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The current healthcare system is hampered by a reductionist approach in which

diagnostics and interventions focus on a specific target, resulting in medicines that center

on generic, static phenomena while excluding inherent dynamic nature of biological

processes, let alone psychosocial parameters. In this essay, we present some limitations

of the current healthcare system and introduce the novel and potential approach of

combining ultra-weak photon emission (UPE) with metabolomics technology in order

to provide a dynamic readout of higher organizational systems. We argue that the

combination of metabolomics and UPE can bring a new, broader, view of health state and

can potentially help to shift healthcare toward more personalized approach that improves

patient well-being.

Keywords: ultra-weak photon emission, metabolomics, healthcare, system biology, diagnostics

INTRODUCTION

There is currently a global need for a change in the healthcare system, including healthcare policies.
Specifically, we have clearly reached the boundaries of our current system, and rising costs make
healthcare increasingly less affordable.

The past success of the healthcare system is based on a paradigm that—ironically—is
now a limitation. The discovery of penicillin in 1928 by Alexander Fleming started an era
of antibiotic development and laid the foundation for a “war against” system of healthcare.
Over the past century, this concept became increasingly popular and has been particularly
successful for treating acute illnesses. This paradigm is exemplified by terms commonly used
in modern medicine with prefixes and suffixes such as “anti-” (e.g., antibiotic), “-inhibitor”
(e.g., angiotensin-converting-enzyme inhibitor—ACE), and “-blocker” (e.g., beta-blocker). This
approach led to the development of a diseasemanagement system rather than a bona fide healthcare
system. Most importantly, this system largely overlooks chronic illness and preventive strategies
(Choi et al., 2005; Hunter, 2008).

Rather than extrapolating current disease management knowledge into disease prevention and
the promotion of health—a strategy that is likely to fail—we suggest that a radically different,
transformative approach is needed. This novel approach is based on a systems—or ecological—view
on health and well-being (Layard, 2005; Puska, 2008). With this approach, the focus shifts
naturally from a more reductionist, single-symptom approach to a dynamic perspective based
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on systems regulation. In addition, each individual patient is
considered in context, providing a more biopsychosocial view
rather than a strict biomedical perspective. Such a shift from
the traditional “one-size-fits-all” approach—which typically
leads to a “one-size-fits-none” outcome—to personalized
medicine/healthcare is a central theme in the new paradigm
referred to as “P4 Health”: Preventive, Predictive, Personalized,
Participatory healthcare (Hood and Friend, 2011).

In a health ecosystem, human-human interactions are the
most important basis, with compassion and respect for each
other’s world view serving as the central theme (van der Greef
et al., 2010). Moreover, politicians and policy-makers must
change their focus from a short-term “quick-fix” approach, which
is typically driven by short-term electoral cycles, to achieving
long-term, sustainable improvements in our healthcare system
at the societal level. The drastic, wide-reaching effects of our
changing lifestyle on health and well-being—which has created
the so-called “diseases of comfort”—must be considered from
a much wider perspective, requiring an approach that crosses
cultures as well as disciplines. This approach will improve
integrative medicine and facilitate health-focused prevention,
thereby reaffirming the importance of the relationship between
the physician and patient by focusing on the whole person;
moreover, this approach will be evidence-based and will integrate
all appropriate therapeutic and lifestyle strategies, healthcare
system, and disciplines in order to achieve optimal health
and healing (Academic Consortium for Integrative Medicine &
Health, 2016).

From the perspective of diagnostics, current approaches focus
only on a single time point or a limited number of time
points; however, human physiology is based on a wide spectrum
of endogenous biological rhythms and oscillations (Muehsam
and Ventura, 2014). Such rhythms serve as a fingerprint
representing higher-order dynamic systems and various time
scales ranging from long periods such as diurnal/nocturnal,
monthly, seasonal, and annual rhythms to short periods on
the order of minutes, seconds, or fractions of seconds. In this
context, human physiology tends to maintain a homeostatic
state due to a complex network of regulatory feedback circuits
driven by various rhythms. Therefore, homeostasis and allostasis
go hand-in-hand with dynamic systems concepts (Sterling,
2012; van der Greef et al., 2013), and changes in oscillation
patterns and/or rhythms can indicate a perturbation in the
system. Indeed, evidence suggests that examining one’s biological
clock might help with determining a clinical diagnosis (Most
et al., 2010). However, current clinical biochemistry tools
are limited with respect to bridging different rhythmic time
scales. Therefore, methods for measuring ultra-weak photon
emissions (UPE) have been developed and appear to be suitable
for measuring systems dynamics. In addition, UPE can be
measured in real time and is non-invasive, label-free, and cost-
effective.

