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Skeletal muscle is not only translating chemical energy into mechanical work, it is

also a highly adaptive and regenerative tissue whose architecture and functionality

is determined by its mechanical and physical environment. Processing intra- and

extracellular mechanical signaling cues contributes to the regulation of cell growth,

survival, migration and differentiation. Yes-associated Protein (YAP), a transcriptional

coactivator downstream of the Hippo pathway and its paralog, the transcriptional

co-activator with PDZ-binding motif (TAZ), were recently found to play a key role in

mechanotransduction in various tissues including skeletal muscle. Furthermore, YAP/TAZ

modulate myogenesis and muscle regeneration and abnormal YAP activity has been

reported in muscular dystrophy and rhabdomyosarcoma. Here, we summarize the

current knowledge of mechanosensing and -signaling in striated muscle. We highlight

the role of YAP signaling and discuss the different routes and hypotheses of its regulation

in the context of mechanotransduction.
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INTRODUCTION

Mechanotransduction refers to the conversion of mechanical inputs to intracellular biochemical
and biophysical signals (Wang et al., 2009). Based on the observation that muscle grows in
response to exercise and degrades when underutilized, studies on mechanotransduction have been
performed already decades ago in skeletal muscle (Goldberg, 1968; Vandenburgh and Kaufman,
1979).

Current studies on mechanotransduction consider different models. The first relies on the
initiation of mechanosignaling via stimulation of “mechanosensors.” These are thought to be
adhesive, structural or transmembrane proteins, which could react with conformational changes
to applied forces, transmitted by the extracellular matrix (ECM) or neighboring cells. These
mechanical stimulations are then integrated into signaling pathways induced by soluble factors and
consequently regulate transcriptional changes. In an alternative model, the cell itself is considered
a compartmentalized mechanical body with given physical properties such as its viscosity, elasticity
or stiffness. Here, the cellular mechanics are mainly defined through the actin, tubulin or
septin cytoskeleton, intermediate filaments and the nuclear envelope and nuclear skeleton. These
intracellular networks are connected to the ECM through adhesion complexes so that the cellular
mechanics are in a permanent coordination with the extracellular constraints. According to this
model, mechanical changes are not translated into one specialized mechanosensing pathway but
into a simultaneous change in various cell processes, which are regulated by cytoskeletal dynamics,
including the activation of signaling pathways.
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The IGF-1-Akt-mTOR (Insulin-like growth factor I – protein
kinase B/Akt - mammalian target of Rapamycin) pathway has
emerged to be the main positive regulator of muscle mass
(Sandri, 2008; Miyazaki et al., 2011; Schiaffino et al., 2013)
and Myostatin-Smad3 has been identified as the main negative
regulator of muscle mass (Wackerhage and Ratkevicius, 2008;
Rodriguez et al., 2014). Furthermore, Yes-associated Protein
(YAP), a transcriptional coactivator downstream of the Hippo
pathway, has been shown to be involved in myogenesis,
muscle homeostasis and muscle disorders. In parallel, YAP
emerged as a key player in mechanotransduction (Dupont et al.,
2011; Wackerhage et al., 2014) and several crosstalks between
Akt/mTOR or TGFß/SMAD and the Hippo/Yap pathways have
been identified which point to a role of YAP in regulating muscle
mass through mechanical cues (Jang et al., 2007; Alarcón et al.,
2009; Tumaneng et al., 2012; Grannas et al., 2015).

YAP

The transcriptional co-activator YAP was first described in 1994
as a 65 kDa binding partner of the Yes protein-tyrosine kinase
(Sudol et al., 1995). YAP contains a transcription activation
domain (TAD) located at the carboxy-terminal half (Yagi et al.,
1999), while the amino-terminal half contains one or two WW
domains (Sudol, 1996). TheseWWdomains mediate interactions
with proteins containing PPxY motifs. A plethora of different
proteins bind to the WW domains of YAP including LATS1/2
(Oka et al., 2008), angiomotin (AMOT) (Zhao et al., 2011) and
Smad7 (Ferrigno et al., 2002). In its active state, YAP localizes
to the nucleus and regulates the activity of several transcription
factors including RUNX, SMAD, p73 and ErbB4 and most
importantly TEAD family transcription factors, since YAP and
TEAD occupy about 80% of the same genomic loci (Zhao et al.,
2008). Prominent target genes of YAP include CTGF, Cyclin D1,
AREG, Birc5, and myogenic transcription factor Myf5 (Dong
et al., 2007; Zhao et al., 2008; Zhang et al., 2009; Watt et al., 2010).

