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Vascular calcification results in stiffening of the aorta and is associated with hypertension

and atherosclerosis. Atherogenesis is a complex, multifactorial, and systemic process;

the result of a number of factors, each operating simultaneously at several spatial and

temporal scales. The ability to predict sites of atherogenesis would be of great use

to clinicians in order to improve diagnostic and treatment planning. In this paper, we

present a mathematical model as a tool to understand why atherosclerotic plaque

and calcifications occur in specific locations. This model is then used to analyze

vascular calcification and atherosclerotic areas in an aortic dissection patient using a

mechanistic, multi-scale modeling approach, coupling patient-specific, fluid-structure

interaction simulations with a model of endothelial mechanotransduction. A number

of hemodynamic factors based on state-of-the-art literature are used as inputs to

the endothelial permeability model, in order to investigate plaque and calcification

distributions, which are compared with clinical imaging data. A significantly improved

correlation between elevated hydraulic conductivity or volume flux and the presence of

calcification and plaques was achieved by using a shear index comprising both mean

and oscillatory shear components (HOLMES) and a non-Newtonian viscosity model as

inputs, as compared to widely used hemodynamic indicators. The proposed approach

shows promise as a predictive tool. The improvements obtained using the combined

biomechanical/biochemical modeling approach highlight the benefits of mechanistic

modeling as a powerful tool to understand complex phenomena and provides insight

into the relative importance of key hemodynamic parameters.

Keywords: mathematical modeling, multiscale, atherosclerosis, patient-specific, aortic dissection, in vivo data

INTRODUCTION

Atherogenesis is a complex, multifactorial and systemic process; the result of a number of
factors, each operating simultaneously at several spatial and temporal scales. The bewildering
molecular and cellular complexity is well-described in Lusis’ classical review more than a decade
ago (Lusis, 2000), which highlights a plethora of biological mechanisms and gene associations,
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revealing an incredible etiological complexity. In addition
to the biological components of the disease, atherosclerosis
is also known to be related to mechanical stimuli on the
vessel wall and hemodynamic parameters (Suo et al., 2006).
Experimental evidence indicates that hemodynamic stimuli
influence mechanotransduction and affect permeability (Davies,
1995). Increased permeability can lead to penetration and
accumulation of lipoproteins (e.g., Low Density Lipoproteins–
LDL) in the arterial wall and thus initiation of atherosclerosis.
In recent years, much research has been conducted in order to
draw correlations between hemodynamics and the atherogenic
process (Peiffer et al., 2013a; Alimohammadi et al., 2015a).
Certain hemodynamic parameters have been identified as key;
these include flow distribution, pressure and wall shear stress
(WSS) indices. Nevertheless, given the incredible complexity of
the atherogenesis process, these hemodynamic analyses, on their
own, have been inconclusive (Peiffer et al., 2013a) and a clear
metric for plaque location remains elusive. Strong correlations
between atherosclerotic disease and vascular calcification have
been well-documented in the literature, including large cohort
studies (Sangiorgi et al., 1998). Although the underlying
molecular cause of calcification is unknown (Lanzer et al., 2014),
the severity and extent of mineralization in calcification reflect
atherosclerotic plaque burden (Demer and Tintut, 2008). Given
the central role of inflammation in atherogenesis, an interesting
possibility is that vascular mineral itself may initiate, promote, or
perpetuate atherosclerosis by inducing inflammatory cytokines
in monocytes that encounter and ingest hydroxyapatite crystals
(Nadra, 2005).

Modeling and simulation have been used in a large number
of studies in order to improve understanding of the role of
hemodynamic variables in plaque formation. Although this work
is mathematically elegant and can provide detailed insight into
hemodynamics, it is disconnected from molecular research.
Similarly, biomedical researchers often reduce the complexity of
investigations of cardiovascular disease into manageable parts,
for example, working on cell-lines or employing large-scale
genome wide association studies (GWAS) to identify SNPs
related to CVD (Tegner et al., 2006). However, such statistical
genetic models have nomechanistic basis, and it is significant that
Lusis highlighted the revival of functional studies in a relatively
recent review (Lusis, 2012).

In this paper, a clear application of mathematics for
healthcare will be made by unifying multi-mechanistic factors
in the prediction of atherosclerosis location. The location
of atherosclerotic plaque and vascular calcification will be
investigated using a patient-specific biomechanical model of an
aortic dissection (AD). From a physiological point of view, AD is
a life threatening condition in which a tear forms in the wall of the
aortic wall and blood splits the media layer, forming two lumina:
the true lumen (TL) and false lumen (FL; Braverman, 2010).
Blood flows from the TL into the FL via a primary tear and, in
communicating dissections, returns to the TL via one or multiple
tears downstream. The section of intima andmedia that separates
the two lumina, called the intimal flap (IF), often stiffens over
time due to fibrosis (Criado, 2011). Common comorbidities in
patients with AD are atherosclerosis (Coady et al., 1999; Tsai

et al., 2006) and inner wall calcification (de Jong et al., 2014).
Additionally, patients suffering fromAD usually have an elevated
pulse pressure, which would likely be further increased in the
presence of calcification, due to the reduction of vessel elastance
(Demer and Tintut, 2008). The patient data used for this research
showed an AD with significant atherosclerosis and calcification
regions, consistent with the condition. Detailed hemodynamic
characterization was achieved by using patient-specific dynamic
boundary conditions representing the downstream vasculature,
based on in vivo measurements collected for the same patient,
treated in University College Hospital (UCH; Alimohammadi
et al., 2014). Although complex flow simulations for this
patient have been published previously, the work presented
here, including the quantification and analysis of plaque and
calcification areas as well as the multi-scale framework used in
this context, is completely new.