A growing body of evidence suggests that UPE reflects
the coherence of self-organizing systems and might therefore
be used to measure health at a higher organizational level
(Bajpai et al., 2013; de Mello Gallep, 2014; Van Wijk et al.,
2014), providing a novel tool for reading the state of dynamic

biological systems. UPE is intrinsic to every living system
that undergoes respiration and utilizes oxygen; therefore, the
dynamics of UPE reflect the biological processes that underlie
this emission (Cifra and Pospíšil, 2014; Pospíšil et al., 2014;
van Wijk, 2014). We therefore suggest that UPE may be
combined with metabolomics technologies in order to develop
an integrated diagnostic tool for detecting the transition from
health to disease by combining the sensitivity of biochemical
pattern recognition with the high temporal resolution of UPE
measurement.

Metabolomics has been described as the comprehensive
analysis of all metabolites in a biological sample (e.g., cells,
tissues, and/or bodily fluids; German et al., 2005; Ramautar et al.,
2013). Together with other omics technologies (i.e., genomics,
transcriptomics, and proteomics), metabolomics provides a
holistic picture of the metabolic phenotype (Beger et al., 2016).
The major advantage of using metabolomics over other omics
technologies is the ability to investigate dynamic regulatory
mechanisms at the molecular level, providing insight into how
distinct biochemical pathways are interconnected (German et al.,
2005). Thus, a more personalized approach to health assessment
can be achieved.

In addition, new ideas regarding systems-based thinking have
appeared, accelerating our understanding of concepts regarding
the complexities of life (Oltvai and Barabási, 2002). Nevertheless,
our healthcare system’s current focus on disease management
using a reductionist approach does not consider influences of
the biopsychosocial environment. Moreover, novel fundamental
advances in our understanding of the dynamics of life have
led to the development of a new biological picture. In this
view, the organizational metabolic network is represented as a
hierarchical model (i.e., as a pyramid; see Figure 1). Another
newly recognized feature is the dynamic, oscillatory aspect of
metabolic flows, in which metabolic regulatory information is
controlled by repetitive, pulsing dynamic systems (Adachi et al.,
1999).

In this essay, we address the potential new diagnostic tools
as a stepping stone toward realizing novel intervention-based
strategies in a health ecosystem based on promoting the healthy
state (i.e., salutogenesis). The salutogenesis concept has been
used in many health practices. The concept can be seen as
complementary to the biomedical model as it focuses on the
complex self-healing processes rather than concentrating on a
singular pathogenic factor (Antonovsky, 1984; Lindstrom and
Eriksson, 2005).

MOVING TOWARD A NEW VISION

Our current medical system is based on pathogenesis, defining
disease, and developing standardized treatments. However, the
cornerstones of the healthcare system of the future will be the
definition of health, the ability to monitor changes in health
status, and the ability to provide evidence-based interventions
that improve health at both the population (i.e., generic) level
and at the individual patient level (van der Greef et al., 2006).
In recent years, a large number of publications have focused on
establishing a new definition of health, thereby departing from
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FIGURE 1 | Schematic depiction of the development from health into a disease state. It shows how challenges to homeostasis can be regulated by allostasis

by adapting the set points of the regulatory system. If the resilience is lost over time, the system can develop into a disease state. The last part is often handled by

disease management focusing on single symptoms. The “life pyramid” view represents the notion of how biological systems are interconnected at different

organizational levels and how the biopsychosocial environment acts dynamically within the system and therefore reflects the information at the lower levels. This

integrated picture is more applicable to the pre-disease and healthy state and represents the newly emerging picture of how the future healthcare system should focus

on promoting health rather than treating disease. Adapted from Oltvai and Barabási (2002), Ramautar et al. (2013), and van der Greef et al. (2013).

the current static WHO definition toward a dynamic definition
of health (Bircher, 2005; Lancet, 2009; Huber et al., 2011).

