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Control of cell-cell coordination and communication is regulated by several factors,

including paracrine and autocrine release of biomolecules, and direct exchange of soluble

factors between cells through gap junction channels. Additionally, hemichannels also

participate in cell-cell coordination through the release of signaling molecules, such as

ATP and glutamate. A family of transmembrane proteins named connexins forms both

gap junction channels and hemichannels. Because of their importance in cell and tissue

coordination, connexins are controlled both by post-translational and post-transcriptional

modifications. In recent years, non-coding RNAs have garnered research interest due to

their ability to exert post-transcriptional regulation of gene expression. One of the most

recent, well-documented control mechanisms of protein synthesis is found through the

action of small, single-stranded RNA, called micro RNAs (miRNAs or miRs). Put simply,

miRNAs are negative regulators of the expression of a myriad proteins involved in many

physiological and pathological processes. This mini review will briefly summarize what

is currently known about the action of miRNAs over Cxs expression/function in different

organs under some relevant physiological and pathological conditions.

Keywords: connexins, hemichannels, miRNA, postranscriptional regulation, non-coding RNA, cellular

communication

INTRODUCTION

Cell-cell communication and signaling is regulated by exchange of soluble factors between
cells through gap junction channels (GJC) (Nielsen et al., 2012). Transmembrane proteins
known as connexins (Cxs) form these channels (Vinken, 2015). Interestingly, Cxs not only
forms GJCs, but also form another type of channel known as hemichannels (Sáez et al., 2005).
When hemichannels open, they allow for the release of bioactive molecules, such as ATP and
glutamate to the extracellular media, thus participating in paracrine/autocrine communication
(Montero and Orellana, 2015). Also, under certain pathological conditions, hemichannels display
a gain of function phenotype, which induces cell malfunctioning or even cell death (Retamal
et al., 2015). Cxs are controlled by several post-translational factors, including phosphorylations,
oxidations/reductions, and protein-protein interactions, among other mechanisms (Hervé et al.,
2012; Pogoda et al., 2016; Retamal et al., 2016). Cxs are also controlled by changes in their
expression levels and/or by degradation or stabilization of their corresponding mRNAs (Salat-
Canela et al., 2015). A well-documented control mechanism of proteins synthesis is through the
action of small single-stranded RNA called micro RNAs (miRNAs–miRs).
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CONNEXINS

Cxs are transmembrane proteins encoded by 21 different genes
in humans (Söhl et al., 2005). The canonical structure of Cxs
is composed of four transmembrane domains (TM1-4), two
extracellular loops (EL1 and EL2), and one intracellular loop
(IL1). Both carboxy (C-) and amino (N-) terminal of Cxs face
toward cytoplasm (Maeda et al., 2009). The main structural
difference between Cxs lies in their C-terminal region, which
shows great variability in sequence and length. Because of these
differences in protein length, each Cx has been named according
to its predicted molecular weight (i.e., Cx43 has a molecular
weight of about 43 kDa).

Cxs form two type of channels: GJCs and hemichannels.
GJCs are channels composed by longitudinal joining of two
hemichannels, which in turn are each composed by six Cxs
subunits. Due to its disposition at the plasma membrane, GJCs
allow the passive flux of ion and small molecules between
cells, while hemichannels allow for the flux of ion and small
molecules between the intracellular and extracellular space.
These small molecules include ATP, glutamate, glucose, and
several second messengers, among others (Retamal et al.,
2015). Cell-cell communication and coordination relies on
dynamic interchange of signaling molecules between cells;
thus, GJCs and hemichannels are key elements of this
phenomenon.

GJCs and hemichannels activity is tightly regulated by several
mechanisms, including: phosphorylation, redox reactions,
cleavages, protein-protein interactions, and changes in pH,
among others (Hervé et al., 2012; Pogoda et al., 2016; Retamal
et al., 2016). Additionally, Cx levels are controlled post-
transcriptionally by mechanisms such as miRNAs, RNA-binding
proteins (RBPs), IRES elements, and others (Salat-Canela et al.,
2015; Vinken, 2016).

