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There is epidemiological evidence for the cancer preventive effect of dietary calcium

(Ca2+) and vitamin D. This effect is strongest in colorectal cancer (CRC). The active

vitamin D metabolite, 1,25-dihydroxyvitamin D3 (1,25D3), bound to its receptor, the

vitamin D receptor (VDR) regulates the expression of hundreds of different genes in a

cell- and tissue-specific manner. While Ca2+ acts through multiple mechanisms and

pathways, some of its effects are mediated by the calcium-sensing receptor (CaSR).

The joint action of Ca2+ and 1,25D3 is due to the fact that both regulate some of the

main processes involved in the development of various cancers, such as proliferation,

differentiation, apoptosis, migration, and inflammation. Moreover, 1,25D3, bound to VDR

can induce translation of the CaSR, while the amount and activity of the CaSR affects

1,25D3 signaling. However, the complexity of the cross-talk between the CaSR and the

vitamin D system goes beyond regulating similar pathways and affecting each other’s

expression. Our aim was to review some of the mechanisms that drive the cross-talk

between the vitamin D system and the CaSR with a special focus on the interaction

in CRC cells. We evaluated the molecular evidence that supports the epidemiological

observation that both vitamin D and calcium are needed for protection against malignant

transformation of the colon and that their effect is modulated by the presence of a

functional CaSR.
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INTRODUCTION

Epidemiological and preclinical studies suggested that dietary calcium and vitamin D are able to
prevent several forms of cancer, with strongest effect observed in prevention of colorectal cancer
(CRC; Zhang and Giovannucci, 2011). Low calcium intake and vitamin D insufficiency were
considered independent risk factors for cancer, until Garland et al. showed that their colon cancer
preventing effect is interdependent (Garland et al., 1985). Both calcium and vitamin D affect several
hallmarks of cancer: enhance differentiation, adhesion, activate apoptosis, inhibit proliferation
and inflammation, and decrease metastatic potential. Therefore, understanding the interactions
between them would enhance the possibility of exploiting their cancer preventing potential.
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Epidemiological Evidence
Low calcium intake was linked to the pathogenesis of several
chronic diseases and is a recognized risk factor for total cancer
incidence (Park et al., 2009; Peterlik et al., 2013). In a population-
based, double-blind, placebo-controlled randomized trial among
community-dwelling women dietary calcium (1400–1500mg)
and vitamin D (1100 IU) reduced all-cancer risk (Lappe
et al., 2007). Calcium and vitamin D supplementation reduced
melanoma risk in women with a history of non-melanoma skin
cancer (Tang et al., 2011). High serum calcium levels at baseline
were associated with lower breast cancer mortality in a Swedish
cohort, while serum 25 hydroxyvitamin D3 (25D3) levels and
breast cancer mortality showed a u-shaped correlation (Luo et al.,
2013; Huss et al., 2014). A recent study showed that high calcium-
sensing receptor (CaSR) expression in primary prostate tumors
was associated with lethal progression of the disease if the tumors
expressed low vitamin D receptor (VDR) levels, but not if the
tumors had high VDR levels (Ahearn et al., 2016).

Expression level and activity of the CaSR were linked to risk,
incidence, recurrence, or lethality of various cancers, such as
prostate, breast, colorectal, ovarian cancer, or neuroblastoma
(Tennakoon et al., 2016), cancers where vitamin D insufficiency
might also be involved in etiology (Table 1).