As illustrated in Figure 1, health can be depicted as the
dynamic behavior between a physiological range, indicated by
homeostasis and allostasis in normal daily life with physical,
psychological, and social challenges and rhythms. The allostasis
concept describes the system’s response to an environmental
challenge by anticipating, preparing for, and controlling the
challenge (Sterling, 2012). When the challenge is over and the
environment is restored to previous conditions, the system
returns to its normal state. However, if the system cannot return
to its healthy state, the system can enter a disease state, which
can even become irreversible in an advanced stage (Ramautar
et al., 2013; van der Greef et al., 2013). In addition, the “life
pyramid” depicted in Figure 1 is integrated, underscoring the
need to reach higher overarching network dynamics in order
to develop optimal strategies for promoting health. Because
health is dependent upon the environment (as discussed above),
this higher level organization must be studied from a broad
perspective that includes the dynamic interactions between the
human body and its psychosocial environment.

The key feature of this view is that the system can restore
itself via self-regulatorymechanisms, therebymaintaining health,
whereas disease develops when the system loses this ability. In
other words, in a disease situation, the system loses its ability
to recover fully. In this situation, a strategy for promoting
health is needed that differs fundamentally from the current
strategy designed to simply manage disease. For this reason,

preventive strategies that use pathology-based methodologies are
not applicable, and we should not focus on a change in the
concentration of a given molecule (for example, glucose). Thus,
with type 2 diabetes, for example, we must focus on dynamic
regulatory mechanisms in the system’s response to a challenge
(e.g., an oral glucose tolerance test). Such strategies have
been developed recently using metabolomics-based strategies
(Wopereis et al., 2009; van Ommen et al., 2014); however,
the need still exists for a dynamic tool that can integrate,
interpret, and correlate detailed information regarding regulatory
mechanisms with a higher level of systems-based thinking.

Systems-based thinking has developed through systems
biology in life sciences and is used to study organizations in a
wider context. An important feature of systems-based thinking
is its focus on relationships rather than individual variables (van
der Greef et al., 2007). In such a view, the relationships between
biological, psychological, social, and environmental factors—and
changes in these relationships over time—are central features. By
considering the complexity of these interactions, we can develop
a personalized approach that is applicable in the context of the
individual. This approach is centered on achieving an optimal
relationship between the patient and the healthcare provider.

Metabolomics technologies are used to measure metabolite
profiles in bodily fluids, thus reflecting the complex interaction
between the environment and the body (van der Greef et al.,
2013). To date, most system-wide measurements have been
interpreted at the “medium-to-low” level of the triangle (see
Figure 1) using metabolomics. Indeed, dynamic measurements
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of metabolites can give insight into the development of diseases
and the early stages of metabolic dysfunction (Snyderman, 2012).
Extremely early changes at higher levels are believed to be
responsible for a shift toward disease, and detecting these changes
is essential in order to develop prevention-based strategies to
promote health. Indeed, measuring a system’s coherence may
serve as a tool for measuring the system’s resilience and the
individual’s homeostatic and allostatic capacity.

Recent evidence suggests that recording metabolic shifts by
measuring UPE-related metabolic processes in the human body
can reflect the dynamics of metabolic organization (Bajpai et al.,
2013; Van Wijk et al., 2014). Photobiological response (the result
of chemical and/or physical changes induced by light in biological
systems) and low-level biological luminescence (the production
and emission of photons) are considered to be complementary
manifestations of the photons’ role in metabolism. Thus, the
recorded photon emissions reflect the net activity of a subset of
these reactions, thereby reflecting the body’s current metabolic
state. UPE may therefore serve as a suitable complementary tool
for analyzing a biological dynamic system in combination with
metabolomics technology.