The postulate of this research is that multiscale modeling
and simulation can pave the way to study multi-mechanistic
factors to explain disease in a cohesive modeling framework,
which can integrate key markers at different biological scales
and can provide insight into endothelial mechanotransduction,
as well as potential predictive power in patient-specific
analyses, compared to purely hemodynamic, biomechanical
or biochemical approaches. We will use a virtual “follow-
up” approach, combining a fluid-structure interaction (FSI)
simulation model of a dissected aorta with a model of plaque
formation, using a number of somewhat disparate indicators
available in the literature, which will be described below.
The patient-specific simulation results are then coupled to
an endothelial permeability model following the three-pore
approach (Olgac et al., 2008a), also recently used by Kim and
Giddens (2015).

This paper is organized as follows: Section Methods presents
the methods and simulation details. Results are presented
in Section Results, including a clear, interpretable metric for
atherogenic potential, which shows a better performance when
compared to others based on “established” descriptors in the
current literature. Simulation results of the model will be
presented in and compared to atherosclerotic plaques and
calcifications indicated in the original CT scans. The discussion,
limitations and conclusions of this work will be presented in
Section Discussion.

METHODS

Details of the Simulation
The specifics of the FSI simulation used for the present study
are presented briefly in this section and are described in detail
in Alimohammadi et al. (2015b). The patient gave informed
oral consent and ethical approval was given by the National
Research Ethics Service, UK, REC reference: 13/EM/0143. The
fluid domain was reconstructed from CT scans of a female
patient, starting at the ascending arch and extending down to
the thoracic aorta, upstream of the iliac bifurcation. The supra-
aortic branches were included in the model, but the visceral
branches were not clearly resolvable from the CT data and
so were omitted. The vessel wall was modeled by extruding
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the outer wall of the fluid geometry uniformly by 2.5mm,
based on reports of thickened aortic walls in hypertension
(Malayeri et al., 2008), which occurs in ∼70% of AD patients
(Hagan et al., 2000; Khan and Nair, 2002). The intimal
flap (IF), separating the TL and FL, was created by filling
the gap between the two lumina and was 2.45 ± 0.34mm
(median ± median absolute deviation). Fluid and solid meshes
were generated in ANSYS ICEM-CFD, and contained ∼230,000
(with 7 prismatic layers at the wall) and 50,000 elements
respectively.

Simulations were carried out using ANSYS mechanical and
CFX. The vessel wall wasmodeled using the isotropic hyperelastic
model of Raghavan and Vorp (2000). This model is comparable
to a linear elastic model with a Young’s modulus of 1MPa,
but displays a small amount of strain-stiffening. An external
pressure of 52.5mmHg (diastolic pressure in the descending
aorta) was applied and at each of the outlets of the 3D
domain, the solid geometry was restricted to planar motion
about the center-point of the lumen, enabling expansion of the
vessels.

At the inlet, a flow wave from another study of a patient
with type-B aortic dissection was used (Karmonik et al., 2008),
as such data was not available for the present patient. At the
fluid outlets, three element Windkessel models were used, with
parameters tuned to invasive pressure measurements on the
patient, using an iterative technique described in a previous
study (Alimohammadi et al., 2014). Blood was modeled as
an incompressible fluid of density 1056 kg/m3. Turbulence
was modeled using the hybrid k-ε, k-ω shear stress transport
(SST) turbulence model, with a 1% turbulence level at the
inlet. In order to account for the shear-thinning properties of
blood, the Carreau-Yasuda (CY) viscosity model was utilized
with the parameters reported by Gijsen et al. (1999). The CY
viscosity model includes infinite and zero shear viscosities, a
characteristic time constant and two exponents without direct
physical meaning to describe the viscosity-shear response of
blood. The parameters of Gijsen et al. (1999) were fitted to a blood
analog, which showed similar characteristics to blood samples.
The viscosity predicted by this model is∼3.5 mPa s (a commonly
used Newtonian viscosity) at 100/s, and decreases for higher
shear rates to around 2.5 mPa s at 1000/s. At shear rates below
100/s, the viscosity increases, exceeding 10 mPa s for shear rates
below 2/s.

Simulations were run with a time step of 5ms, a periodic
solution was achieved after two cycles and the third cycle
was extracted for further analysis. In a previous study
(Alimohammadi et al., 2015b), it was shown that the low shear
rates in the slow flow regions of the distal and proximal FL led to
significantly increased viscosity.