BIOLOGY OF miRNAs

MicroRNAs are a class of 19–25 nucleotide non-coding RNAs,
which function in RNA silencing and post-transcriptional
regulation of gene expression (Kim, 2005). Most canonical
miRNAs are encoded in introns of Pol-II genes; however, others
can be located in the minus strand of an exon, although this
is an exception rather than a rule (Bartel, 2004). Biogenesis of
miRNAs begins with transcription by RNA polymerase II into
a single ∼300–400 bp transcript (but up to 1 kb in some cases)
known as primary RNA transcripts (pri-miRNAs) (Bartel, 2004;
Kim, 2005). pri-miRNA usually contains a 5′-CAP structure, and
may or may not be polyadenylated on its 3′ end (Ha and Kim,
2014). A pri-miRNA can contain several hairpin structures that
leads to the formation of various miRNA-RISC complexes (Lee
et al., 2002). Processing of the pri-miRNA transcript initiates with
excision of the hairpin structure by the microprocessor complex,
which includes DROSHA, an RNase III protein, coupled with
DGCR8 (Denli et al., 2004). DROSHA acts specifically on
dsRNA (like the pri-miRNA) and cleaves off its single stranded
portions, capturing the resulting stem-loop structure that is now

denominated pre-miRNA (Lee et al., 2003). Subsequently, pre-
miRNAs are exported to the cytoplasm through the nuclear pore
complex via a Ran-GTP-dependent protein called EXPORTIN5.
Once in the cytosol, another RNase called DICER, excises the
loop and produce a small RNA duplex (also called miRNA
duplex) (Yi et al., 2003; Bohnsack et al., 2004). miRNA duplexes
are then loaded onto an Argonaute protein to form the pre- RNA-
induced silencing complex (pre-RISC). Subsequently, the so-
called “passenger strand” detaches from this complex, completing
the formation of the mature RISC complex to target a mRNA
for its degradation (Gregory et al., 2005; Matranga et al., 2005).
The final configuration of the RISC complex carries the “guide
strand” of this miRNA duplex, which is chosen largely due to its
relative thermodynamic stability (Kawamata et al., 2009; Winter
et al., 2009;Macfarlane andMurphy, 2010). All of thesemolecular
processes are shown in Figure 1.

MODULATION OF CONNEXINS BY miRNAs

miRNAs can significantly downregulate the activity of any given
mRNA with a 3′UTR, offering a compatible seed sequence
(Bartel, 2009). In the present mini review, we focus on
those Cx-miRNAs interactions that may offer potential for
investigating new aspects of the pathophysiology of clinically
relevant phenotypes.

Nervous System
There exists a scholarly consensus that cell-cell interactions play
a key role in the transition in neuronal activity, which is primarily
based on chemical synapses (Moore et al., 2014). Several Cxs are
expressed in the brain, including Cx26, Cx32, and Cx43 (Rouach
et al., 2002). Cx26 is detected at early stages of the development,
while Cx32 and Cx43 are expressed throughout entire brain
development and adulthood (Nadarajah et al., 1997). After birth,
Cxs play important roles in brain functions, coordinating the
activity between neurons and also between glial cells (Pereda,
2014; PosÅuszny, 2014; Decrock et al., 2015; Del Rio et al., 2015).
Changes in expression levels and/or channel function formed
by several different Cxs have been associated with a number of
central nervous system (CNS) disorders. Among these, we can
mention X-linked Charcot-Marie-Tooth disease (Bergoffen et al.,
1993), traumatic injury of the brain and/or spinal cord (Cronin
et al., 2008), hypersynchronous neuronal activity associated with
seizures (Seifert et al., 2010; Mylvaganam et al., 2014), and several
others (Retamal et al., 2015; Xie et al., 2015). Treatment with a
mimetic peptide reduces tissue damage by downregulating gliosis
and cytokine release (O’Carroll et al., 2013).

Despite the recognized importance of Cxs for normal brain
function and triggering, and/or maintaining of several brains
pathologies, to the best of our knowledge, there is no information
about the regulation of Cx- mRNA by miRNAs. However, in
the peripheral nervous system, when an neuronal damage is
generated (i.e., induced by chronic constriction), the level of miR-
1 is downregulated with a concomitant upregulation of Cx43
within the endoneurium of the sciatic nerve (Neumann et al.,
2015). No evidence of Cx43 upregulation has been observed in
the neuronal bodies (Neumann et al., 2015).
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FIGURE 1 | Connexin expression is actively downregulated by miRNAs intracellularly. miRNAs are transcribed in the nucleus, and are processed by

DROSHA, before being exported to the cytoplasm by EXPORTIN5. Once exported, they are further cleaved by DICER, and loaded onto the AGO protein to form the

RISC complex, which will bind to the Cx mRNA, and target it for degradation. Additionally, pre-miRNAs can pass from cell to cell through GJCs, and exert their effect

in neighboring cells.

