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Voltage-gated sodium channels (Nay) are widely expressed as macro-molecular complexes
in both excitable and non-excitable tissues. In excitable tissues, the upstroke of the
action potential is the result of the passage of a large and rapid influx of sodium
ions through these channels. Nay dysfunction has been associated with an increasingly
wide range of neurological, muscular and cardiac disorders. The purpose of this review
is to summarize the recently identified sodium channel mutations that are linked
to hyperexcitability phenotypes and associated with the alteration of the activation
process of voltage gated sodium channels. Indeed, several clinical manifestations that
demonstrate an alteration of tissue excitability were recently shown to be strongly
associated with the presence of mutations that affect the activation process of the Nay.
These emerging genotype-phenotype correlations have expanded the clinical spectrum of
sodium channelopathies to include disorders which feature a hyperexcitability phenotype
that may or may not be associated with a cardiomyopathy. The p.1141V mutation in
SCN4A and SCN5A, as well as its homologous p.1136V mutation in SCN9A, are interesting
examples of mutations that have been linked to inherited hyperexcitability myotonia,
exercise-induced polymorphic ventricular arrhythmias and erythromelalgia, respectively.
Regardless of which sodium channel isoform is investigated, the substitution of the
isoleucine to valine in the locus 141 induces similar modifications in the biophysical
properties of the Nay by shifting the voltage-dependence of steady state activation toward

more negative potentials.
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INTRODUCTION
In excitable tissues, action potential initiation and propagation
are the result of the passage of a large and rapid influx of sodium
ions through the voltage-gated sodium channels (Nay). These
channels consist of highly processed a-subunits that are present
as nine different isoforms (Goldin et al., 2000). The a-subunit of
the sodium channel is composed of four homologous domains
(Noda et al., 1984). Each of these domains contains six a-helical
transmembrane segments (S1-S6). The first four segments (S1—
S4) comprise the voltage-sensing domain (VSD), and the last two
segments (S5 and S6) form the pore of the channel when assem-
bled in a tetrameric configuration (Figure1) (Payandeh et al.,
2011). Nay dysfunction causes multiple inherited diseases, for-
merly known as channelopathies. Rare mutations and common
variants in genes encoding the a-subunits have been associated
with several familial forms of neurological, muscular and car-
diac disorders (Cheng et al., 2008; Petitprez et al., 2008; Probst
et al.,, 2009; Meisler et al., 2010; Abriel and Zaklyazminskaya,
2013; Bezzina et al., 2013; Liu et al., 2014; Swan et al., 2014).

The Nay have been shown to be part of multi-protein com-
plexes that are located in different cellular compartments. In addi-
tion to the Na, a-subunits, these complexes have Na,-interacting

proteins that regulate channel expression and function (Abriel,
2010; Laedermann et al., 2013a,b). Similar to that described for
the sodium channel a-subunits, mutation in genes encoding the
Nay-interacting proteins have been linked to the occurrence of
several inherited diseases (Abriel, 2010; Catterall, 2014).

Several naturally occurring mutations that affect the acti-
vation process of the voltage-gated sodium channel have been
recently associated with alterations of neuronal, muscular and
cardiac excitabilities (Cheng et al., 2008; Petitprez et al., 2008;
Laurent et al., 2012; Mann et al., 2012; Beckermann et al., 2014).
The p.I141V mutation in SCN4A and SCN5A, as well as its
homologous mutation p.J136V in SCN9A, are interesting exam-
ples of substitutions that lead to the occurrence of inherited
hyper-excitability phenotypes. Depending on the sodium channel
isoform, the I/V substitution is associated with familial forms of
myotonia, exercise-induced polymorphic ventricular arrhythmias
or erythromelalgia (Lee et al., 2007; Cheng et al., 2008; Petitprez
et al., 2008; Swan et al., 2014).

The purpose of this review is to summarize the recently iden-
tified sodium channel mutations that are linked to cardiac hyper-
excitability phenotypes and associated with the alteration of the
activation process of voltage gated sodium channels.
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FIGURE 1 | Topology of the pore-forming «-subunit of voltage gated sodium channels.