Shear Stress Indices (SSI)
In the permeability calculations described in Section Endothelial
Permeability Model, one of the inputs is an index indicative of
the shear stress condition that leads to increased permeability.
The time-average wall shear stress (TAWSS) and oscillatory shear
index (OSI; Ku et al., 1985) are two commonly used indices
that are considered important for plaque formation. TAWSS

describes the average magnitude of the shear stress and the
OSI gives an indication of the directionality of the shear stress,
yielding 0 for uniaxial flows and 0.5 when there is no preferential
direction. Typically, in permeability models for atherogenesis,
TAWSS is used as the shear index related to permeability.

A number of studies (Malek et al., 1999; Xiang et al., 2010;
Chiu and Chien, 2011; Meng et al., 2014) have shown that regions
with low average shear stress combined with highly oscillatory
shear stress have increased endothelial permeability along with
other pathological responses. More recently, Sáez et al. (2015)
presented the 3D remodeling of endothelial cells as the combined
effect of OSI and TAWSS in a computational framework, which
fitted experimental works presented before in in vitro studies.

In light of the indications for increased permeability in low,
oscillatory regions, we propose an index, HOLMES (Highly
Oscillatory, Low MagnitudE Shear), given by:

HOLMES = TAWSS (0.5− OSI) (1)

This parameter is equivalent to half the reciprocal of relative
residence time (RRT) which was previously identified as
a potential index for combining these two characteristics
(Himburg, 2004). The HOLMES indicator can be understood as
a modified TAWSS, with the (0.5 − OSI) term further reducing
the index in regions where the wall shear stress is both low
in magnitude and oscillatory in nature. Additionally, HOLMES
provides a conceptually alternative explanation, offering a
linear (rather than reciprocal) index, proportional to WSS
that intuitively corresponds to the observed effects of shear
characteristics on endothelial permeability.

In the present study, we compare the efficacy of using the
most-widely used hemodynamic/shear stress index (SSI) for
atheroprone regions, i.e., TAWSS, with HOLMES, separate and
in a mechanistic model, as shown in the sections below.

Endothelial Permeability Model
The endothelial permeability model proposed here is based on
previous work describing the early stages of atherosclerosis,
using a transport model of low density lipoprotein (LDL) from
the artery lumen into the arterial wall, taking into account the
effects of mechanical stimuli exerted by the blood flow on the
endothelial cell layer and its pathways of volume and solute flux;
see Díaz-Zuccarini et al. (2014) for more details. An excellent
and recent analysis and use of this model along the same lines
using time-average wall shear stress (TAWSS) has been recently
published by Kim and Giddens (2015).

The endothelial layer is described with a three-pore modeling
approach considering the contributions of the vesicular pathway,
normal junctions, and leaky junctions. The fraction of leaky
junctions is calculated as a function of the mechanical stimuli
and is used in conjunction with the pore theory to determine the
transport properties of this pathway.

The LDL transport equations are decomposed using three
main penetration pathways: leaky junctions, normal junctions
and vesicular pathways; so the bulk of volume flux (Jv) through
the endothelial membrane is given by:

Jv = Jv,lj + Jv,nj (2)
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where Jv,lj is the flux through leaky junctions and Jv,nj is the flux
through normal junctions.

The volumetric flux through leaky junctions (Jv,lj) is calculated
using a modified version of the Kedem-Ketchalsky equations for
membrane transport:

Jv,lj = Lp,lj
(

∆pend − σd∆Π
)

(3)

where Lp,lj is the hydraulic conductivity, ∆pend is the pressure
difference through the endothelium, σ d is the osmotic reflection
coefficient and ∆Π is the osmotic pressure. The value of ∆pend
is estimated by subtracting the externally applied pressure from
either the average pressure throughout the domain (uniform
pressure gradient) or the spatially varying time average pressure
at each wall location (time-averaged pressure gradient).

According to the three pores theory, solute flux (LDL flux in
this case) only occurs through endothelial leaky cell junctions and
vesicles:

Js = Js,lj + Js,v (4)

Assuming that the solute flux through the vesicular pathway (Js,v)
is 10% of the solute flux through the leaky junction pathway (Js,lj)
(Olgac et al., 2008b).

Finally, in the interest of brevity, Equation (5) shows a general
form of the function used to calculate Js,lj which is proportional
to the magnitude of Jv,lj (more details about the calculation of Js,lj
are shown elsewhere (Díaz-Zuccarini et al., 2014; Alimohammadi
et al., 2015a):

Js,lj = φ
(

Jv,lj, Pi, Pe, σ, clum, cw,end, cave
)

(5)

where Pi is the diffusive permeability, Pe the modified Peclet
number, clum and cw,end the LDL concentration in the lumen and
the sub-endothelial layer respectively, cave is themean endothelial
concentration and σ the solvent drag coefficient.