Skeletal and Smooth Muscles
In the cell line C2C12, which is a mouse myoblast cell line, it
has been shown that miR-206 promotes muscle differentiation
(Kim et al., 2006). During skeletal muscle development, fusion of
myoblasts is a mandatory step. There is evidence that this process
requires (at least in vitro) the presence of Cx43 GJCs. However,
after fusion, Cx43 is downregulated by both miR-206 and miR-
1 in myocytes in vitro (Anderson et al., 2006); therefore, this
is a good example in which miRNAs controls the development
of cells by controlling the levels of Cx43 under physiological
conditions.

As in skeletal muscle cells, miR-1 also controls Cx43
levels in smooth muscle cells. Thus, in overactive bladder,

it was shown that MYOCD downregulates Cx43 expression
by controlling miR-1 levels, showing that reduction of Cx43
could be a key factor in this pathology (Imamura et al.,
2013).

Bones
Cx43 is the main Cx expressed in osteocytes, and its presence
is fundamental for their differentiation (Civitelli, 2008). When
miR-206 was experimentally overexpressed during osteoblast
differentiation, an inhibition of osteoblast differentiation—and
therefore bone formation in vivo—was observed (Inose et al.,
2009). This phenomenon was strongly associated to Cx43
downregulation (Inose et al., 2009).
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TABLE 1 | Detailed list of miRNAs predicted to target the different

connexin genes, as demonstrated in the associated reference.

Gene Common name Associated miRNA References

GJA1 Cx43 hsa-miR-206 Anderson et al., 2006

hsa-miR-218-5p Alajez et al., 2011

hsa-miR-4266 Lipchina et al., 2011

hsa-miR-636

hsa-miR-648

hsa-miR-6888-5p

hsa-miR-595

hsa-miR-218-5p

hsa-miR-651-5p

hsa-miR-222-3p Hao et al., 2012

hsa-miR-221-3p

hsa-miR-20a-5p Li et al., 2012

hsa-miR-342-3p Helwak et al., 2013

hsa-miR-23b-3p

hsa-miR-130a-3p Osbourne et al., 2014

GJA3 Cx46 hsa-miR-149-5p Helwak et al., 2013

GJA5 Cx40 hsa-miR-26b-5p Gennarino et al., 2009

hsa-miR-1262 Skalsky et al., 2012

hsa-miR-6842-3p

hsa-miR-5787

hsa-miR-4505

hsa-miR-4430

hsa-miR-3652

hsa-miR-5589-5p

hsa-miR-6776-5p

hsa-miR-889-5p

hsa-miR-6760-5p

hsa-miR-6736-5p

hsa-miR-4701-3p

GJA8 Cx50 hsa-miR-335-5p Tavazoie et al., 2008

GJB1 Cx32 hsa-miR-335-5p Tavazoie et al., 2008

hsa-miR-4763-5p Chi et al., 2009

hsa-miR-942-5p

hsa-miR-6817-3p

hsa-miR-7110-3p

hsa-miR-6845-3p

hsa-miR-4685-3p

hsa-miR-4287

hsa-miR-7113-3p

hsa-miR-4686

hsa-miR-6833-3p

hsa-miR-4469

hsa-miR-4768-5p

hsa-miR-6894-3p

hsa-miR-5001-3p

hsa-miR-6873-3p

hsa-miR-6867-3p

(Continued)