In CRC there is ample evidence supporting the cancer
preventive effects of calcium and vitamin D (World Cancer
Research Fund/American Institute for Cancer Research, 2007;
Tarraga Lopez et al., 2014). In adenomatous polyposis patients
high doses of dietary calcium and vitamin D significantly reduced
the rate of polyp formation after 6 months (Holt et al., 2006).
Pooling data from 10 cohort studies showed that only high
intake of both vitamin D and calcium reduced risk of CRC (Cho
et al., 2004). Calcium supplementation in a placebo-controlled
randomized multi-center clinical trial reduced risk of adenoma
recurrence (RR = 0.71) only in subjects with 25D3 levels above the
median (29.1 ng/mL). Moreover, serum 25D3 levels correlated
inversely with adenoma risk only in subjects receiving calcium
supplementation (Grau et al., 2003). Usually changes in serum
Ca2+ levels are minimal; however dietary calcium causes high
fluctuations in fecal Ca2+ levels that affect tumorigenesis. Ca2+

in the intestine forms insoluble salts with potentially carcinogenic

TABLE 1 | Effect of calcium, vitamin D and involvement of the CaSR in development of cancer.

Cancer type Effect of calcium Effect of vitamin D CaSR involvement

Parathyroid adenoma/Carcinoma ↓ Proliferation ↓ Proliferation Tumor suppressor (Miller et al., 2012)

Colorectal cancer ↓ Incidence ↓ Incidence* Tumor suppressor (Aggarwal et al., 2015b)

↓ Risk ↓ Risk

Neuroblastoma Tumor suppressor (Casala et al., 2013)

Breast cancer ↓ Cancer risk ↓ Incidence ↑ Metastasis to bone (Vanhouten and Wysolmerski, 2013)

↓ Risk

↑ Survival

Prostate cancer ↑ Cancer incidence ↑ Protection against aggressive cancer ↑ Metastasis to bone (Liao et al., 2006; Chakravarti et al., 2009)

Kidney cancer ↑ Metastasis to bone (Joeckel et al., 2014)

*Italics: limited evidence.

bile acids, such as deoxycholic and lithocholic acid. Lithocholic
acid is able to bind VDR, induce expression of the vitamin D
degrading enzyme (CYP24A1) and 1,25 dihydroxyvitamin D3

(1,25D3) degradation (Hobaus et al., 2013a).
While interventional studies are sometimes inconclusive,

many animal studies convincingly demonstrated the cancer-
preventing effect of vitamin D3 and calcium, suggesting that
calcium and vitamin D regulate the dynamic balance between
proliferation, differentiation, adhesion, motility, and apoptosis in
the colon (Holt et al., 2006; Hummel et al., 2013) and both are
needed for optimal effectiveness. In a dietary colon cancer model,
where the so-called newwestern diet (NWD) fed for 2 years led to
development of spontaneous colorectal tumors, supplementation
with dietary calcium and vitamin D reduced significantly both
colon tumor incidence and multiplicity (Newmark et al., 2009).
Moreover, the high Ca2+ and vitamin D intake prevented colonic
tumor formation even in the mice bearing the Apc1638N+/−

mutation and fed the NWD (Yang et al., 2008). How far the effect
of calcium was mediated by the CaSR is not yet clear.

Mechanism of Action
The mechanism of action of vitamin D is clear: vitamin D
(synthesized in the skin or ingested through food) is transformed
in the liver to 25 hydroxyvitamin D3 and in the kidney (or
other tissues), to its most active form 1,25 dihydroxyvitamin
D3. The enzymes involved in this process are the vitamin
D3 25 hydroxylases (e.g., CYP2R1 and CYP27A1) and the 25
hydroxyvitamin D3 1 alpha hydroxylase (CYP27B1). 1,25D3

binds to its nuclear receptor, the transcription factor VDR
and regulates target gene expression. Both 1,25D3 and its
precursor 25D3 are catabolized by the 1,25 dihydroxyvitamin
D3 24 hydroxylase (CYP24A1) (Christakos et al., 2016). VDR,
CYP27B1, and CYP24A1 are almost ubiquitously expressed,
suggesting that 1,25D3 can be synthesized and degraded in most

of the tissues. Effectiveness of 1,25D3 depends on the local
expression level and activity of all these molecules.