Endothelial cell shape will affect the amount of leaky
junctions. Experimental findings have shown that in areas of
altered hemodynamics, endothelial cells do not have a typical
cobblestone shape, but rather exhibit amore circular shape as well
as increased permeability. Previous models used a relationship
between endothelial permeability and local WSS based on the
Endothelial Cell Shape Index (ECSI; Levesque et al., 1986). ECSI
is related to the cellular shape and takes values from zero to one,
i.e., a circle has an ECSI of one whilst a straight line has an ECSI
of zero.

Some approaches based on ECSI calculated this variable as a
function ofWSS (for instance Olgac et al., 2008b usedWSS values
in steady state simulations). However, as previously mentioned,
recent work shows that ECSI can be affected by other indices
as well, such as OSI. Based on the seminal paper by Levesque
et al. (1986), excellent work from Sáez et al. (2015), presents
how different OSI and TAWSS modify the endothelial cell shape.
This combined relationship will be key for the modeling work
presented here.

In the present study, we consider the role of the two different
shear stress indices (SSI), i.e., TAWSS and HOLMES, described
in Section Shear Stress Indices (SSI).
For each SSI, ECSI is defined according to

ECSI = 0.380e−0.79SSI
+ 0.225e−0.043SSI (6)

Figure 1 shows a comparison of normalized ECSI using Saez et al.
results (Sáez et al., 2015), which are dependent on TAWSS and
OSI, with the normalized ECSI using Equation (6) andHOLMES.
Very similar behavior can be seen in both surfaces, showing how
areas of low TAWSS and high OSI will increase the values of
ECSI. Following this, we will use HOLMES as a combined index
able to capture key haemodynamic features in the regions of
interest for atherosclerotic plaque/calcification locations.

Leaky cells have high permeability to LDL, which can be linked
to the magnitude of the SSI. Areas with high ECSI will be related

FIGURE 1 | Normalized ECSI as a function of TAWSS and OSI. (A) Using Saez et al. results (Sáez et al., 2015); (B) Using Equation (6) and HOLMES.
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to a higher number of mitotic cells (MC) which are calculated as
follows:

MC = 0.003739e14.75ECSI (7)

Assuming that within the endothelium the quantity of leaky
mitotic cells is ∼80.5%, which represents ∼45.3% of the total
number of leaky cells (LC) in that area (Tedgui and Lever, 1984a),
the number of LC is calculated as:

LC = 0.307 + 0.805MC (8)

The ratio of endothelium (φ) covered by LCs is calculated using

φ =
LC πR2

cell

unit area
(9)

where Rcell is the radius of a single cell. Finally, the total
hydraulic conductivity of the endothelial leaky junctions (Lp,lj)
is defined as:

Lp,lj = φ · Lp,slj (10)

where Lp,slj is the hydraulic conductivity of a single leaky junction
calculated as follows:

Lp,slj =
w2

3µllj
(11)

with w and llj being the half-width (20 nm) and the length (2µm)
of the leaky junctions and µ the viscosity term used for the
estimation of the LDL penetration.

Estimating Plaque Location and Metrics
Evaluation
Previous work (Alimohammadi et al., 2015a) has shown that
calculation of the hydraulic conductivity in leaky junctions (Lp,lj)
can be used to estimate the magnitude of LDL fluxes across the
wall along the artery and identify atheroprone regions. However,
as mentioned previously, other variables such as the volume
flux Jv,lj [which is closely related to the solute (LDL) flux,
Js,lj], may be a better metric to identify atheroprone areas. As
shown in Equation (3), Jv,lj is proportional to both Lp,lj and
the pressure drop across the endothelium ∆pend and thus, Jv,lj
may be more sensitive in the estimation of plaque locations.
For a given metric (Jv,lj or Lp,lj), the aorta was divided into
subsections and the mapping of this variable was compared with
the plaque/calcification observed in the same subsections from
CT scans, as shown in Figure 2. Plaque areas are calculated as a
percentage (%) of the total area covered for the selected section of
the artery, with plaque defined as HU>220 in the clinical image
(Isgum et al., 2004) and Lp,lj >1.2 × 10−11 m2s/kg (Tedgui and
Lever, 1984b). The ratio of the area coved in the model compared
to the clinical image is reported as a percentage match.

FIGURE 2 | Definition of the different regions in the aorta for comparison and analysis.
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FIGURE 3 | The right anterior and left posterior views of the aorta. (A) 3D CT data visualized in Aquarius and (B) 3D LUT volume viewer in FIJI (Image J).

FIGURE 4 | Wall shear indices from the FSI simulations. (A) TAWSS, (B) OSI, (C) HOLMES.
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FIGURE 5 | Total hydraulic conductivity of leaky junctions (Lp,lj ) values calculated using various parameter combinations from the FSI results shown

in the right anterior view. (A) Constant plasma viscosity and TAWSS, (B) Constant plasma viscosity and HOLMES, (C) Non-Newtonian blood viscosity and TAWSS,

(D) Non-Newtonian blood viscosity and HOLMES.

Comparison of the calcification/plaque area observed in the
CT scans and those calculated by the chosen metric following
the methodology shown here, was used to evaluate the efficacy
of the different metrics and the role of some of the selected
hemodynamic (viscosity and SSI) variables.