TABLE 1 | Continued

Gene Common name Associated miRNA References

hsa-miR-103a-2-5p

hsa-miR-1286 Gottwein et al., 2011

hsa-miR-873-5p

hsa-miR-4768-3p

hsa-miR-4511

hsa-miR-3133

hsa-miR-6811-5p

hsa-miR-6511b-5p

hsa-miR-4722-5p

hsa-miR-6813-5p Whisnant et al., 2013

hsa-miR-6085

hsa-miR-7843-5p

hsa-miR-6879-5p

hsa-miR-6735-5p

hsa-miR-6746-5p

hsa-miR-4632-5p

hsa-miR-4283

hsa-miR-4779

hsa-miR-6721-5p

hsa-miR-4436b-3p

hsa-miR-4763-3p

hsa-miR-6891-5p

hsa-miR-1207-5p

hsa-miR-3173-3p

hsa-miR-423-5p

hsa-miR-3184-5p

hsa-miR-6764-5p

hsa-miR-6837-5p

hsa-miR-1915-3p

hsa-miR-4685-5p

hsa-miR-502-5p Karginov and Hannon,

2013

hsa-miR-1306-5p

hsa-miR-6802-3p

hsa-miR-6862-3p

hsa-miR-6784-3p

hsa-miR-660-3p

GJB2 Cx26 hsa-miR-335-5p Tavazoie et al., 2008

hsa-miR-193b-3p Chen et al., 2010

hsa-miR-1295a Skalsky et al., 2012

hsa-miR-5704

hsa-miR-3142

hsa-miR-1245b-5p

hsa-miR-4524b-3p

GJB5 Cx31.2 hsa-miR-335-5p Tavazoie et al., 2008

Cardiovascular System
GJs play a key function in propagating action potentials, and
the heart is no exception to this principle. Both Cx40 and Cx43
localize along the axis of atrioventricular conduction, including
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atrioventricular node, atrioventricular bundle and Purkinje fibers
suggesting an important role in conducting the impulse (Gourdie
et al., 1993). The role of Cxs in the heart is not limited to the
electrophysiological mechanism that regulates heart beating; they
are also required for normal heart development. Reaume et al
had reported that mice which are null for Cx43 display perinatal
death (due to malformations of the right ventricular outflow
tract) but are not embryonically lethal (Reaume et al., 1995). This
suggests functional compensation among Cxs, a phenomenon
that could occur in other tissues and that offers a potential avenue
for therapeutic approaches that require further exploration.

As mentioned, miR-1 is involved in downregulation of Cx43
in skeletal muscle development (Anderson et al., 2006). In
the heart, miR-1 overexpression has been associated with the
appearance of arrhythmias in humans, and this phenomenon
is correlated with a reduction in Cx43 expression, which could
account for the reduction of the electrical conduction velocity
(Yang et al., 2007). Zhang et al. previously observed that
when neonatal cardiomyocytes were exposed to an atmosphere
with 2% oxygen for 24 h, showed an overexpression of miR-
1, and a reduction in Cx43 levels. However, the application of
tanshinone IIA (a fat-soluble ingredient of Danshen) to hypoxic
cardiomyocytes reduced the expression of miR-1, and restored
Cx43 levels, suggesting that tanshinone IIA could play a role
in cardiomyocytes protection from ischemic and hypoxic injury
(Zhang et al., 2010). It has been previously shown that miR-1
modulates Cx43 levels in response to viral myocarditis (Xu et al.,
2012), atrioventricular block after cardiac ischemia (Zhang et al.,
2013), and ventricular hypertrophy induced by heart overload
(Curcio et al., 2013). These data strongly support the idea
that the muscle-specific miRNA, miR-1, is involved in muscle
development, and that its overexpression during adulthood
is correlated to heart disease through Cx43 downregulation.
In addition to the important role of miR-1, recent evidence
demonstrates that when miR-130a is upregulated, it induces a
decrease of Cx43 protein levels and, as a consequence, both
atrial and ventricular arrhythmias were developed in a mice
model (Osbourne et al., 2014). The aforementioned evidence
strongly supports the hypothesis that upregulation of miR-1 is
directly involved in several cardiac pathologies. One notable
exception is Tetralogy of Fallot, a severe congenital heart defect
in which miR-1 levels decrease and, as predicted, Cx43 levels
increase (Wu et al., 2014). However, it remains unknown why the
upregulation of Cx43 contributes to particular heart development
defects.

miR-1 is not the sole master switch, controlling Cx43
levels in the heart. On one hand, it has been shown that
miR-19 a/b decrease Cx43 levels, and that this change is
associated with cardiac arrhythmia observed in a mouse
constitutively overexpressing the miR-17-92 cluster in smooth
muscle and cardiomyocytes (Danielson et al., 2013). On the
other hand, miR-23a is upregulated in the heart in post-
menopausal women as a consequence of the reduction in
estrogen receptor (E2) (Wang et al., 2015). Upregulation
of miR-23a in an ovariectomized rat was associated with
a reduction of Cx43 levels, providing evidence that miR-
23a mediated the repression of Cx43 in estrogen deficiency

induced damage of cardiac gap junctions (Wang et al.,
2015).