Together with its paralog TAZ (Transcriptional co-activator
with PDZ-binding motif), YAP controls a wide range of cellular
functions. During embryogenesis in mice YAP is expressed at all
stages from blastocyst to perinatal stage. Homozygous disruption
of the YAP allele in mice results in embryonic lethality and causes
developmental arrest at E8.5. In contrast, TAZ shows a later
onset and is not yet expressed at blastocyst stage (Morin-Kensicki
et al., 2006). This indicates a unique role of YAP in embryonic
development, for which TAZ does not compensate.

Nuclear YAP activity controls the transcription of genes
involved in cell cycle control, typically driving proliferation and
survival and inhibiting apoptosis (Dong et al., 2007). Thus, by
balancing cell proliferation and death, YAP mediates cell contact
inhibition in vitro (Zhao et al., 2007) and regulates organ size
in vivo (Camargo et al., 2007; Dong et al., 2007; Xin et al.,
2011). As a regulator of cell-cycle control, YAP misregulation
can also lead to tumorigenesis. In several tissues YAP is
known to function as an oncogene, while its upstream negative
regulators and their adaptors have tumor suppressor function.
Furthermore, YAP expression inMCF10A cells induces epithelial
to mesenchymal transition (EMT) (Overholtzer et al., 2006).

In summary, dysregulated YAP activity has been implicated in
a wide range of tumor types including intestinal stem cells,
hepatocellular, pancreatic, renal, colorectal, breast, and skeletal
muscle cancer (Dong et al., 2007; Tremblay et al., 2014; Patel
et al., 2015) which has been further reviewed by S. Plouffe (Plouffe
et al., 2015).

Furthermore, YAP is involved in cell fate decisions and serves
as a “stemness” factor in different progenitor cell pools of the
body. Examples include progenitors in the intestinal crypt, neural
progenitor cells in the neural tube, epidermal stem cells and
satellite cells of skeletal muscle, where YAP activity promotes
proliferation and blocks differentiation (Camargo et al., 2007;
Cao et al., 2008; Watt et al., 2010; Schlegelmilch et al., 2011).

YAP also influences cell migration, which is also critical
for muscle development and regeneration as activated satellite
cells need to migrate out of their niche and along the basal
lamina of the myofiber. It was shown, that YAP overexpression
in MCF10A or HEK293 cells leads to increased migration and
YAP knockdown abolishes migration in T47D cells and renal
carcinoma cell lines (Haskins et al., 2014; Schütte et al., 2014;
Sorrentino et al., 2014; Moroishi et al., 2015).

YAP capacity to balance proliferation, apoptosis and
migration also makes it a regulator of regenerative processes in
different tissues including intestine and heart muscle tissue as
YAP knockdown severely impairs their regenerative capacity
(Cai et al., 2010; Xin et al., 2013). In zebrafish, YAP activity in
fin regeneration is based on cell density differences along the
regenerating tissue, which leads to a graded control of tissue
growth (Mateus et al., 2015).

In brief, YAP is a regulator of the cell cycle and cell fate
decisions and consequently of development, organ size and
tumorigenesis.

The Hippo Pathway and YAP Regulation
YAP activity is regulated very tightly by the Hippo pathway
and a great number of crosstalks, whose interplays are not
completely uncovered today (Figure 1). Originally identified
by genetic studies in Drosophila, the Hippo signaling cascade
functions as a highly conserved canonical upstream regulator
of YAP activity (Harvey et al., 2003; Wu et al., 2003). At
the core of the mammalian pathway is a kinase cassette
containing Mammalian Ste20-like 1/2 kinase (MST1/2) and
large tumor suppressor 1/2 kinase (LATS1/2) with their
adaptors Salvador and MOBKL1A/1B (Mps 1 binder kinase
activator-like 1A and 1B) (Figure 1). YAP activity is regulated
by phosphorylation, predominantly through five different
phosphorylation sites, which are located in HXRXXS consensus
motifs for LATS1/2 kinases. The most intensely studied LATS
mediated phosphorylation is at serine 127, which leads to binding
of 14-3-3 proteins, sequestration of YAP in the cytoplasm and
consequently termination of its nuclear activity (Zhao et al.,
2007). Phosphorylation at Serine 381 by LATS1/2 however,
primes YAP for phosphorylation by casein kinases CK1δ or
CK1ε and subsequent ubiquitination via SCFβTRCP E3 ubiquitin
ligase and proteasomal degradation (Zhao et al., 2010). LATS1/2
kinases are activated by phosphorylation of activated MST1/2
kinases. The activity of MST1/2 and LATS1/2 kinases are further
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FIGURE 1 | Actin associated proteins regulate YAP activity. The transcriptional coactivator YAP shuttles into the nucleus, where it activates TEAD mediated gene

expression. After phosphorylation by LATS1/2 kinase, YAP binds to 14-3-3 proteins, leading to its cytoplasmic retention and degradation. YAP activity is regulated by

the actin cytoskeleton. Actin stress fibers connect to the lamin meshwork in the nucleus via the LINC-complex. Rho GPTases are regulated by GPCR signaling which

in turn regulates actin dynamics and YAP activity (dashed lines). Actin-binding proteins, like angiomotin (AMOT) or neurofibromin 2 (NF2/Merlin) are also known to

regulate YAP activity, either through LATS or by direct interaction with YAP. Akt, a key regulator of the IGF-1- mTor pathway also binds to actin stress fibers, crosstalks

to the Hippo pathway by interacting with MST1/2 and by YAP induced expression of a microRNA (miR-29) which inhibits the inhibition of Akt by targeting PTEN.

regulated via different trans- and autophophorylation sites. For
further reading see the reviews of Visser and Yang (2010) and
Rawat and Chernoff (2015).

