

Lanni, A., Moreno, M., Lombardi, A., and Goglia, F.
(1996). Calorigenic effect of diiodothyronines in
the rat. J. Physiol. 494, 831–837.

Lehmphul, I., Brabant, G., Wallaschofski, H., Ruchala,
M., Strasburger, C. J., Kohrle, J., et al. (2014).
Detection of 3,5-diiodothyronine in sera of
patients with altered thyroid status using a
new monoclonal antibody-based chemilumines-
cence immunoassay. Thyroid 24, 350–1360. doi:
10.1089/thy.2013.0688

Lombardi, A., de Lange, P., Silvestri, E., Busiello,
R. A., Lanni, A., Goglia, F., et al. (2009). 3,5-
Diiodo-L-thyronine rapidly enhances mitochon-
drial fatty acid oxidation rate and thermogenesis in
rat skeletal muscle: AMP-activated protein kinase
involvement. Am. J. Physiol. Endocrinol. Metab.
296, E497–E502. doi: 10.1152/ajpendo.90642

Lombardi, A., Lanni, A., de Lange, P., Silvestri, E.,
Grasso, P., Senese, R., et al. (2007). Acute adminis-
tration of 3,5-diiodo-L-thyronine to hypothyroid
rats affects bioenergetic parameters in rat skeletal
muscle mitochondria. FEBS Lett. 581, 5911–5916
doi: 10.1016/j.febslet.2007.11.073

Lombardi, A., Lanni, A., Moreno, M., Brand,
M. D., and Goglia, F. (1998). Effect of 3,5-
di-iodo-L-thyronine on the mitochondrial
energy-transduction apparatus Biochem. J. 330,
521–526.

Magnus-Levy, A. (1895). Uber den respiratorischen
Gaswechsel unter dem Ein fluss der Thyroidea
sowie unter verschiedenen pathologischen
Zustanden. Berl. Klin. Wochenschr. 32, 650–652.

Markova, N., Chernopiatko, A., Schroeter, C. A.,
Malin, D., Kubatiev, A., Bachurin, S., et al. (2013).
Hippocampal gene expression of deiodinases 2
and 3 and effects of 3,5-diiodo-L-thyronine T2

www.frontiersin.org January 2015 | Volume 5 | Article 528 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Integrative_Physiology/archive


Goglia The effects of 3,5-diiodothyronine on energy balance

in mouse depression paradigms. Biomed. Res. Int.
2013:565218. doi: 10.1155/2013/565218

Mendoza, A., Navarrete-Ramírez, P., Hernández-
Puga, G., Villalobos, P., Holzer, G., Renaud, J. P.,
et al. (2013). 3,5-T2 is an alternative ligand for the
thyroid hormone receptor β1. Endocrinology. 154,
2948–58. doi: 10.1210/en.2013-1030

Moreno, M., de Lange, P., Lombardi, A., Silvestri,
E., Lanni, A., and Goglia, F. (2008). Metabolic
effects of thyroid hormone derivatives. Thyroid 18,
239–253. doi: 10.1089/thy.2007.0248

Moreno, M., Lanni, A., Lombardi, A., and Goglia, F.
(1997). How the thyroid controls metabolism in
the rat: different roles for triiodothyronine and
diiodothyronines. J. Physiol. 505, 529–538. doi:
10.1111/j.1469-7793.1997.529bb.x

Moreno, M., Lombardi, A., Beneduce, L., Silvestri, E.,
Pinna, G., Goglia, F., et al. (2002). Are the effects
of T3 on resting metabolic rate in euthyroid rats
entirely caused by T3 itself? Endocrinology 143,
504–510. doi: 10.1210/endo.143.2.8613

Moreno, M., Silvestri, E., De Matteis, R., de Lange, P.,
Lombardi, A., and Glinni, D. (2011). 3,5-Diiodo-
L-thyronine prevents high-fat-diet-induced
insulin resistance in rat skeletal muscle through
metabolic and structural adaptations. FASEB J. 25,
3312–3324. doi: 10.1096/fj.11-181982

Nishikawa, M., Inada, M., Naito, K., Ishii, H.,
Tanaka, K., Mashio, Y., et al. (1981). Age-
related changes of serum 3,3′-diiodothyronine,

3′,5′-diiodothyronine, and 3,5-diiodothyronine
concentrations in man. J. Clin. Endocrinol. Metab.
52, 517–522. doi: 10.1210/jcem-52-3-517

Padron, A. S., Neto, R. A., Pantaleão, T. U., de Souza
dos Santos, M. C., Araujo, R. L., de Andrade,
B. M., et al. (2014). Administration of 3,5-
diiodothyronine (3,5-T2) causes central hypothy-
roidism and stimulates thyroid-sensitive tissues.
J Endocrinol. 221, 415–427. doi: 10.1530/JOE-13-
0502

Senese, R., Cioffi, F., de Lange, P., Goglia, F., and
Lanni, A. (2014). Thyroid: biological actions of
nonclassical’ thyroid hormones. J. Endocrinol. 221,
R1–R12. doi: 10.1530/JOE-13-0573

Shang, G., Gao, P., Zhao, Z., Chen, Q., Jiang,
T., Zhang, N., et al. (2013). 3,5-Diiodo-L-
thyronine ameliorates diabetic nephropathy
in streptozotocin-induced diabetic rats.
Biochim. Biophys. Acta 1832, 674–684. doi:
10.1016/j.bbadis.2013.01.023

Tata, J. R., Ernster, L., and Lindberg, O. (1962).
Control of basal metabolic rate by thyroid
hormones and cellular function. Nature 198,
1059–1060.

Tata, J. R. (1963). Inhibition of the biological
action of thyroid hormones by actinomycin D
and puromycin. Nature, 197, 1167–1168. doi:
10.1038/1971167a0

Thompson, W. O., Thompson, P. K., Brailey, A. G.,
and Cohen, A. C. (1929). The calorigenic action

of thyroxin at different levels of basal metabolosm
in myxedema. J. Clin. Invest. 7, 437–463. doi:
10.1172/JCI100237

Zucchi, R., Accorroni, A., and Chiellini, G.
(2014). Update on 3-iodothyronamine and
its neurological and metabolic actions.
Front. Physiol. 5:402. doi: 10.3389/fphys.2014.
00402

Conflict of Interest Statement: The author declares
that the research was conducted in the absence of any
commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 30 October 2014; accepted: 23 December 2014;
published online: 13 January 2015.
Citation: Goglia F (2015) The effects of 3,5-
diiodothyronine on energy balance. Front. Physiol.
5:528. doi: 10.3389/fphys.2014.00528
This article was submitted to Integrative Physiology, a
section of the journal Frontiers in Physiology.
Copyright © 2015 Goglia. This is an open-access arti-
cle distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the
original author(s) or licensor are credited and that the
original publication in this journal is cited, in accor-
dance with accepted academic practice. No use, distribu-
tion or reproduction is permitted which does not comply
with these terms.

Frontiers in Physiology | Integrative Physiology January 2015 | Volume 5 | Article 528 | 4

http://dx.doi.org/10.3389/fphys.2014.00528
http://dx.doi.org/10.3389/fphys.2014.00528
http://dx.doi.org/10.3389/fphys.2014.00528
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Integrative_Physiology
http://www.frontiersin.org/Integrative_Physiology
http://www.frontiersin.org/Integrative_Physiology/archive

	The effects of 3,5-diiodothyronine on energy balance
	Introduction
	3,5-DIIODO-L-THYRONINE (T2)
	Conclusion and Perspectives
	References