CELLULAR EXCITABILITY AND VOLTAGE GATED SODIUM
CHANNELS

In nervous, muscular, and cardiac tissues, Iy, influx through
the Na, channels is the major depolarizing current and, thus,
underlies cellular excitability. Mutations that affect the function
of these Nay channels have been shown to modify the excitabil-
ity pattern of these tissues. As an example, loss of function
mutations of Na, 1.5, leading to a decreased excitability of car-
diac cells (hypo-excitability), slow the cardiac conduction velocity
(Amin et al., 2010). On the opposite, gain of function muta-
tions of these channels may reduce the excitation threshold and
increase the conduction velocity leading to an increased cardiac
excitability (hyper-excitability) (Swan et al., 2014). In the present
review article, we focus on mutations that are linked with cellular
hyper-excitability phenotypes.

CARDIAC HYPER-EXCITABILITY PHENOTYPES RELATED TO
AN ALTERED ACTIVATION PROCESS OF Nay1.5

THE CARDIAC SODIUM CHANNEL, Nay1.5

Nay 1.5 is the main sodium channel isoform expressed in car-
diac cells (Yu and Catterall, 2003). Other Na, a-subunits, such
as Nayl1.1, 1.3, 1.6, and 1.8, are also present in the heart (Maier
et al., 2004; Yang et al., 2012), and are mainly localized on the
cardiomyocytes T-tubules or in the intracardiac neurons involved
in neural control of the heart (Maier et al., 2002, 2004). These
“non-cardiac” channels contribute to the conduction of a small
proportion of the cardiac sodium current (Maier et al., 2002,
2004).

As aforementioned, the cardiac sodium channel is a multipro-
tein complex in which auxiliary proteins (i.e., p subunits) interact
with the a-subunit, Nay 1.5, to regulate its biology and function
(Abriel, 2010). Some of these proteins, which are localized in spe-
cific regions of cardiac cells, have been shown to interact with the
same regulatory domain of Na, 1.5 (Abriel, 2010; Shy et al., 2013).
As demonstrated by Shy and colleagues (Shy et al., 2014), the
Nay 1.5 channels are expressed as at least two distinct functional

pools that are localized at the intercalated discs and the lateral
membranes of the cardiomyocyte (Shy et al., 2014).

DILATED CARDIOMYOPATHY AND ION CHANNEL DYSFUNCTION

Dilated cardiomyopathy (DCM) is a cardiac structural dis-
ease characterized by decreased systolic function and ventricular
dilatation. Inherited forms of this structural abnormality have
been mainly linked to mutations in genes coding for cytoskele-
tal proteins (Haas et al., 2014). DCM has also been associated
with mutations that affect Nay1.5 function, providing support
to the argument that DCM could be considered as one of the
phenotypes of cardiac sodium channelopathy (McNair et al,
2004; Olson et al., 2005; Ge et al., 2008; Nguyen et al., 2008;
Morales et al., 2010; Laurent et al., 2012; Mann et al., 2012;
Beckermann et al., 2014; Haas et al., 2014). The identified muta-
tions appear to be preferentially localized in the VSD region
of Nayl.5, and induce a loss or gain of function by affecting
the voltage-dependencies of steady state activation and/or inac-
tivation (McNair et al., 2004; Ge et al.,, 2008; Nguyen et al.,
2008; Laurent et al., 2012; Mann et al., 2012; Beckermann
et al.,, 2014). The sodium currents generated by some of these
mutants have larger sodium window current peaks that are
shifted toward more negative potentials (Nguyen et al., 2008;
Laurent et al., 2012; Mann et al., 2012; Beckermann et al., 2014).
In addition, Gosselin-Badaroudine and colleagues (Gosselin-
Badaroudine et al., 2012) demonstrated that the R219H mutation
in Nay 1.5 causes a proton leak current, suggesting that this muta-
tion induces intracellular acidification which may contribute to
the DCM phenotype (Gosselin-Badaroudine et al., 2012).