Moreover, YAP activity is balanced through a negative
feedback loop. YAP-TEAD activity induces LATS2 kinase
expression and activation of LATS1/2 kinases through
Merlin/Neurofibromin 2 (NF2), leading to phosphorylation and
inactivation of YAP (Moroishi et al., 2015). Thus, overshooting
YAP activity including its tumorigenic potential can be
counteracted by this intrinsic regulatory mechanism.

The regulation of YAP by canonical Hippo signaling in
mammals was revealed in the context of contact inhibition of
proliferation (CIP). Cells grown at low density show nuclear
YAP and an inactive Hippo cascade, while at high cell density,
the Hippo pathway is switched on and YAP is inactivated via
LATS1/2mediated phosphorylation (Zhao et al., 2007). A specific
Hippo receptor as the primary trigger of the Hippo signaling
cascade has not been identified yet and the dependence of
YAP regulation on Hippo signaling in other contexts has been

questioned (Aragona et al., 2013). The main upstream elements
regulating YAP activity are discussed in the following paragraphs
and are summarized in Figure 1. For further informations see the
following publications (Schroeder andHalder, 2012; Johnson and
Halder, 2014; Hansen et al., 2015).

Apicobasal Cell Polarity, Tight Junctions,
and Adherens Junctions
YAP/TAZ proteins interact with several components of the
Crumbs polarity complex and disrupting the Crumbs complex
increases nuclear YAP (Varelas et al., 2010). Furthermore, AMOT
proteins, which also localize to the Crumbs complex regulate
YAP activity (Paramasivam et al., 2011; Zhao et al., 2011).
Also, cadherin-catenin complexes were shown to regulate YAP
localization and activity (Schlegelmilch et al., 2011; Silvis et al.,
2011). Expression of E-cadherins as well as their association
with α- and β-catenin are required for density dependent
nuclear exclusion of YAP (Kim et al., 2011). Non-receptor
tyrosine phosphatase PTPN14, which plays a role in regulating
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phosphorylation of β-catenin in adherens junctions (Wadham
et al., 2003) was also shown to inhibit YAP activity by promoting
its cytoplasmic localization, independently of its phosphatase
activity (Michaloglou et al., 2013).

Also Merlin/NF2, another membrane-associated protein,
which links cytoskeletal components with proteins in the cell
membrane, regulates YAP. The tumor suppressor function
of Merlin/NF2, inactivated in Neurofibromatosis type II, acts
through the activation of the Hippo cascade most likely by
binding and recruiting LATS to the plasma membrane, which in
turn promotes LATS phosphorylation by MST (Yin et al., 2013).

Soluble Cues and Receptor Signaling
YAP can also be regulated through G-protein coupled receptors
(GPCRs) and serum starvation inhibits YAP activity via reduced
GPCR signaling. G12/13-, Gq/11-, and Gi/o-coupled receptor
agonists (e.g., Lysophosphatidic acid (LPA), sphingosine-1-
phosphate (S1P)) activate YAP/TAZ while Epinephrine and
Glucagon inhibit YAP/TAZ via Gs-coupled GPCR signaling (Yu
et al., 2012). Recently, the G12/13 subunit was also identified
to be activated by the Wnt-FZD/ROR receptor, which would
represent an alternative WNT signaling pathway acting through
YAP (Park et al., 2015). The regulation of YAP by G-proteins has
been shown to be either mediated by the Rho family of GTPases,
actin dynamics and LATS (Yu et al., 2012) or PI3-kinase (PI3K)
and phosphoinositide-dependent kinase (PDK1) (Gumbiner and
Kim, 2014). In addition, epidermal growth factor receptor
(EGFR) signaling activates YAP through activation of PI3-kinase
(PI3K) and phosphoinositide-dependent kinase (PDK1), which
binds to the Hippo core kinases complex (Fan et al., 2013). The

neuregulin 1 (NRG1) activated receptor ERBB4, another member
of the EGFR family interacts with YAP through its PPxY domain
and activates YAP-mediated transcription (Haskins et al., 2014).

