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Muscle activity and fatigue performance parameters were obtained and compared
between both a smart compression garment and the gold-standard, a surface
electromyography (EMG) system during high-speed cycling in seven participants. The
smart compression garment, based on force myography (FMG), comprised of integrated
pressure sensors that were sandwiched between skin and garment, located on five
thigh muscles. The muscle activity was assessed by means of crank cycle diagrams
(polar plots) that displayed the muscle activity relative to the crank cycle. The fatigue
was assessed by means of the median frequency of the power spectrum of the EMG
signal; the fractal dimension (FD) of the EMG signal; and the FD of the pressure signal.
The smart compression garment returned performance parameters (muscle activity and
fatigue) comparable to the surface EMG. The major differences were that the EMG
measured the electrical activity, whereas the pressure sensor measured the mechanical
activity. As such, there was a phase shift between electrical and mechanical signals,
with the electrical signals preceding the mechanical counterparts in most cases. This
is specifically pronounced in high-speed cycling. The fatigue trend over the duration of
the cycling exercise was clearly reflected in the fatigue parameters (FDs and median
frequency) obtained from pressure and EMG signals. The fatigue parameter of the
pressure signal (FD) showed a higher time dependency (R2 = 0.84) compared to the
EMG signal. This reflects that the pressure signal puts more emphasis on the fatigue
as a function of time rather than on the origin of fatigue (e.g., peripheral or central
fatigue). In light of the high-speed activity results, caution should be exerted when
using data obtained from EMG for biomechanical models. In contrast to EMG data,
activity data obtained from FMG are considered more appropriate and accurate as an
input for biomechanical modeling as they truly reflect the mechanical muscle activity.
In summary, the smart compression garment based on FMG is a valid alternative to
EMG-garments and provides more accurate results at high-speed activity (avoiding the
electro-mechanical delay), as well as clearly measures the progress of muscle fatigue
over time.

Keywords: smart compression garment, force myography, pressure sensors, EMG, cycling, crank polar diagram,
muscle fatigue, fractal dimension
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INTRODUCTION

The European Parliament Scientific and Technology Options
Assessment Panel . . . identified wearables as one of the ten
technologies which will change our lives. Market prospects for
wearables are very promising: wearables shipments are forecasted
to increase to $150 billion by 2026 from the estimated level of $30
billion in 2016 (European Commission, 2016).

Wearable technologies were the most popular and leading
fitness trend in 2016 for the first time, and continued to be so
in 2017 (Thompson, 2015, 2016). The major drawback of smart
wearables, in contrast to non-wearable laboratory equipment, is
that their technology is not very accurate yet, mainly due to too
many unvalidated products in the market (Düking et al., 2016).

This research deals with smart wearables for muscle
performance assessment, the gold standard of which is
undeniably electromyography (EMG). There are several
problems associated with EMG, clearly pointed out by De Luca
(1997) which makes it difficult to use EMG in wearables:

(1) EMG measures the electrical activity of a muscle which the
mechanical activity lags behind (electro-mechanical delay).

(2) The amplitude of the EMG signal is non-linearly correlated
to the muscle force, and depends on the number of motor
segments recruited on the surface of the muscle, next to the
electrodes.

(3) The electrodes should be located in the midline of the
muscle, halfway between innervation zone and the next
myotendinous junction.

(4) Shifting the electrodes along the action line of the muscle
decreases the signal amplitude and a sideward shift
decreases the amplitude of higher frequencies (thereby
suggesting fatigue if the textile integrated electrode moves
sideways).

(5) Tri-polar electrodes are preferable over bipolar ones, as the
former eliminate crosstalk between muscles.

Furthermore, gel-/salt-based electrodes are required to reduce
the skin resistance, although special design of embroidered
electrodes can overcome this problem (Taelman et al., 2007; Shafti
et al., 2017).