RESULTS

Figure 3A shows an image of the 3D CT image reconstruction
in Aquarius (TeraRecon, USA), in which the highest intensity
regions indicate plaques (white) or vessel wall calcification.
Figure 3B shows an image of the CT scans reconstructed in
the LUT volume viewer in Fiji (Schindelin et al., 2012), with
intensities in the range 0–255. The colorbar shows Hounslow
units (HU) from the CT scan. Although there is not a single
threshold that can be considered to be a calcification, a value
of 220 HU has been used previously as an indicator of calcified
regions (Isgum et al., 2004). The plaques appear red and the
calcifications yellow (it should be noted that the exact rendering
of both panels in Figure 2 is dependent on the distance from
the first slide as there is no easy way to ensure the same
depth in both pieces of software, and so the views may differ
slightly).

As seen in both panels, a number of completely formed
plaques can be observed in the lower edge of the aortic arch,
between the two tears in FL and around the iliac bifurcation.
Calcifications can be seen along the aortic arch proximal to the
supraaortic branches, and in the proximal and distal FL. The
existence and locations of the plaques and calcifications were

confirmed and approved by the vascular surgeon who managed
this patient.

Wall Shear Stress Indices
Figure 4 shows the distributions of the three SSI used in the
present study. The TAWSS (Figure 4A) is moderate in the
ascending aorta and in the FL between the two tears. Elevated
regions of TAWSS can be observed in the visceral branches,
at the coarctation and in the distal TL. The OSI (Figure 4B)
shows scattered elevated regions throughout the domain, with
particularly high values in the distal and proximal FL (which
would not be captured using a rigid wall model; Alimohammadi
et al., 2015b). The HOLMES index (Figure 4C) is similar to
TAWSS, but lower in magnitude overall, and particularly in
regions where the OSI is high, such as between the two tears and
in the aortic arch.

In the following sub-sections, we systematically compare the
indices and parameters used in the literature to indicate or
predict locations of calcification and/or atherogenesis with our
integrated model, the use of HOLMES and spatially varying
viscosity.

Analysis of the Total Hydraulic Conductivity
As the volume flux is dependent on both hydraulic conductivity
and pressure gradient across the endothelium, we first consider
Lp alone.

Figures 4A,B show the total hydraulic conductivity of leaky
junctions (Lp,lj) values calculated assuming a constant viscosity at
the wall, equal to the plasma viscosity and TAWSS andHOLMES,
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FIGURE 6 | Right anterior and left posterior views of Lp,lj , calculated

using non-Newtonian viscosity and HOLMES.

respectively, as wall shear stress indices. Figures 4C, 5D show
the same wall shear stress indices, but with the viscosity at
the wall predicted based on the continuum assumption using
the Carreau-Yasuda viscosity model. Note that all panels use
the same color scale. Tedgui and Lever (1984b) reported Lp,lj
values of 1.2 × 10−11 m2s/kg, corresponding to green values in
the figure. Higher values indicate pathologically elevated Lp,lj.
For both of the plasma viscosity models (Figures 4A,B), the
estimated Lp,lj values are extremely high, and no qualitative
correlation can be observed when comparing these images to
Figure 3B. Using the non-Newtonian viscosity model at the
vessel wall and TAWSS to calculate Lp,lj (Figure 5C), reduced
the magnitude of the calculated Lp,lj and resulted in a reasonable
indication of the calcified/atheroprone locations in both the distal
and proximal FL, although the extent of the calcified regions
is shorter than those observed in Figure 2 and the calcified
region between the two tears is not identified. Additionally,
this model did not identify any of the plaque locations.
Comparing the Lp,lj distribution predicted using HOLMES and
non-Newtonian viscosity (Figure 5D) to the clinical images
(Figure 3B), it can be seen that there is a good qualitative
correlation between the two figures. Figure 5 shows this Lp,lj
distribution in greater detail in both right anterior and left
posterior views.

Under the assumption that plaque formation and calcification
occur as a result of elevated Lp,lj, the correlation between
Figures 6, 3B implies that this combination of variables is able to
identify regions of calcification and plaque formation, and thus
could be potentially used to predict further development of such
pathologies.

The region of calcification with scattered small plaques
observed in the FL between the two tears is captured in the
Lp,lj prediction in Figure 6. Similarly, the calcification of the
proximal FL (both views) and the distal FL (left posterior view),
are predicted by elevated Lp,lj in these regions. The low Lp,lj in
the distal TL and ascending arch in the left posterior view also
correlate with minimal calcification in Figure 3B. The plaques at
the lower edge of the aortic arch, best observed in Figure 3A in
the left posterior view, correspond to regions of elevated Lp,lj in
Figure 6.

Some regions of the image do not correlate, such as the low
Lp,lj in the right anterior view of the ascending arch, where there
is calcification in the CT image.