YAP: A KEY REGULATOR IN
MECHANOTRANSDUCTION

There is increasing evidence that YAP is a key regulator
of mechanotransduction. Pioneering work of Piccolo and co-
workers showed that mechanical forces can serve as inputs
for the regulation of YAP. By analyzing YAP localization
and transcriptional response, they showed YAP activity to be
regulated by ECM stiffness, cell-spreading or substrate rigidity
(Dupont et al., 2011; Figures 2A–C). Along with these findings,
the group of Sasaki proposed a model where cell morphology
alone modulates YAP activity. By the use of a microdomain
culture system the cell area of a single cell was defined preventing
cell-cell contact (Wada et al., 2011). Guan and co-workers
further excluded the requirement of focal adhesion sites for the
regulation of YAP through cell morphology, by seeding epithelial
cells on poly-lysine and attaching them via electrostatic forces
(Zhao et al., 2012).

In addition, Piccolo and colleagues showed that YAP can
be reactivated in postconfluent culture conditions by stretching
the cells, while preventing that these cells lose cell-cell contact
(Aragona et al., 2013). The reactivation of YAP by cyclic
stretching has also been confirmed on soft surfaces together
with an increase in cell spreading, stress fiber formation and
proliferation (Cui et al., 2015; Figure 2D). The regulation of
YAP by shear stress has only been rarely characterized so

FIGURE 2 | Different mechanical inputs regulate YAP activity. YAP (Yes-associated protein) is localized to the nucleus and active under mechanical conditions

that lead to high intracellular tension such as a large adhesive area (A), stiff extracellular matrix (ECM) (B), non-bendable substrates (C), cell stretching (D), or fluid

shear stress (E). Conditions favoring low contractile forces in the cell, such as small adhesive areas, soft ECM, bendable substrates, relaxation of stretching forces or

culture in static media, lead to YAP inactivation by nuclear exclusion.
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far and more research is needed to prove a shear stress-
dependent YAP regulation. However, YAP was shown to be
activated by fluid shear stress in osteoblasts (Kaneko et al.,
2014). Furthermore, increased YAP expression, triggered by fluid
shear stress, increased osteogenesis and decreased adipogenesis
of hMSCs and initiated dedifferentiation of chondrocytes (Zhong
et al., 2013; Figure 2E).

In addition, a mechanical memory was claimed. Long term
culture of hMSCs on supraphysiologically stiff substrates can
persistently activate YAP and transfer to soft hydrogels cannot
inactivate YAP anymore (Yang et al., 2014).

YAP Regulation by Intracellular Stress
Cell shape and size, ECM stiffness and forces like traction or shear
stress all reflect on the cytoskeleton. Published work provides
compelling evidence for a critical role of actin dynamics in
the regulation of YAP through mechanical cues. Particularly by
correlating the activity of YAP with actin stress fiber formation
and showing YAP inactivation by the use of F-actin or Rho
inhibitors, but not by inhibiting microtubules or Rac1-GEFs
(Dupont et al., 2011; Halder et al., 2012; Zhao et al., 2012). Also
in vivo experiments on Drosophila reveal increased actin stress
fiber assembly to correlate with YAP nuclear localization and
overgrowth of the wing disc (Fernández et al., 2011; Sansores-
Garcia et al., 2011). However, the specificity of this effect and
the mechanism linking stress fiber formation to YAP activity is
controversial and the focus of ongoing research.

Data providing deeper insight into how YAP is regulated by
cell morphology and in coordination with cell-contact inhibition
in epithelial cells was further published by the Piccolo lab.
They found mechanical forces to be the overarching regulators
of YAP in a multicellular context. The actin-capping and -
severing proteins Cofilin, GapZ, and Gelsolin were identified as
gatekeepers, limiting YAP activity in cells which experience low
mechanical stress. By depleting actin-capping/severing proteins
they showed that increased actin stress fiber formation can
restore YAP activity in dense monolayers (Aragona et al., 2013).
Assuming the cytoskeleton as the key transducer of mechanical
cues into YAP signaling, the role of adaptor proteins like AMOT
or other cytoskeletal structures like the tubulin or septin network
remain to be further investigated. In regard to skeletal muscle,
the role of the structural proteins of the sarcomere needs to be
considered as well and their effects on YAP regulation remain to
be examined. In the same way, the impact of the polynucleated
organization of myofibers in mechanotransduction remain to be
investigated.