UPE is present in all living organisms (van Wijk, 2014) and
is low-intensity (non-thermal) light emitted from living systems
without the use of an external intervention (Devaraj et al., 1997;
Schwabl and Klima, 2005; Cifra and Pospíšil, 2014). Biological
systems spontaneously emit a measurable number of photons
within a specific range of the electromagnetic spectrum (UV
and UV/VIS) as a result of normal biochemical reactions. In
living systems, these photons are usually in the 300–750 nm
range (Bajpai et al., 2013), depending on the system. In human
tissues, the wavelength ranges from 420 to 570 nm (Wijk R.
V. and Wijk E. P., 2005). The rate of photon emissions is
generally on the order of 101–103 photons·s−1

·cm−2 (Cifra
and Pospíšil, 2014), and these photons originate from oxidative
metabolic reactions and are therefore closely related to the rate
of electronic transport in mitochondria and the generation of
reactive oxygen species (ROS), reactive nitrogen species (RNS),
and/or lipid peroxidation (Kobayashi et al., 1999; Cifra and
Pospíšil, 2014; Pospíšil et al., 2014). When perturbed, these
reactions can give rise to excessive amounts of ROS, causing
damage to lipids, nucleic acids, and proteins. These damaged
biomolecules can cause a loss of cellular functions, including cell
signaling, immune responses, and pathways that regulate pro-
inflammatory and/or anti-inflammatory processes (Van Wijk
et al., 2008; Pospíšil et al., 2014), ultimately leading to cell
death.

The feasibility of recording UPE as a tool for measuring
dynamic changes in human health and various physiological
conditions has been reported (Bajpai et al., 2013; van Wijk, 2014;
VanWijk et al., 2014) andwas reviewed recently (Ives et al., 2014).
For example, a wide diversity of conditions are associated with
changes in the UPE profile, including aging (Sauermann et al.,
1999), diurnal biological rhythms (Cohen and Popp, 1997; Wijk
E. P. andWijk R. V, 2005; Cifra et al., 2007; VanWijk et al., 2007;
Kobayashi et al., 2009), and conscious activities (Van Wijk et al.,
2005, 2006, 2008). In addition, some groups have suggested that
UPE properties can be used as a diagnostic tool in measuring

health and disease (Usa et al., 1994; Cohen and Popp, 1998, 2003;
Jung et al., 2003; Yang et al., 2004).

The technology needed to continuously monitor spontaneous
UPE in the visible range in human subjects includes a sensitive
photomultiplier tube (PMT) in a sealed dark environment.
Such equipment has been developed and validated and is
now considered a rapid, relatively inexpensive, non-invasive
technology for reliably measuring UPE (Van Wijk et al., 2014).

COMBINING UPE WITH METABOLOMICS
TECHNOLOGY

The ability to combine and correlate UPE data with
metabolomics data is an essential step toward personalized
monitoring of physiological changes associated with health and
disease. In life sciences, most specialized techniques generate
profiles that provide a representative (i.e., generic) picture of
a biological system. Both metabolomics and UPE provide an
efficient readout providing valuable information regarding
the dynamics of the biological systems. The challenge is to
combine these two methodologies in order to link the detailed
biochemistry with higher organizational information. Figure 2
illustrates the four steps that are needed: sampling, analysis,
sub-grouping, and correlation. Analyzing UPE data can require
robust mathematical procedures in order to study the spatial
and/or temporal features of the signal, as well as to determine
the photon count distributions for more sophisticated analyses
(Kobayashi et al., 1998; Kobayashi and Inaba, 2000; Bajpai,
2005; Van Wijk R. et al., 2006; Bajpai et al., 2013). Finally,
the two sets of data are used to build network correlations
between UPE and metabolic profiles, which can then be used for
individual/personalized diagnostics.