The majority of studies that link the SCN5A gene to the
occurrence of DCM demonstrate that this phenotype is usually
associated with alterations in cardiac excitability (McNair et al.,
2004; Ge et al., 2008; Nguyen et al., 2008; Gosselin-Badaroudine
et al., 2012; Laurent et al., 2012; Mann et al., 2012; Shen et al.,
2013; Beckermann et al., 2014). This observation raises several
questions about the real origin of the observed structural defects.
Are they a direct consequence of alterations in Na, 1.5 function, or
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aresult of pre-existing electrical arrhythmias? In some studies, the
results of pharmacological therapy support the second hypothe-
sis. Laurent et al (Laurent et al., 2012) and Mann et al (Mann
etal, 2012) demonstrated improvement in cardiac function using
the sodium channel-blocking properties of some anti-arrhythmic
drugs, such as amiodarone, flecainide, and quinidine (Laurent
etal., 2012; Mann et al., 2012).

These observations suggest that the association between
Nay 1.5 mutations and DCM is multifactorial. Some of the known
involved factors are the existence of long-standing arrhythmias,
the alteration of sodium channel function, the genetic back-
ground of the patient, and the presence of structural abnormal-
ities (McNair et al., 2004; Ge et al., 2008; Nguyen et al., 2008;
Cheng et al., 2010; Gosselin-Badaroudine et al., 2012; Laurent
etal., 2012; Mann et al., 2012; Shen et al., 2013; Beckermann et al.,
2014).

CARDIAC HYPER-EXCITABILITY PHENOTYPES ASSOCIATED WITH
Nay1.5 VOLTAGE SENSOR MUTATIONS

Several studies (Olson et al., 2005; Laurent et al., 2012; Mann
et al.,, 2012; Nair et al., 2012; Beckermann et al., 2014) have
recently reported a new SCN5A-dependent clinical presentation
characterized by an alteration in tissue excitability associated with
DCM. All of the related SCN5A mutations (p.R814W, p.R222Q,
p-R219H, and p.R225P) neutralize arginine residues that are
localized in the S4 segment of domain I and II (Olson et al,
2005; Laurent et al., 2012; Mann et al., 2012; Nair et al., 2012;
Beckermann et al., 2014). The functional consequences of these
substitutions is either the alteration of Nay 1.5 gating (Figure 2)
(Olson et al., 2005; Laurent et al., 2012; Mann et al., 2012; Nair
et al., 2012; Beckermann et al.,, 2014) or the induction of a
pH-dependent inward H* current (Gosselin-Badaroudine et al.,
2012).

The p.R814W substitution was the first mutation linked to the
neutralization of an arginine in the S4 segment of Na,1.5. This
mutation was associated with the occurrence of cardiac hyper-
excitability and DCM (Olson et al., 2005). When compared to the
WT condition, the Na,1.5-R814W mutant negatively shifted the
voltage dependence of activation, slowed activation kinetics and
increased the sodium window current (Nguyen et al., 2008).

Similar biophysical modifications of Na, 1.5 were observed for
the p.R222Q mutation. This mutation shifted the voltage depen-
dence of activation toward more negative potentials and hastened
the activation kinetics. The voltage dependence of inactivation,
when combined with the activation shift, increased and shifted
the sodium window current toward more negative potentials
(Laurent et al., 2012; Mann et al., 2012; Nair et al., 2012). The clin-
ical phenotypes associated with the p.R222Q substitution were
variable. The observed phenotypes included the occurrence of
peripartum DCM, arrhythmic DCM, escape capture bigeminy,
and multifocal ectopic Purkinje-related premature contractions
associated with DCM (Olson et al., 2005; Morales et al., 2010;
Laurent et al., 2012; Mann et al., 2012; Nair et al., 2012).

An original mechanism linking the neutralization of $4 argi-
nine residues with the occurrence of cardiac hyper-excitability has
been described for the p.R219H mutation (Gosselin-Badaroudine
et al.,, 2012). The functional characterization of this mutation
by Chahine et al suggested that the presence of the p.R219H
mutation may induce intracellular acidification by creating a pH-
dependent inward proton current, thus favoring the development
of DCM and cardiac arrhythmias (Gosselin-Badaroudine et al,,
2012).