Analysis of the Volume Flux
Figure 6 provides images of the predicted volume flux across
the vessel wall, Jv,lj, using various combinations of wall shear
indices and viscosity assumptions, along with either a uniform
pressure gradient or a time-averaged pressure gradient. These
figures can be compared with Figure 3B to analyze the hypothesis
that calcification and plaque formation are better correlated with
volume flux, Jv,lj, rather than Lp,lj alone. Meyer et al. (1996)

reported Jv values in the range ∼2–3 ×10−8 m/s, corresponding
to green regions in the figure. Higher values indicate elevated
solute flux.

None of the constant plasma models (Figures 7A,B,E,F
produced Jv,lj distributions that compared well with Figure 3B.
Figures 7C,D using the uniform pressure gradient are
qualitatively identical to Figures 4C,D as the uniform pressure
distribution does not affect the relative values of Jv,lj as compared
to Lp,lj. When using the time averaged pressure gradient
(Figures 7G,H), the distributions do not significantly change in
qualitative terms, indicating that the prediction is more sensitive
to Lp,lj, and thus appropriate models for wall shear stress
and blood viscosity at the wall, than to the pressure gradient.
Figure 8, showing the distribution of Jv,lj using HOLMES, the
non-Newtonian model and time averaged pressure distribution,
is therefore qualitatively similar to Figure 6, although there are
some differences in the magnitudes.

DISCUSSION

The results shown in Section Results are promising and thus
warrant further investigation. They also open up a number of
questions. Is the volume flux (which determines the magnitude
of the solute flux) a metric for plaque location? If so, then what
is required in order to estimate it correctly? As mentioned in
the introduction, the question of plaque location remains elusive.
There are presently no available tools to predict where this might
occur, or indeed to sufficiently explain why. This may be because,
if we take volume flux (Jv,lj) (or even hydraulic conductivity) as
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FIGURE 7 | Volume flux (Jv,lj ) calculated using various parameters. Wall shear indices (A) TAWSS, (B) HOLMES with constant plasma viscosity and uniform

pressure gradient. Wall shear indices (C) TAWSS, (D) HOLMES with non-Newtonian blood viscosity and uniform pressure gradient. (E) TAWSS, (F) HOLMES with

constant plasma viscosity and time averaged pressure gradient. (G) TAWSS, (H) HOLMES with non-Newtonian blood viscosity, and time-averaged pressure gradient.

the metric for plaque location, its generation is multifactorial
and complex and thus simplified models lack some of the key
features that seem to impact plaque location (see Section Results).
In the present study, strong correlations were only produced
through the use of a multiscale model combining multiple
hypotheses at the cellular and physiological level, as evidenced
by the comparison of Figures 5, 7 with Figure 3. This complex

approach involves the detailed formulation, extraction and
combination of more than 11 different variables including the
calculation of variable pressure differences along the arterial wall
across the endothelium, the use of a non-linear model for blood
viscosity and use of the HOLMES index to isolate regions of low,
oscillatory shear. This formulation, making use of mechanistic
models, also provides these metrics (Jv,lj and Lp,lj) with strong
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FIGURE 8 | Right anterior and left posterior views of Jv,lj , calculated

using non-Newtonian viscosity, HOLMES and time-averaged pressure

gradient.

interpretability and physical meaning. As previously explained,
the origin and interpretation of HOLMES as a combined index
is strongly rooted in the most recent, relevant literature (Sáez
et al., 2015). The work presented in this paper exemplifies the
power of mechanistic models as “hypothesis tester” and a key
example of the use of mathematics and mechanistic models and
formulations to understand biological processes. In fact, it can be
can argued that a posteriori hypotheses, as a result of abandoning
part of a priori thinking in the light of new observations, can pave
the way for future studies (Erren, 2007). Here, an unambiguous
formulation could enable others to follow up on the findings and
modified conjectures to advance knowledge in this field. Despite
some limitations (please see below), it remains a fact that the
work presented here is strongly anchored in the state of the art
and current knowledge in this area.

In addition to the clear qualitative improvement in the
correlation between the CT scans and Lp,lj and Jv,lj distributions,
we utilized a simple measure based on plaque areas, as shown in
Figure 9 for the descending aorta, a key region in the case of AD
(as explained in Section Estimating Plaque Location and Metrics
Evaluation).

When comparing Lp,lj values in specific regions of the
aorta, using the results shown in Figure 5, the calcified regions
predicted by the model overlapped 80% of the calcified regions

observed in the CT scans for the HOLMES model. No
calcification was predicted using TAWSS. The next step was to
analyze the results of Jv,lj (given its stronger relationship with the
LDL flux).

Figures 10A,C show Jv,lj in this region calculated with TAWSS
andHOLMES, respectively and Figures 10B,D show the calcified
region only. Figures 10E,F show the equivalent figures for the
CT scans. Comparing the proportional area of the calcified
region between the two cases, 26 and 93% of the regions overlap
for TAWSS and HOLMES, respectively. When calculated using
HOLMES in the selected region (Region 3 in Figure 2), 45% of
the visible arterial wall is predicted to be prone to calcification,
compared to 48% of the visible arterial wall observed in the CT
scan image. Applying the same analysis using HOLMES to the
whole aorta predicts between 80 and 95% of overlapping. This
analysis supports the potential predictive power of the proposed
model.