Cancer
Significant changes in gene expression patterns that promote
rapid cell division are the unifying hallmark of tumorigenesis.
Each different type of cancer has a distinctive signature of
“driver” mutations, which are recurrent across patients and affect
genes that encode key components of the cell cycle machinery
(Vogelstein et al., 2013). Different members of the Cx family
show abnormal expression levels in tumor tissue samples; notable
examples include down regulation of gene expression through
promoter hypermethylation of Cx26 in invasive breast cancer
(Tan et al., 2002), and Cx36 in colorectal carcinoma (Sirnes
et al., 2011). Regulation of Cxs through miRNAs has been well
characterized in cancer. For example, in human prostate cancer,
upregulation of miR-20a induces a reduction in Cx43 levels (Li
et al., 2012). The authors also show that downregulation of miR-
20a inhibitor (LentimiRa-Off-has-miR-20a Vector) suppresses
the proliferation of MDA-PCa-2b cells, both in vivo and in vitro,
and inhibits tumor growth in vivo (Li et al., 2012). Likewise, in
glioblastoma multiforme, it was observed that downregulation of
Cx43 by miR-221/222 is implicated in invasiveness and disease
progression (Hao et al., 2012). The level of downregulation has
been associated with the degree of malignancy (Hao et al., 2012;
Ye et al., 2016). Therefore, when U251 human glioblastoma
cells were transfected with antisense oligonucleotides against
miR-221/222, Cx43 expression was upregulated, and cellular
communication through GJCs was restored (Hao et al., 2012).
Similar results were observed when miR-125b was overexpressed
(Jin et al., 2013). However, abnormal downregulation of Cx43
by miR-221/222 and by miR-125b has also been observed in
astrocytoma (Ciafrè et al., 2005; Conti et al., 2009; Jin et al., 2013).

In nasopharyngeal carcinoma associated with the Epstein-
Barr virus, downregulation of miR-218 has been consistently
observed (Alajez et al., 2011). Interestingly, this study confirmed
that miR-218 targets Cx43 mRNA, and that overexpression of
miR-218 induced cell death in C666-1 cell line, which is derived
from nasopharyngeal carcinoma (Alajez et al., 2011). However,
these results contradict previous results, which demonstrated that
Cx43 is downregulated in nasopharyngeal carcinoma (Shen et al.,
2002; Xiang et al., 2002; Yi et al., 2007).

In breast cancer cell line MDA-MB-231, transfection of hsa-
miR-206 decrease Cx43 levels, which was correlated with a
decrease of proliferation rate and cell migration (Fu et al., 2013).
Accordingly, higher levels of miR-206 in lymph nodes-negative
groups was found when compared to lymph nodes-positive
groups (Fu et al., 2013). Thus, at least in breast cancer cells,
downregulation of Cx43 may result in a decrease of proliferation
and invasion.

An interesting potential avenue of research is to better
understand whether changes in expression levels of Cxs in
different types of cancer are partially or fully mediated by
miRNAs. Therefore, biologically accurate models are required
in order to dissect the mechanism that underlies promotion of
invasiveness and worsens the clinical course of different forms
of cancer.
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CONCLUSIONS

This review revisits insurmountable evidence of the relevant role
of Cxs in health and disease. In addition to this, we have discussed
the most recent findings in microRNA-mediated regulation of
Cxs for several muscle and skeletal disorders as well as rhythm-
associated and structural heart defects, and several types of
cancer. Table 1 contains a detailed list of publications with
functional evidence for regulation of Cxs levels by miRNAs.
Each microRNA-Cx regulatory relationship can be a potential
therapeutic target with clinical implications; thus, the relevance
of understanding this mechanism in the context of health and
disease. Many challenges lie in testing the functional effect of

manipulating Cx levels by repressing or overexpressing their
target microRNAs for other diseases; but as additional evidence
is found, more innovative therapeutic approaches will be
possible.
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