Another Na, 1.5 VSD arginine mutation, p.R225P, was recently
identified in a boy with a prenatal arrhythmia and impaired car-
diac contractility, followed by postnatal multifocal ventricular
ectopy (Beckermann et al., 2014). This mutation affects the acti-
vation and inactivation processes, resulting in an increased and
hyperpolarized sodium window current. The authors suggested
that these biophysical modifications may lead to an aberrant
sodium influx at potential ranges that are close to the resting
membrane potential of cardiac cells, and thus may modify the
excitability of cardiomyocytes (Beckermann et al., 2014).

EXERCISE-INDUCED POLYMORPHIC VENTRICULAR ARRHYTHMIAS

A clinical and genetic study of a large multigenerational Finnish
family recently demonstrated an inherited form of exercise-
induced polymorphic ventricular arrhythmia caused by a newly
identified SCN5A mutation, p.I141V (Swan et al., 2014). This
mutation is located in a highly conserved region of the Na,1.5
channel domain I S1 transmembrane segment. The p.[141V
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FIGURE 2 | Schematic representation of the shared mechanism of Na, 1.5 mutations associated with cardiac hyper-excitability. Negative shift of the
voltage dependence of activation (A) leading to a negative shift of the sodium window conductance (B).
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FIGURE 3 | Molecular dynamics simulation of the WT (left panel) and
the p.1141V mutants (right panel) of Na, 1.4 channel. In the presence of
the p.1141V mutation, the model predicted the formation of a hydrogen
bond (Green arrow) between the S2-Y168 and S4-R225 residues, thus
stabilizing the open confirmation of the channel; (From Amarouch et al.,
2014).

mutation shifted the voltage dependence of steady state activation
toward more negative potentials. The p.1141V window current
exhibited a larger peak which was shifted toward more negative
potentials as compared to the WT (Figure 2). Computer mod-
eling of the biophysical modifications induced by the p.I1141V
mutation, however, suggested a reduced excitation threshold for
action potential generation in the presence of this mutation as
compared to the WT.

The crystal structure of the bacterial channel Na,Ab, pub-
lished by the Catterall’s group, shows close proximity between
the isoleucine 141 residue of the S1 segment and arginines that
are located in the S4 segment (Payandeh et al., 2011). Based on
these observations, we hypothesized that the p.1141V substitu-
tion stabilizes the open conformation of the Nay by modifying
or creating new interactions between these specific segments
(Amarouch et al., 2014). Molecular dynamic simulations, using
the Nay1.4 model, predicted the formation of a hydrogen bond
between the Y168-S2 and the R225-5S4 residues in the presence
of the p.I141V mutation on S1 (Figure 3). Single and double
mutants, p.Y168F and p.1141V-Y168E, were generated in order to
test these predictions in Nay1.5. The functional analyses of these
mutants demonstrated the abolition of the functional effects of
the p.J141V mutation in the double mutant, consistent with the
formation of a specific interaction between Y168-S2 and R225-
S4 (Figure 4). The single p.Y168F mutation positively shifted the
activation curve, suggesting a compensatory role of these residues
on the stability of the voltage-sensing domain.

MUSCULAR HYPER-EXCITABILITY PHENOTYPES RELATED
TO AN ALTERED ACTIVATION PROCESS OF
Nay/1.4—EXAMPLE OF MYOTONIA

The skeletal voltage-gated sodium channel Na,1.4, encoded by
the SCN4A gene, is responsible for the initiation of the action

potential in muscle fibers, resulting in muscle contraction. Similar
to that described for the cardiac sodium channel, the Na,1.4
a-subunit is regulated by several proteins, i.e., the f1 subunit that
modifies kinetics and gating (Isom, 2001). Similar to the Na, 1.5
channel, Na,1.4 is a large protein composed of four homolo-
gous domains (I-IV), each containing six transmembrane helices
(S1-S6) (Figure 1). Mutations in the SCN4A gene have been asso-
ciated with altered excitability of skeletal muscle (Jurkat-Rott
et al., 2010). The majority of the mutations in Na, 1.4 were found
in the voltage sensor segments S4, the S4-S5 linkers, or in the
pore forming segments S5-S6 (Jurkat-Rott et al., 2010). They were
found to induce both a loss or gain of function. Gain of func-
tion effect has been described to be more frequent (Sokolov et al.,
2007; Petitprez et al., 2008; Jurkat-Rott et al., 2010; Corrochano
etal., 2014).