From a hemodynamics point of view, the heterogeneous
distribution of calcification/plaque formation will be influenced
by disturbed flow. Wall shear indices such as TAWSS
and OSI capture only partial aspects of the complex flow
fields. The wall shear stress vector has both direction and
magnitude at each moment throughout the cardiac cycle.
TAWSS captures the average magnitude, but contains no
information about directionality. OSI characterizes the variability
in the directionality. However, a number of indices (“emerging”
multidirectional predictors, as defined by Gallo et al., 2016)
have been proposed and some of these might have potential as
predictors of atherogenesis. Peiffer et al. (2013b) proposed the
transverse wall shear stress, which is the temporal average of the
component of the wall shear stress vector that is perpendicular
to the time average wall shear stress vector. Morbiducci et al.
(2015) defined the preferential direction as being relative to the
direction of the vessel centerline and similar considered the
temporal average, producing an additional index based on the
temporal average of the ratio of these two components. Arzani
and Shadden (2016) also introduced backward wall shear stress,
considering the average of the negative instances of wall shear
stress in the direction opposite to the centerline. In future studies,
it will be important to explore the efficacy of these new indices.

In this paper, we have exclusively focused on the “established”
predictors, for which the links between endothelial cell behavior
and haemodynamics have been shown in the relevant literature
as described above.

In the work presented here, the use of patient-specific data
(including invasive haemodynamic measurements) and BCs,
inclusion of wall motion and use of a non-Newtonian blood
viscosity model are likely to improve the estimates of these
hemodynamic variables and thereby increase the likelihood of an
improved correlation. Importantly, as evidenced by Figures 4, 7,
the interpretation of the role of these variables individually was
unable to predict distributions of atherogenesis/calcification. It
was only through a combination of HOLMES, a compound
shear index, a non-Newtonian fluid viscosity and a sophisticated
simulation model that this was achieved. In general, when
extracting information related to values calculated at the wall,
motion is extremely important. In this particular case and as
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FIGURE 9 | Example of atherosclerotic plaque identification from simulations using hydraulic conductivity and comparison with 3D CT scans. (A,B)

Section of the artery showing plaques based on Lp,lj ; (D,E) Plaque extracted from (A,B); (C) Section of the artery from CT scan; (F) Plaque extracted from (C).

shown previously (Alimohammadi et al., 2015b), simulating
wall motion is key, since the dynamic interactions between the
intraluminal pressure-gradient, the vessel wall elasticity and the
intimal flap motion play a critical role in accurately predicting
haemodynamics in the false lumen. Moreover, in healthy aortae,
rigid wall simulations have been reported to produce somewhat
comparable distributions of WSS, albeit with overestimated
magnitude (Brown et al., 2012; Reymond et al., 2013). In
dissected aortae, the differences between the results of rigid wall
(CFD only) and FSI simulations are significant (Alimohammadi
et al., 2015b), which has a clear impact in the interpretation of the
effect of mechanical stimuli on endothelial behavior in this case.
These differences are enhanced by the complex, intertwining
lumina, in which even small motion variations have a decisive
effect. Hence, the use of FSI, while more time-consuming and
technically challenging, is important.

Limitations
One limitation of the fluid dynamics simulation is the absence of
the visceral arteries, which would alter the flow in the descending
aorta. As previously stated, it was not possible to resolve these
vessels from the CT scans, so they were omitted. Nonetheless,
even in their absence, we believe the usefulness of the model was
demonstrated.

A patient-specific inflow waveform was not available for the
present study, and as such, a waveform from the literature was
selected from a patient suffering from a similar type-B AD.
The absence of a patient-specific inflow reduces the specificity
to the patient of the present results however, given that the
boundary conditions were tuned to patient-specific values using
the same inflow, the hemodynamic environment predicted by the
simulations is expected to be an appropriate representation of
a patient with type-B AD. The flow waveform at the inlet was
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FIGURE 10 | Example of atherosclerotic plaque identification from simulations using solute flux and comparison with 3D CT scans. (A,B) Section of the

artery showing plaques based on Jv,lj ; (D,E) Plaque extracted from (A,B); (C) Section of the artery from CT scan; (F) Plaque extracted from (C).

applied as a uniform velocity, rather than mapping to parabolic
or Womersley profiles. Whilst accurate axial velocity profile,
as extracted using pcMRI can provide improved predictions of
characteristics such as helical flow (Morbiducci et al., 2013),
it is not clear that parabolic or Womersley profiles offer any
improvement over a uniform velocity (Marzo et al., 2009;
Campbell et al., 2012; Morbiducci et al., 2013).