The mechanism of action of extracellular calcium is by far
much more complex. There are numerous different molecules
(different types of Ca2+ channels, Ca2+ pumps, exchangers,
etc.) and pathways that are involved (Capiod, 2016). The
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extracellular calcium-sensing receptor (CaSR) is one of the
candidates that mediate the cancer preventive effects of dietary
calcium (Tennakoon et al., 2016). Whitfield suggested that the
CaSR serves as the molecular switch that turns on differentiation
and turns off proliferation in colonic epithelial cells as these
migrate along the colonic crypt (Whitfield, 2009).

The main physiological role of this G protein-coupled
receptor is regulating calcium homeostasis (Brown et al., 1993)
by maintaining the balance between Ca2+ absorption in the
intestine, Ca2+ excretion by the kidneys, and the release of
Ca2+ from bone. The maintenance of calcium homeostasis
is orchestrated by the intricate cross talk among Ca2+, the
CaSR, parathyroid hormone (PTH), and the active vitamin
D hormone 1,25D3 (Brown and MacLeod, 2001). The CaSR
regulates PTH secretion, dependent on extracellular Ca2+

concentrations. When Ca2+ levels are high in the serum, the
receptor is activated, leading to a decrease in PTH synthesis
and secretion. When serum Ca2+concentration drops, CaSR is
inactive, and PTH is secreted into the serum, leading to increased
urinary Ca2+ resorption, stimulation of 1,25D3 production in
the kidney, which enhances Ca2+ uptake from the intestine and
calcium release from the bone. As an effect of this, serum Ca2+

concentration is increased again, activating the receptor and
the cycle continues. This function is described in more detail
elsewhere in this Research Topic (Roszko et al., 2016; Conigrave,
in review).

The CaSR is expressed not only in calciotropic organs,
such as the parathyroid, kidney, bone, and small intestine, but
also in several organs not directly involved in maintaining
calcium homeostasis. In these tissues, the CaSR is involved in a
multitude of cellular processes including secretion, chemotaxis,
cell–cell adhesion, and control of proliferation, differentiation,
and apoptosis (Brown and MacLeod, 2001; Brennan et al., 2013).

The CaSR and the vitamin D system cooperate not only in
calciotropic organs, but also in the skin (Tu and Bikle, 2013),
in the colon (Canaff and Hendy, 2002; Chakrabarty et al., 2005;
Aggarwal et al., 2016), and probably in other tissues as well. The
cross-talk between CaSR and vitamin D in the skin is presented
in detail by Bikle and colleagues in this Research Topic (Bikle
et al., 2016). Therefore, this review concentrates mainly on the
interdependence of CaSR and vitamin D signaling in the colon
and focuses on the CaSR-mediated crosstalk between Ca2+ and
vitamin D.

EFFECT OF VITAMIN D ON CaSR
EXPRESSION

The CaSR and the vitamin D system become deregulated during
tumorigenesis through different mechanisms. CaSR expression is
lost in colorectal tumors (Sheinin et al., 2000; Chakrabarty et al.,
2005; Fetahu et al., 2014a), mainly due to epigenetic silencing
i.e., DNA hypermethylation, histone deacetylation, increased
expression of themircroRNAsmiR-135b, miR-146b (Hizaki et al.,
2011; Fetahu et al., 2014a, 2016). In unfavorable neuroblastomas
CaSR is silenced by epigenetic and genetic mechanisms (Casala
et al., 2013), while in parathyroid tumors CaSR loss is
independent of DNA methylation (Varshney et al., 2013).