Myotonia is one example of skeletal muscle hyper-excitability
in which a voluntary contraction or electromechanical stimu-
lation can provoke trains of repetitive action potentials. This
causes a delay in relaxation after muscle contraction. This phe-
notype has been associated with several SCN4A mutations that
affect the activation and the slow inactivation processes of Nay 1.4
(Petitprez et al., 2008; Jurkat-Rott et al., 2010; Kokunai et al.,
2012; Yoshinaga et al., 2012; Corrochano et al., 2014). Among
these SCN4A mutants, the substitution of isoleucine to valine in
S1-DI and S1-DII affect the biophysical properties of Nay1.4 sim-
ilar to the aforementioned example (Wagner et al., 1997; Petitprez
et al., 2008). In vitro characterization of the p.1141V and p.I588V
mutants demonstrated a negative shift of the voltage dependence
of activation in the presence of these mutants (Wagner et al., 1997;
Petitprez et al., 2008). In vivo characterization of p.I588V knock-
in mice demonstrated that these mice suffered from unprovoked
intermittent hind-limb immobility attacks. The mice were not
able to move their hind-limbs, confirming the implication of
this mutation in the occurrence of myotonia (Corrochano et al.,
2014).

NEURONAL HYPER-EXCITABILITY PHENOTYPES RELATED
TO AN ALTERED ACTIVATION PROCESS OF
Nay/1.7—EXAMPLE OF ERYTHROMELALGIA

The Nay1.7 channel is one of the neuronal isoforms of voltage
gated sodium channels. It is preferentially expressed in the noci-
ceptive dorsal root ganglia and sympathetic ganglia, and may
play an important role in nociception (Sangameswaran et al.,
1997; Toledo-Aral et al., 1997; Cummins et al., 1998; Rush et al.,
2007). Both gain and loss of function mutations of the SCN9A
gene, which encodes the Nay 1.7 a-subunit, have been associated
with pain syndromes, including erythromelalgia (Cox et al., 2006;
Dib-Hajj et al., 2007).

Inherited erythromelalgia is a rare disorder characterized by
recurrent episodes of pain associated with redness and swelling
in various parts of the body, particularly the hands and the feet
(Drenth and Michiels, 1990). Standing, exercise, or local exposure
to heat can induce the symptoms in affected patients. Among the
described Nay1.7 gain of function mutations that are associated
with inherited erythromelalgia (Dib-Hajj et al., 2007; Chenget al.,
2008, 2011; Cregg et al., 2013; Estacion et al., 2013; Vasylyev et al.,
2014), the isoleucine to valine substitution (as that described for
the cardiac and muscular disorders) was found in a Taiwanese
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FIGURE 4 | The functional effect of the p.1141V mutation on the
steady-state of activation and inactivation processes of Na, 1.5 channel
(left panel). The presence of this mutation induces a negative shift of the
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voltage dependence of activation. However, this effect was abolished in the
presence of the p.Y168F substitution (right panel); (From Amarouch et al.,
2014).

family with the characteristic features of erythromelalgia. Lee
et al identified the implicated p.I136V mutation in the Nay1.7
channel (Lee et al., 2007), which exhibited similar biophysical
modifications to the Nay1.4-1141V and Na,1.5-1141V mutants.
The p.I1136V mutant shifted the voltage dependence of activation
toward more negative potentials, leading to an increase and shift
of the sodium window current (Cheng et al., 2008).

CONCLUSION

In this review, the comparison between several Na, mutants
that have been linked to cardiac, muscular, and neuronal hyper-
excitability phenotypes has revealed: (i) a focused localization
of these mutants on the VSD domain, particularly on the S4
arginine residues for cardiac disorders, (ii) an abnormal volt-
age dependence of activation as a shared biophysical mechanism
of the clinical manifestations, and (iii) the functional impor-
tance of some highly conserved residues, notably isoleucine 141
for Nay1.4 and Nayl.5, and the homologous isoleucine 136 in
Nay1.7.
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