As illustrated in Figure 2, this integration approach can be
exemplified in an explorative study using UPE andmetabolomics
data measured in pre-diabetic subjects. In this example,
metabolomics data was acquired using plasma samples. Samples
were analyzed using established chromatographic methodologies
using GC-MS and LC-MS (Koek et al., 2006; Draisma et al.,
2008; vanWietmarschen et al., 2013), followed by data processing
(Xia et al., 2009). UPE data were acquired from the same
subjects measuring the hands of each subject. Subsequently,
derived parameters were calculated applying photon counting
statistics (Van Wijk R. et al., 2006; Van Wijk et al., 2010; Bajpai
et al., 2013). Correlation analysis between metabolomics and
UPE data was performed using Spearman’s rank correlation
observing the correlation networks built in CytoScape with
the MetScape plugin (Shannon et al., 2003; Gao et al.,
2010). The resulting network shows correlations between the
metabolomics data and the UPE data (Figure 2). Specifically,
sugar metabolites and amine metabolites (which are related to
energy metabolism) were positively and negatively correlated,
respectively, with the UPE data (Figure 2). Lipids are known to
relate to cellular signaling and energy processes and this class
of compounds were also correlated with UPE parameters. The
outcome might indicate an essential role in both pre-diabetes
as well as the production of UPE, which is associated with
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FIGURE 2 | Overview of the experimental steps required for integrating UPE and metabolomics data in order to promote health and diagnostics. Bodily

fluids (for metabolomics; left) and parts of the body (for UPE recording; right) are sampled. The samples are analyzed using chromatographic techniques (for

metabolomics) and spatiotemporal analyses (for UPE). The metabolomics data are then gathered in pathways, and photon counting statistics is applied to the UPE

data. Finally, the two data sets are integrated performing Spearman’s rank correlations using network correlation, ultimately generating a systems-based interpretation.

In this example, plasma samples of pre-diabetic subjects (44 individuals) were analyzed for the generation metabolomics data. The metabolomics study used GC-MS

and LC-MS platforms to profile lipids (phosphatidylcholine, lysophosphatidylcholine, sphingomyelin, fatty acids, and triglycerides), organic acids, sugar metabolites,

and amine metabolites. UPE data was acquired from the subjects’ hands generating 13 parameters after applying photon count statistics. Spearman’s rank

correlations was calculated between UPE parameters and various classes of compounds acquired from the metabolomics analysis. The correlation was filtered using

|r| > 0.3 and subsequently built the correlation network using CytoScape software (MetScape plugin). Blue lines represent negative correlations, and orange lines

represent positive correlations. The study was designed and conducted by TNO (Zeist, the Netherlands). The clinical trial (https://clinicaltrials.gov/ct2/show/

NCT00469287) was approved by the Medical Ethics Committee of Tilburg (METOPP).

energy production (Tarusov et al., 1960, 1962; Barenboǐm et al.,
1969).

Overall, the integrated platform illustrates that combining
UPE and metabolomics data is feasible and has high potential for
both measuring specific and complex information. Specifically,
integrating UPE with metabolomics contributes to our
understanding of dynamic changes and provides essential
insight into the underlying biochemistry, which enables to put
the biochemistry information (detailed field) into a broader
context and higher level of complexity. This combined approach
may well be the key to realizing strategies designed to promote
health.

CONCLUDING REMARKS AND
PERSPECTIVES

Here, we indicate the potential of integrating UPE and
metabolomics as a novel technology approach in order to

move our healthcare system in the direction of promoting
health in a proactive manner. Importantly, this integrated
approach combining UPE and metabolomics can provide
multi-scale information regarding key biological processes. The
clear advantage of this approach is that it will improve our
understanding of dynamic higher organizational levels while
increasing our understanding of the underlying biochemistry at
other levels. This might reveal the regulatory connection between
different time scales as occurs from the cellular to the organism
level.

The integrated information regarding metabolic activity and
complex dynamicity could possibly further provide a rapid,
robust readout of the biopsychosocial environment. In addition,
combining UPE with metabolomics technology in an integrated
platform for diagnosing both health and disease can provide an
essential first step in the direction of systems-based thinking in
personalized medicine, thereby crossing the boundaries of our
current healthcare system by shifting diagnostic focus to higher
organizational levels.
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