Shortly after the discovery of the CaSR, it was shown that
on one hand, in vitamin D-depleted rats the CaSR expression
was significantly reduced; on the other hand, intraperitoneal
administration of 1,25D3 upregulated parathyroid, thyroid, and
kidney CaSR expression (Canaff and Hendy, 2002). We have
shown that dietary vitamin D was able to upregulate CaSR
expression also in the colon of mice (Aggarwal et al., 2016).
In vitro 1,25D3 increased CaSR expression in a thyroid C cell
line, in the proximal tubule human kidney cells (HKC) (Canaff
and Hendy, 2002), and in colon cancer cells (Chakrabarty et al.,
2005; Fetahu et al., 2014b). An essential prerequisite for the direct
modulation of transcription by 1,25D3 is the location of at least
one liganded VDR protein close to the transcriptional start site
(TSS) of the primary target gene. It was Canaff and her colleagues
who have demonstrated that the CaSR gene has two functional
promoters (P1 and P2), and both contain a vitamin D response
element (VDRE) upstream of the TSSs (Canaff andHendy, 2002).

Both VDREs are often methylated in colon cancer (Fetahu
et al., 2014b), and the level of silencing of the CaSR varies
depending on the level of DNA methylation and of histone
acetylation at distinct residues. The epigenetic landscape of the
CaSR promoter affects also its transcriptional and translational
upregulation by 1,25D3 (Fetahu et al., 2014b). In two colon
cancer cell lines expressing undetectable levels of CaSR 1.4mM
Ca2+ or 1µM 1,25D3 were able to reduce CaSR promoter
methylation and thus contribute to the upregulation of CaSR
expression (Singh et al., 2015). Whether high dietary vitamin D
and calcium would reduce or prevent methylation of the CaSR
promoter also in vivo needs to be tested, as 1µM concentrations
of 1,25D3 in the tumor microenvironment would be difficult to
obtain.

EFFECT OF THE CaSR ON EXPRESSION
OF THE VITAMIN D SYSTEM

Although the kidney is the main source of serum 1,25D3 levels,
the extra-renally synthesized 1,25D3, which acts locally in an
autocrine and paracrine manner, is an indispensable source for
the cancer-preventive action of vitamin D. However, during
tumor development the expression of the different molecules of
the vitamin D system in the affected tissue becomes deregulated.
In undifferentiated colorectal adenocarcinomas not only CaSR
expression, but also expression of VDR and CYP27B1 is lower
than in differentiated tumors (Bareis et al., 2002; Bises et al.,
2004; Giardina et al., 2015). Whether these phenomena are
linked or not, needs to be determined. Nevertheless, loss of
CaSR expression in an epidermis-specific CaSR knock-out mouse
model led to significantly lower vdr and cyp27b1 expression in
the skin compared with the wild type controls (Tu et al., 2012),
suggesting that intact CaSR expression and function is needed for
proper expression of the vitamin D system.

One of the causes of VDR loss in colorectal tumors is
the increased expression of the transcription factor SNAIL1,
one of the main regulators of the epithelial-to-mesenchymal
transition (Palmer et al., 2004). Finding ways to prevent SNAIL1
upregulation would prevent VDR loss and preserve sensitivity
to the anti-proliferative effects of 1,25D3. We were able to
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show that transfection of the HT29 colon cancer cell line
with the functional CaSR prevented epithelial-to-mesenchymal
transition and upregulation of SNAIL1. Similar effects were seen
by activating the receptor with the allosteric CaSR activator
NPS-R568 (Aggarwal et al., 2015a).

In colorectal tumors the expression of the vitamin D
degrading enzyme, CYP24A1 is significantly higher when
compared with the adjacent normal tissue (Horvath et al.,
2010). This higher expression was due, at least in part, to
more copies of the CYP24A1 gene. In these tumors, CYP24A1
expression correlated with proliferation rate of the tumors
(Hobaus et al., 2013b). CYP24A1 overexpression conferred
a more aggressive growth to colon cancer tumor xenografts
(Hobaus et al., 2016). In human patients CYP24A1 has been
suggested to be a biomarker for progression and prognosis of
CRC (Sun et al., 2016). Upregulation of CYP24A1 is common
in different solid tumors, such as lung, prostate, breast, cervical,
ovary tumors (Anderson et al., 2006; Luo et al., 2013; Ahn
et al., 2016). In these tumors, CYP24A1 reduces the half-life
of 1,25D3, shortens the duration of the vitamin D signal, and
thus reduces the anti-tumorigenic effects of the active 1,25D3.
We have shown previously that low dietary calcium intake
(0.04%) increased CYP24A1 expression in the colon of mice,
while high calcium (0.9%) prevented CYP24A1 increase (Kállay
et al., 2005). Whether the CaSR mediated this effect was not
demonstrated, but our observation that in the colon of CaSR
and PTH double knock-out mice cyp24a1 expression was higher
compared with wild-type mice suggests a contribution of the
CaSR.