In addition to changes in cytoskeletal structures, extracellular
forces are also transmitted to the nucleus as the cytoskeleton
is coupled to the nuclear envelope. The LINC-complex (Linker
of Nucleoskeleton and Cytoskeleton), consisting of Nesprin
and SUN proteins, thereby connects actin stress fibers to
the nucleoskeleton (for further reading, see Lombardi and
Lammerding, 2011). Recently, also YAP nuclear translocation
was found to be dependent on the force transition to the
nucleus through the LINC-complex. By the use of traction force
maps, the transfer of the strain to the nucleus was considered
essential for YAP localization and activity. Moreover, YAP
nuclear relocalization after strain can be prevented by knocking

down Nesprin, a protein of the LINC-complex (Driscoll et al.,
2015). A-type lamin, an intermediate filament located at the
inner nuclear membrane, binds to SUN proteins (Haque et al.,
2006) and accumulates at the LINC-complex after applied
tension (Guilluy et al., 2014). Consistently, satellite cell-derived
myoblasts carrying a mutation in A-type lamin are unable
to reactivate YAP after cyclic stretch (Bertrand et al., 2014).
Mutations in nucleoskeletal proteins like A-type lamin or
Emerin can cause several forms of muscular disorders whose
pathophysiology is still not understood.

Transcription factors whose activity is regulated by actin
dynamics are already known. For example, megakaryoblastic
leukemia 1 (MKL1) binds to G-actin and is released whenG-actin
polymerizes to form F-actin (Miralles et al., 2003). Moreover
MKL-1, together with YAP, has already been implicated in
mechanosensing defects of LMNA mutant myoblasts (Bertrand
et al., 2014), presumably through modulation of actin dynamics
(Ho et al., 2013).

Role of LATS in Mechanotransduction
The dependence of mechanically induced YAP activation on the
Hippo core kinases has been challenged. The Guan and Sasaki lab
claimed YAP to be regulated by LATS, and LATS to be regulated
by stress fibers (Wada et al., 2011; Zhao et al., 2012). By contrast,
the Piccolo group found LATS phosphorylation not to be the
primary mediator of YAP activity through mechanical cues. YAP
and TAZ activity could not be rescued by knockdown of LATS1
and LATS2 after inhibition of actin polymerization (Aragona
et al., 2013). Also for the highly discussed adaptor protein
AMOT it is not sufficiently clarified if AMOT regulates YAP
by either direct binding or via interaction with LATS2 protein
(Paramasivam et al., 2011; Zhao et al., 2011). Nevertheless, if actin
stress fibers inactivate LATS or sequester a LATS-independent
inhibitor of YAP, or both, remains to be clarified.

YAP Crosstalks with Other
Mechanosensitive Pathways
YAP interacts with components of other signaling pathways,
which play a role in mechanotransduction as well. Canonical
TGFβ/BMP signaling acts through SMADs and has been shown
to be sensitive to mechanical inputs into the cell (Maeda
et al., 2011; Kopf et al., 2014). YAP was shown to bind to
activated SMAD1 proteins and to enhance their BMP induced
transcriptional activity (Alarcón et al., 2009). YAP also interacts
with SMAD2/3 in a TGFβ and cell density dependent manner
(Grannas et al., 2015). In addition, YAP nuclear exclusion
sequesters SMAD2/3 proteins to the cytoplasm and therefore
suppresses TGFβ signaling (Varelas et al., 2010; Narimatsu et al.,
2015). Furthermore, YAP interacts with the TGFβ signaling
inhibitor SMAD7 (Ferrigno et al., 2002).

Wnt/β-catenin has been implicated in mechanotransduction
as well (Huang and Ogawa, 2010; Kang and Robling, 2014).
Cytoplasmic YAP inhibitsWnt/β-catenin activity by sequestering
β-catenin in the cytoplasm (Imajo et al., 2012) and by interacting
with its regulators disheveled and SHP2 (Barry et al., 2013;
Tsutsumi et al., 2013). Overexpression of active YAP in mouse
cardiomyocytes leads to increased β-catenin activity via the IGF-
PI3K-AkT-GSK3β axis (Xin et al., 2011). Furthermore, Protein
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Kinase C zeta can phosphorylate both YAP and β-catenin to
inhibit their nuclear activity (Llado et al., 2015). However, the
impact of the crosstalk between YAP and TGFβ/BMP or Wnt/β-
catenin signaling on mechanotransduction and its relevance in
skeletal muscle homeostasis remain to be elucidated.

MECHANOSENSING AND -SIGNALING IN
SKELETAL MUSCLE

Muscle activity is known to be a major regulator of skeletal
muscle mass, with an increase in mechanical loading resulting
in muscle hypertrophy, and a decrease in mechanical loading
resulting in muscle atrophy (Goldberg et al., 1975). This activity-
induced muscle growth has been extensively studied (for recent
review see Schiaffino et al., 2013; Piccirillo et al., 2014). Numerous
signaling molecules have been identified to be involved and
robust literature supports the role of the IGF-1-PI3K-Akt-mTOR
pathway as a positive regulator and Myostatin-Smad3 as a
negative regulator of muscle mass (Sandri, 2008;Wackerhage and
Ratkevicius, 2008; Miyazaki and Esser, 2009; Rodriguez et al.,
2014). Also YAP was identified to contribute to the regulation
of muscle mass, as overexpression of YAP is sufficient to induce
skeletal muscle hypertrophy and the amount of YAP protein
is increased in skeletal muscle cells after mechanical overload
(Goodman et al., 2015).