In spite of the issues pointed out above, two companies are
selling EMG-based garments for performance analysis: Athos
(Mad Apparel Inc., Redwood City, CA, United States) and
Myontec (Myontec Ltd., Kuopio, Finland). A third company,
Leo (GestureLogic Inc., Ottawa, Canada), developed an EMG
thigh-sleeve but never sold the product (Early, 2016). B10nix1

(B10NIX Ltd., Milano, Italy) have announced an EMG-based
shirt that is not commercially available yet. Athos2, for example,
assesses right-left muscle imbalance. Given the fact that precise
electrode placement is crucial for accurate results, equal activity
levels of muscle groups on the right and left side of the body
would generate different signals if the electrode were not placed
on the same spot on both right and left muscle groups. To the
best knowledge of the authors, there is not a single research

1http://wise.b10nix.com/
2https://www.liveathos.com/athletes

paper available on validation of the Athos garments, in contrast
to Myontec garments (e.g., Finni et al., 2007).

There are some research papers available that investigate
prototypes of EMG-based garments for activity analysis (Taelman
et al., 2007; Finni et al., 2007; Ribas Manero et al., 2016; Shafti
et al., 2017). Finni et al. (2007) used traditional EMG electrodes
incorporated in a garment, whereas Shafti et al. (2017) utilized
customized, embroidered electrodes, validated with traditional
gel-electrodes. Taelman et al. (2007) investigated the effect of
electrode misalignment in a smart shirt, in the same way as
Belbasis et al. (2015a) did (cf. Figure 1 of Belbasis et al., 2015a).
Ribas Manero et al. (2016), however, did not validate their
leggings prototype.

De Luca (1984) was the first to develop the concept of
myoelectrical manifestations of localized muscle fatigue (Merletti
et al., 1990). Fatigue is expressed in the EMG signal as an
increase in EMG amplitude (increase of motor unit recruitment
or synchronization by the central nervous system to maintain the
required force level, related to central fatigue) and a shift to the
lower frequencies of the EMG frequency spectrum (decrease of
the conduction velocity of motor unit action potentials over the
muscle, related to peripheral fatigue) (Mesin et al., 2009; Crozara
et al., 2015).

The Myontec garment measures the muscle fatigue threshold
(EMGFT2 according to Crozara et al., 2015), i.e., breakpoint in
the linear relationship between EMG amplitude and exercise
intensity (Lucia et al., 1999). The muscle fatigue threshold,
however, is not suitable for measuring the increasing fatigue over
time. Ribas Manero et al., 2016 were the first that attempted to
measure fatigue with an EMG garment prototype, by using the
instantaneous Average Rectified Value (iARV) signal. However,
they did not validate the fatigue data they obtained. For example,
although their iARV signal is supposed to increase with fatigue,
their initial data at the beginning of the exercise are also very high.
Another limitation in this technique is that sweat increases the
iARV signal (Ribas Manero et al., 2016).

There are several methods available for the assessment of
fatigue with EMG, such as FFT-based, time-based, amplitude-
based, and wavelet-analysis-based methods. Details can be found
in comprehensive reviews of Cifrek et al. (2009) and Gonzalez-
Izal et al. (2012). Both papers mention fractal dimension (FD)
methods without going into detail. The most common method
for assessment of fatigue (gold-standard method) is FFT-based,
and the onset of fatigue is characterized by a shift of the median
frequency to smaller frequencies (De Luca, 1997). Basmajian
and De Luca (1985) conducted an isometric experiment that
shows the difference between mechanical fatigue and metabolic
fatigue (measured with EMG and FFT method): the muscle force
decreased at the failure point, whereas the preceding fatigue point
was only detectable with EMG through the decreasing median
frequency (see Figure 8.1 in Basmajian and De Luca, 1985).