EFFECT OF CaSR EXPRESSION AND
FUNCTIONALITY ON VITAMIN D ACTION

The complexity of the cross-talk between the CaSR and the
vitamin D system goes beyond affecting expression mutually. In
CRC cells the anti-tumorigenic effects of 1,25D3 are influenced by
the amount of CaSR expressed in a cell and by the activity of this

receptor (Singh et al., 2013; Aggarwal et al., 2016). Liu et al. (2010)
have shown that 1µM 1,25D3 reduced cell number and inhibited
invasion only in cells expressing the CaSR, but not in cells where
the CaSR expression was down-regulated by transfection with
CaSR-specific shRNA. In Caco-2 cells, transfection of a mutated
CaSR harboring the inactivating mutation R185Q, abolished the
anti-proliferative effect of 1,25D3 while the overexpression of
the wild-type CaSR significantly intensified the anti-proliferative
1,25D3 effect. Treating the cells with the allosteric CaSR activator
NPS R-568 increased the effect of 1 nM 1,25D3 on cell number
even in the cells expressing the mutant CaSR (Aggarwal et al.,
2016).

1,25D3 has strong apoptosis-promoting effects, similar to
Ca2+. We have shown that 1 nM 1,25D3 effectively induced
caspase 3/7 activity in colon cancer cells in the presence of
1.8mM Ca2+. This effect was significantly stronger when the
cells overexpressed the wild type CaSR. NPS R-568 treatment
almost doubled the effect of Ca2+ in the cells overexpressing
the CaSR and this effect was further enhanced by 1,25D3. The
inactivating CaSR mutant (R185Q) significantly reduced the
apoptotic effect of 1,25D3 (Figure 1) (Aggarwal et al., 2016),
although the mechanism is not clear. Inactivating mutations of
the CaSR can cause disorders of calcium metabolism including
familial hypocalciuric hypercalcemia type 1 (FHH1) and neonatal
severe hyperparathyroidism (NSHPT). The impact of CaSR
mutations on the colon physiology is not known. To date, no
CaSRmutations have been associated with CRC risk or mortality,
although there are suggestions that certain polymorphisms
(including A986S, R990G, Q1011E) could be linked to CRC risk
(Dong et al., 2008; Jacobs et al., 2010).

One apoptosis-inducing mechanism of 1,25D3 is the
upregulation of the expression of the inducers of cell cycle arrest
and apoptosis: the cyclin-dependent kinase inhibitors Cdkn1a
and Cdkn1b (Chu et al., 2008; Karimian et al., 2016). In a colon
cancer cell line the effect of 1,25D3 on Cdkn1a was abolished
by knocking down the CaSR by CaSR-shRNA transfection.
Moreover, the expression of survivin, a key anti-apoptotic
protein, and the activity of the survivin promoter was inhibited

FIGURE 1 | Impact of the inactivating CaSR mutation on the apoptotic effect of 1,25D3 and NPS R-568 in the colon cancer cell lines Caco2-15 (A) and

HT29 (B), stably transfected with wild type (CaSR-WT) or the dominant negative R185Q mutant (CaSR-DN). Cells transfected with and empty vector (EMP)

were used as controls. One week post confluence, the cells were treated with 1,25D3 (1 nM), NPS R-568 (1µM) or a combination of 1,25D3 and NPS R-568 for 48 h.