Mechanosensitive calcium channels and the kinase domain
of titin, a structural protein of the sarcomere, have so far been
identified as mechanosensors in skeletal muscle (Lange, 2005;
Benavides Damm and Egli, 2014; Bogomolovas et al., 2014). They
undergo conformational changes in response to mechanical load
and thereby initiate signaling pathways, which regulate muscle
mass. However, the detailed mechanisms and involved signaling
pathways remain controversial.

IGF-1-PI3K-Akt-mTOR
Upon contraction, Insulin-like growth factor I (IGF-I) is released
by the muscles and acts as an autocrine muscle hormone leading
to muscle growth. The importance of the IGF-I-PI3K-Akt-
mTOR pathway signaling has been largely confirmed and the
multi-protein complex mTORC1 emerged to play a fundamental
role in the regulation of skeletal muscle mass by regulating
protein synthesis and cell size (Sandri, 2008; Frost and Lang,
2012). The activation of the serine/threonine-specific protein
kinase Akt appears to be the crucial determinant of the cellular
signaling processes and the transition point between atrophy
and hypertrophy (Brooks and Myburgh, 2014). Nevertheless,
the regulation of Akt/mTOR, especially its dependence on
autocrine IGF-1 stimulation, has been an ongoing discussion
point (Hornberger and Esser, 2004; Spangenburg, 2009). Clear
evidence has been provided that mechanical loading is sufficient
for Akt activation (Nader and Esser, 2001; Bolster et al., 2003;
Sakamoto et al., 2003) albeit mTOR signaling can also be
mechanically activated in the absence of Akt in the mouse model
(Miyazaki et al., 2011). Interestingly, it has been shown that
Akt binding to the cytoskeleton is dependent on mechanical
stretch (Sawada and Sheetz, 2002). However, Hornberger and
colleagues report that the inhibition of actin polymerization did

not prevent Akt activation after mechanical strain (Hornberger
et al., 2005). However, the mechanisms responsible for the
mechanical activation of mTORC1 signaling are not yet fully
elucidated and have recently been reviewed by Goodman (2014).

Crosstalk between YAP and the mTOR/Akt
Signaling
Since mTOR regulates organ size through cell growth by
regulating protein synthesis and the Hippo pathway regulates
organ size by regulating proliferation it seems apparent that these
pathways are coordinately regulated (Csibi and Blenis, 2012).

Akt has been reported to interact with the Hippo pathway
via several routes. Akt has been shown to regulate YAP
phosphorylation (Basu et al., 2003) but not by phosphorylating
YAP directly (Zhao et al., 2007) but presumably through its
interaction with MST1/2. In Drosophila, PI3K mediated Akt
activity was shown to regulate the phosphorylation of yorkie
(Yki), the YAP ortholog, most likely via activation of the MST1/2
ortholog hippo (hpo) or even upstream of hpo (Straßburger et al.,
2012; Figure 1). In mammals, MST1/2 was already shown to be
a binding partner of Akt and to reduce Akt activity (Cinar et al.,
2007). Vice versa, MST1/2 was also found to be inhibited by the
interaction with Akt (Jang et al., 2007). Finally, data demonstrate
that the phosphorylation ofMST1/2 can be induced by themTOR
signaling pathway and restrict MST1/2 function to inhibit cell
growth in prostate cancer cells (Collak et al., 2012).

Besides protein-protein interactions, transcriptional
crosstalks have been identified. Hippo pathway activity negatively
regulates Akt transcription in Drosophilia (Straßburger et al.,
2012; Ye et al., 2012). In human cell lines, the Hippo pathway was
shown to regulate mTOR activity via the microRNA-29 (miR-29).
YAP activity leads to the expression of miR-29 which inhibits
the translation of PTEN, a phosphatase, which in its active state
inhibits Akt (Figure 1). Consistently, YAP overexpression or
Lats1/2 knockdown increase mTOR activity in skin sections
(Tumaneng et al., 2012). However, YAP overexpression induced
muscle hypertrophy was recently shown to act through an
mTORC1-independent mechanism (Goodman et al., 2015).