The isotropic hyperelastic model of Raghavan and Vorp
(2000) is a simplification of the true aortic wall properties,
which are known to be anisotropic (Gasser et al., 2006). This
model has been shown to provide improved predictions of
stress distributions compared with a linear elastic model, but
underestimates peak stresses relative to anisotropic models (Roy
et al., 2014). However, it is important to note that wall stresses are
not explicitly evaluated in the present study; additionally, fibrosis

in the vessel wall alters wall properties over time in AD, and is
thus highly patient-specific. Furthermore, wall motion was not
captured as part of the clinical data collection. More detailed
imaging as well as experimental data on vessel wall properties
in AD is necessary for better, patient-specific simulations. Given
these constraints, although we acknowledge that more complex
models of vessel wall properties have been applied in AD and
that this might result in local variations, in this case these are
unlikely to yield improved accuracy in what is our ultimate goal,
the quantification of their effect on hemodynamic parameters for
individual patients.

Another limitation of this approach, which is fairly consistent
throughout the related literature is the use of “visual maps,” in
order to establish qualitative correlations between the in vivo data
and the simulation results. Recent studies address the issue of
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quantification of these type of results by using statistical methods
to establish quantitative correlations and statistical significance
of the variables analyzed (simulated) with respect to plaque
location, obtained from in vivo data (Morbiducci et al., 2015;
Gallo et al., 2016). This is clearly a welcome development that
we will be keen to use for future, multi-patient studies. As it
has been presented here, the focus of this paper is on the use of
multi-scale modeling and simulation tools and the development
of interpretable, physiologically-based metrics to understand
plaque location.

The results presented in this paper when using the
multi-criteria, patient-specific, multi-scale complex framework
described here, compare well, qualitatively, to in vivo data and
although there is no perfect match, this is to be expected,
when considering the number of assumptions, simplifications
and limitations as described (please see above). Moreover, as
for patient-specific data, only anatomical information was fed
into the model and hemodynamic variables were calculated
based on invasive pressure measurements in order to properly
characterize the flow, as described in Alimohammadi et al.
(2014). Apart from the hemodynamic calculations previously
described, it is important to mention that the authors have
been extremely careful to inform the model with data and
values taken straight from the literature, so, there is no unique
estimation of parameters or “fitting” apart from appropriate
characterization of flow variables, for the simulation presented
here. It remains a striking feature of this approach that even
taking this into account; the correspondence between observed
and simulated calcified/atherosclerotic regions is high, can be
explained and appears to be a marked improvement upon other
standard methods reported in previous studies. It also offers a
coherent, mechanistic explanation that is able to shine some
light on combined mechanisms responsible for the location of
atherosclerotic/calcification areas and to interpret them together
and simultaneously. Although the focus of this paper is on the
use of multi-criteria and multi-scale mathematical modeling to
understand atherosclerosis and results are shown for one patient
only, it is important to say that preliminary and very encouraging
results from a different anatomical site with a simpler model,
but also following a mechanistic approach have been published
in Alimohammadi et al. (2015a). Equally, results from other
simulations currently performed by our group (not shown
here) using the approach developed in this work for different
arteries, show similar effectiveness than the one discussed here,
in terms of identification of calcification/atheroprone areas. We
acknowledge nevertheless the need to test this approach in a
small cohort of patients, taking into account the limitations and
new developments described above. This is work that is already
under way.

CONCLUSIONS

In the present study, we have presented a mechanistic,
mathematical model of endothelial mechanotransduction to

understand plaque location/calcification. The model is tested
on a patient-specific case for which in vivo measurements were
obtained at University College Hospital and a patient-specific
biomechanical model produced (Alimohammadi et al., 2015a)
and attempts to provide a clear, multi-factorial metric for plaque
location, with strong physiological meaning and interpretation.
The results from this model compared favorably with in vivo data
and outperformed other well-established indices currently used
in the literature. The model used an advanced FSI simulation,
comprising patient specific dynamic outlet boundary conditions
and non-Newtonian blood viscosity. This was coupled with an
established model for atherogenesis in order to investigate the
roles of various hemodynamic parameters on the development
of calcified regions in the aortic wall.

As an input to the endothelial permeability model relating
to shear stress, we hypothesized that regions of oscillatory, low
magnitude shear stress would be susceptible to calcification,
due to the known connection to increased permeability. We
therefore, proposed the compound HOLMES shear index, which
includes both magnitude and oscillatory characteristics and will
thus emphasize oscillatory, lowmagnitude shear stress and found
that it considerably improved the predictive power of the model
over TAWSS-based analysis.

The role of the complex characteristics of the hemodynamics
near the wall was investigated by hypothesizing that elevated
blood viscosity near the wall would limit the convection of
plasma into the vessel wall, and vice versa. It was found that
when the spatially varying blood viscosity at the wall as estimated
using an empirical non-Newtonian viscosity model, was used in
the endothelial permeability model, the predicted Lp,lj and Jv,lj
distributions bore increased resemblance to the observed regions
of calcification.

This work provides a good example of the use of multiscale
mathematical modeling to understand physiology. The
promising results obtained from this approach warrant
further investigation. Next steps will include studies of a larger
number of patients to enable comparisons amongst patients and
potentially statistical analyses, in order to investigate in detail the
predictive power of the model.
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