Apoptosis was assessed by measuring caspase3/7 activity. Bars represent mean ± SEM. Statistical significance was calculated using two-way ANOVA followed by

Tukey’s correction. *p < 0.05, **p < 0.01, ***p < 0.001. Modified from Aggarwal et al. (2016).
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by 1,25D3 only in cells expressing the wild-type CaSR and not in
cells transfected with CaSR-shRNA (Liu et al., 2010).

Overexpression of the CaSR prevented the mesenchymal
transition and the acquisition of stem cell-like properties in the
HT29 colon cancer cell line (Aggarwal et al., 2015a) reducing
the metastatic properties of the cells. Another mechanism by
which CaSR might regulate adhesion and migration is the
regulation of the activity of integrins, adhesion receptors that
mediate cell migration (Tharmalingam and Hampson, 2016).
Interestingly, 1,25D3 also affects integrin signaling, as it has
been shown that 1,25D3 inhibited ionizing radiation-mediated
upregulation of several integrins in keratinocytes (Muller et al.,
2006).

Colon cancer cells transfected with CaSR express lower levels
of thymidylate synthase (TS) (Liu et al., 2010), an enzyme
involved in de novo DNA synthesis which is the target of the
main colon cancer drug 5-fluoro uracil (5-FU) (Chu et al., 2003).
1,25D3 further inhibits TS expression and promoter activity
and thus strengthens the cytotoxic 5-FU effect, however only
in the cells expressing endogenous CaSR but not if the CaSR
was knocked down (Liu et al., 2010). These data warrant for
further studies to explore the possibility of using 1,25D3 and
calcimimetics in supporting combinatorial anticancer therapy.

INTERPLAY BETWEEN CaSR AND 1,25D3

SIGNALING IN REGULATING THE Wnt
PATHWAY

In a recent clinical trial, supplementation of the Western-style
diet with 1,25D3 (0.5µg/day) with or without 2 g calcium showed
that in human colorectal mucosa 1,25D3 upregulated expression
of multiple genes, such as those involved in inflammation and
immunity, while Ca2+ modulated this effect (Protiva et al., 2016).
The joint action of Ca2+ and 1,25D3 is due to the fact that both
regulate some of the main processes involved in the development
of various cancers. Among the best characterized pathways
involved in many of these processes is the Wnt pathway.

Wnt proteins are secreted glycoproteins that signal by
interacting with the receptors called Frizzled and Lipoprotein-
related peptide 5/6 to release ß-catenin from its destruction
complex. Colon cancer is regarded as a disease of defective Wnt-
signaling (Gregorieff and Clevers, 2005; Clevers, 2006; Cancer
Genome Atlas Network, 2012). The adenomatous polyposis coli
(APC), a member of the ß-catenin destruction complex, is one of
most often mutated components of the canonical Wnt-signaling
(Powell et al., 1992) and leads to accumulation of ß-catenin and
constitutive activation of the Wnt pathway (Behrens, 2005). The
activated Wnt pathway induces proliferation by upregulating
expression of target genes involved in DNA replication, cell
cycling, such as cell division cycle 6 (CDC6), mini chromosome
maintenance (MCM) 3/5, cyclin D1, c-myc. Both calcium and
vitamin D regulate the Wnt pathway (Palmer et al., 2001;
Shah et al., 2006; Cross and Kallay, 2009), usually inhibiting
the canonical and activating the non-canonical Wnt pathway
(Macleod, 2013).