YAP IN SKELETAL MUSCLE PHYSIOLOGY
AND DISEASES

The role of YAP in cardiac muscle and its regeneration
has emerged as a promising field of research (Papizan and
Olson, 2014; Wackerhage et al., 2014; Zhou et al., 2015), but
knowledge about YAP function in skeletal muscle is still limited.
Interestingly, even before the discovery of YAP protein itself,
evidence of its importance in muscle was supported by the
identification of the muscle promoter elements MCAT, which
are regulated by TEAD family transcription factors and are
found in promotors of genes coding for contractile proteins
(e.g., β-myosin heavy chain, skeletal α-actin) and regulators
of myogenic differentiation (Myf5, Mrf4, myogenin; Mar and
Ordahl, 1988; Yoshida, 2008; Ribas et al., 2011; Benhaddou
et al., 2012). Furthermore, transgenic overexpression of TEAD-
1 in mouse muscle leads to a change in myosin heavy chain
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isoform expression and therefore to a transition from fast to slow
oxidative fiber phenotypes (Tsika et al., 2008). This indicates, that
YAP activity regulates the transcription of genes important for
muscle development, homeostasis and plasticity.

YAP in Skeletal Muscle Myogenesis and
Regeneration
For muscle growth and regeneration, activated satellite cells
expand, differentiate and then fuse with existing myofibers
(Zhang and McLennan, 1994). In their quiescent state, Pax7
expressing muscle stem cells are located between the basal lamina
and plasma membrane of the myofiber (Lepper and Fan, 2010).
Upon activation, satellite cells start expressing Myf5 and MyoD
and proliferate via asymmetric division. Part of this expanded
satellite cell pool then undergoes differentiation, marked by
myogenin expression and complete downregulation of Pax7.
Finally, activated myoblasts fuse with existing myofibers, while
the remaining pool of satellite cells self-renews and returns to
quiescence (Tedesco et al., 2010; Figure 3).

In this process, high YAP activity promotes proliferation of
activated Pax7+ and MyoD+muscle progenitor cells while YAP
inactivation is needed for myogenic differentiation (Figure 3).
Changes in YAP activity during satellite cell maturation have
been shown in vitro and ex vivo on murine myoblasts. They
show predominantly nuclear YAP during culture and YAP
cytoplasmic translocation after myogenic differentiation along
with decreased Yap mRNA and protein levels and increased
YAP phosphorylation (Watt et al., 2010; Judson et al., 2012).
Moreover, YAP knockdown reduces proliferation of satellite cell-
derived myoblasts but has no impact on progression of their
differentiation (Nagata et al., 2006). Further, evidence for the

FIGURE 3 | Regulation of YAP level and activity during satellite cell

differentiation. After activation of quiescent satellite cells (SC), SCs divide

and differentiate into myotubes that fuse with existing myofibers or self-renew

and return to quiescence. During SC activation, YAP expression increases until

this fate decision has been made. In differentiating SCs, YAP is inactivated by

increased phosphorylation at Serine 127 (pYAP S127).

inhibition of skeletal muscle differentiation by YAP activity
has been found in vivo on Xenopus laevis embryos, as YAP
overexpression leads to inhibition ofMyoD expression (Gee et al.,
2011) and on mouse skeletal myofibers, which show reduced
YAP levels during postnatal maturation (Watt et al., 2015). In
vitro overexpression of constitutively active YAP in myoblast
precursors results in increased Cyclin D1 and Myf5 expression
as well as decreased myogenin, Mef2c and p21 expression, which
inhibits terminal myogenic differentiation (Ishibashi et al., 2005;
De Falco and De Luca, 2006; Watt et al., 2010).

Regarding YAP regulation, MST1 is activated during myoblast
differentiation by caspase3 and active MST1 is needed for proper
myoblast differentiation (Fernando et al., 2002). Furthermore,
YAP has also been claimed to be involved in the activation of
satellite cells by sphingosine-1-phosphate (S1P) mediated YAP
activation (Nagata et al., 2006; Yu et al., 2012; Figure 1).

Also, culture conditions show evidence for a YAP dependent
regulation of satellite cell differentiation. Established protocols
optimized for myogenic differentiation share similarities with
those for inactivation of YAP as they recommend high cell
density, reduced serum conditions and substrates softer than
standard cell culture plastic (Yaffe and Saxel, 1977; Kaushik and
Engler, 2014).

YAP in Skeletal Muscle Homeostasis and
Disease
In adult skeletal muscle, major Hippo pathway components
including YAP are expressed in fast and slow muscle (Watt
et al., 2010). In healthy muscle sections, YAP staining is weak
and predominantly cytoplasmic, suggesting that YAP does not
play a transcriptional role in the function of adult muscle
(Crose et al., 2014). However, there are conflicting data on the
role of YAP in muscle homeostasis and organ size, including
atrophy and hypertrophy. Judson and colleagues report that high
levels of a constitutively active YAP mutant drive degeneration,
atrophy and necrosis in skeletal muscle fibers by use of a
skeletal muscle fiber but not satellite cell specific knock-in
mouse model (Judson et al., 2013). Gene expression profiling
of these mice show similarities to muscles from mdx mice, a
model for Duchenne muscular dystrophy (Hoffman et al., 1987).
Interestingly, this muscle wasting phenotype is largely reversible
as inactivation of the transgene rescues the degenerative
phenotype.