In the intestine the CaSR expression inversely correlated with
activity of the canonical Wnt/ß-catenin pathway. Loss of CaSR

increased ß-catenin phosphorylation on Ser-552 and Ser-675
residues, which led to increased nuclear localization of ß-catenin
in colonocytes and promoted its transcriptional activity (Rey
et al., 2012). In colorectal tumors CaSR expression inversely
correlated with expression of several proliferation markers, such
as CDC6, MCM2, MCM5, MCM6, and these markers were
also reduced in the colon of mice lacking the CaSR (Aggarwal
et al., 2015b). Increasing CaSR expression in colon cancer cell
lines led to reduced nuclear translocation of ß-catenin and to
higher E-cadherin protein levels (Aggarwal et al., 2015a). In
the CBS CRC cell line 1mM Ca2+ alone, or in combination
with 100 nM 1,25D3 inhibited the Wnt/ß-catenin pathway by
upregulating E-cadherin and inhibiting T-cell factor 4 (TCF-4)
expression (Chakrabarty et al., 2005). E-cadherin is a type-1
transmembrane protein that binds ß-catenin thus sequestrating
it to the membrane and preventing its nuclear translocation,
while TCF-4 is the transcription factor that together with ß-
catenin regulates the transcription of the target genes of the
Wnt pathway (http://web.stanford.edu/group/nusselab/cgi-bin/
wnt/target_genes).

In myofibroblasts, activation of CaSR with various agonists,
such as Ca2+, poly-L-Arginine, spermine, or neomycin induced
secretion of the Wnt antagonists Dickkopf 1 (Dkk-1) and
Wnt5a. This could be prevented by transient transfection of
the cells with CaSR-specific siRNA. In colon cancer cells
CaSR activation increased expression of the low density
lipoprotein receptor-related protein 6 (Lpr6). Dkk-1 bound
to Lpr6 upregulated E3 ubiquitin ligase expression leading
to degradation of ß-catenin and thus to inhibition of Wnt
signaling (MacLeod et al., 2007; Macleod, 2013). Moreover,
activation of the CaSR upregulated the Wnt5a receptor, the
receptor tyrosine kinase-like orphan receptor 2 (Ror-2), leading
to reduced expression of the tumor necrosis alpha receptor
(Kelly et al., 2011).

1,25D3 regulates Wnt signaling also by multiple mechanisms,
some very similar to CaSR effects. In colon cancer cells 1,25D3

inhibited TCF-4 transcription, upregulated expression of E-
cadherin and of other adhesion proteins, and induced nuclear
export of ß-catenin. The direct binding of the liganded VDR to ß-
catenin inhibited its interaction with TCF-4 (Palmer et al., 2001).
1,25D3 was also able to upregulate DKK-1 expression in colon
cancer cell lines similar to the effect of CaSR in myofibroblasts
(Pendas-Franco et al., 2008).

Thus, functional CaSR and vitamin D system can reduce the
impact of an overactiveWnt pathway overcoming, at least in part,
the loss of APC activity.

CONCLUSIONS

This review provides molecular evidence for the interaction
between the vitamin D system and the CaSR (Figure 2).
It supports the epidemiological observation that vitamin D
and calcium are both needed to protect against malignant
transformation, at least in the colon and that their effect depends,
at least in part from the presence of a functional CaSR.

It is feasible that in NSHPT or FHH1 patients with
inactivating CaSR mutations vitamin D is less effective in
regulating proliferation, differentiation, and apoptosis. These
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FIGURE 2 | Interactions between the vitamin D system and the CaSR. Ca/CaSR and the 1,25D3/VDR cross talk to protect colonic epithelial cells from

malignant transformation. 1,25D3 is able to up regulate expression of both, CaSR and Cyp24a1. The wild type CaSR has a tumor suppressive role in the colon

promoting (blue arrows) differentiation and apoptosis and suppressing (red arrows) proliferation and EMT and potentiates the tumor preventive effects of 1,25D3. The

presence of a DN mutant CaSR abrogates the tumor preventive effects of both Ca and 1,25D3.

patients might therefore have a higher risk to develop cancer.
The anti-proliferative effects of 1,25D3 should be studied also
in the parathyroid of FHH1 patients. The marked parathyroid
hyperplasia in FHH1 or NSHPT might be caused both by the
less effective CaSR and by loss of the anti-proliferative function
of 1,25D3 due to mutated CaSR.
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