Watt and colleagues on the other hand found YAP as a positive
regulator of skeletal muscle size through a TEAD-dependent
but mTOR-independent regulation of protein synthesis after
knockdown or overexpression of YAP. Furthermore, they report
YAP to limit neurogenic atrophy following muscle denervation,
since YAP knock out prior to denervation dramatically increased
atrophy of muscles (Watt et al., 2015). Goodman and colleagues
support the hypertrophic role of YAP in muscle. The chronic
mechanical overload model in mouse, which leads to a
progressive increase in muscle mass, shows increased YAP
expression and phosphorylation. Vice versa, overexpression
of YAP in the mouse tibialis anterior leads to hypertrophy
(Goodman et al., 2015). Furthermore, increasing muscle mass by
blocking myostatin and activin signaling in mice in vivo leads to
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increased total YAP and YAP phosphorylation. Finally, physical
exercises also increase YAP phosphorylation levels in mouse limb
muscles (Hulmi et al., 2013).

A possible explanations for the contrasting results on the role
of YAP in muscle might be the different time points, which
have been analyzed, or the use of different YAP mutants, as the
constitutive active YAP S127A mutant, in contrast to wild type
YAP, cannot be subject to negative feedback regulation.

The upstream regulation of YAP during muscle homeostasis
remains poorly characterized so far. By examining neurogenic
atrophy, MST1 expression was found to be upregulated in
fast- but not slow-dominant muscle and knockout of MST1
attenuated fast-dominant skeletal muscle wasting. Whether YAP
phosphorylation and activity are affected here, has not been
determined (Wei et al., 2013).

YAP signaling is also implicated in skeletal muscle diseases.
Rhabdomyosarcomas are cancers of skeletal muscle tissue
that are divided into different subtypes, the two main ones
being embryonal rhabdomyosarcoma (eRMS) and alveolar
rhabdomyosarcoma (aRMS). Levels of YAP phosphorylation
show high variability between different RMS cell lines. Total
YAP protein levels, however, are elevated in RMS cells and
histological RMS tumor sections show increased nuclear YAP
stainings (Crose et al., 2014). Overexpression of constitutively
active YAP in activated but not quiescent satellite cells leads
to muscle tumors similar to eRMS. In vitro and in vivo YAP
knockdown experiments revealed that lowering YAP expression
in human eRMS can rescue tumorigenicity (Tremblay et al.,
2014). aRMS is characterized by expression of the paired box
3-forkhead box protein O1 (PAX3-FOXO1) (Galili et al., 1993;
Shapiro et al., 1993). PAX3-FOXO1 directly upregulates RASSF4
in aRMS cells and tumors, which associates with MST1 and
inhibits its tumor suppressor function, leading to tumorgenesis
(Crose et al., 2014).

Furthermore, muscles of mdx mice show elevated levels
of phosphorylated and total YAP protein (Judson et al.,
2013). Finally, the first evidence of an involvement of YAP-
mediated mechanosensing defects in patients with LMNA-
related congenital muscular dystrophy has been reported recently
(Bertrand et al., 2014). Along with several defects in the
organization of the cytoskeleton, YAP was found not to respond
to the changing mechanical properties of their environment.
While YAP is excluded from the nucleus in soft environment in
healthy control cells, patient derived cells maintain nuclear YAP
localization in soft environment.

CONCLUDING REMARKS AND
PERSPECTIVES

YAP has emerged as an important player in
mechanotransduction, transmitting mechanical cues into a
transcriptional cell response. At the same time, YAP has been
shown to be involved in skeletal muscle development and
regeneration, as YAP contributes to the regulation of activation,
proliferation and differentiation of satellite cells. Beyond
that, YAP signaling is also important in adult skeletal muscle

homeostasis as misregulation can lead to atrophy or hypertrophy
and aberrant YAP activities have been observed in disease
states, including skeletal muscle dystrophies. Adult muscle
homeostasis again is mainly regulated by muscle activity, which
is a mechanical cue itself. Akt-mTOR signaling is widely accepted
as the main regulatory pathway defining muscle mass, but the
autocrine activation of this pathway by IGF-1 is controversial
and several crosstalks to YAP have been identified. Precise
mechanisms by which YAP is regulated by mechanical cues are
still unknown. Cytoskeletal and presumably also nucleoskeletal
tension, in particular actin dynamics and Rho signaling, have
been identified as important players of mechanotransduction on
YAP, but the detailed mechanism still remains to be elucidated.
Uncovering this mechanism, also in regard to the specially
organized cytoskeleton of postmitotic myofibers, could reveal
important insights into our understanding ofmuscle homeostasis
and subsequently into the physiopathology of muscle
diseases.
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