The FD methods for assessing muscle fatigue have increased
in importance over the last 10 years, with researchers using
different methods, such as the box-counting method (Troiano
et al., 2008, Beretta-Piccoli et al., 2015; Boccia et al., 2016)
to understand the fractal behavior. Marri and Swaminathan
(2016) used several methods [e.g., Higuchi (1988), Katz, Sevcik,
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box counting; multifractal analysis]. In most cases, Marri and
Swaminathan’s (2016) monofractal algorithms delivered smaller
FDs for fatigued muscles compared to non-fatigue; while the
opposite was true for multifractal algorithms where the FD was
mostly smaller than 1. In general, a signal’s FD ranges between a
value of 1 and 2, i.e., between a straight line or smooth curve, and
a maximally noisy signal filling up an area (Fuss, 2013).

Mesin et al. (2009) compared the FD of EMG signals to other
muscle fatigue indexes, indicating that EMG FD was least affected
by changes in conduction velocity and most related to the level
of motor unit synchronization, and suggesting that the FD is an
index of central rather than peripheral fatigue.

Furthermore, Mesin et al. (2009) found that in a power-trained
subject, FD does not have a clear trend, indicating that the level
of motor unit synchronization does not change, whereas the rate
of change of the median frequency is high. In an endurance-
trained subject, the rate of change of the median frequency is
lower than in the power-trained subject, whereas rate of change of
FD was high. These results suggest that power-trained athletes are
affected more by peripheral fatigue, whereas endurance-trained
athletes suffer more from central fatigue. Consequently, EMG-
FD seems to be more sensitive in endurance-trained muscles, and
EMG-FFT more sensitive in power-trained muscles regarding
fatigue.

An alternative method to EMG is mechanomyography
(MMG; Islam et al., 2013). In contrast to surface EMG, the quality
of the MMG signal is not affected by electrical interference and
changes of skin conditions as MMG measures the mechanical
action of a muscle. MMG offers two methodological options:

(1) Vibromyography or acoustic-myogram (phono-myo-
graphy) using accelerometers and/or micro-
phones.
The method assesses the low amplitude sound of lateral
oscillations generated by volumetric changes in active
muscle fibers at frequencies between 5 and 100 Hz with
microphones or low mass accelerometers (Fang et al., 2015).
However, the signals are affected by limb movements and
ambient noise, such that the method is not suitable for
sports applications (Islam et al., 2013).

(2) Pressure sensors used for force myography (FMG). The
sensors measure the pressure exerted by the muscles against
the skin by volumetric changes of the active muscles
(Castellini et al., 2014; Connan et al., 2016). Muscle bulging
increases the pressure non-linearly with respect to the
increase in muscle force (Belbasis et al., 2015a). The
most common sensors used for FMG purposes are off-
the-shelf FSR (force sensing resistive) sensors, either as
single sensors, several sensors (Connan et al., 2016) or
sensor matrix arrays (Zhou et al., 2017), that are preloaded,
compressed either by tight fitting garments or by elastic
bands to the surface of the relevant muscles (Lukowicz
et al., 2006; McLaren et al., 2010; Zhou et al., 2017),
Velcro bracelets (Connan et al., 2016), integrated in a
textile sleeve (Ogris et al., 2007), equipped with mechanical
preload adjustments (Li et al., 2012), or placed inside
a forearm orthosis (Wininger et al., 2008). Belbasis and

Fuss (2015) and Belbasis et al. (2015a,b) used several
customized piezoresistive polymer sensors sandwiched
between compression garment and skin. Meyer et al. (2006)
applied a capacitance pressure sensor array embedded in
textiles. Alternatively, Cheng et al. (2010) did not use any
sensors but instead measured the body capacitance and its
changes with movement.

The FMG or pressure sensor-based garments are a typical
example of lateral innovation, i.e., achieving the same goal
with other or alternative means, a common precursor of
a disruptive technology. Lateral innovation is characterized
by, e.g., lower costs, higher accuracy, better user-friendliness,
smaller hardware, simpler solution, simpler implementation,
less affected by error and method, better wearability, providing
additional information, or improved manufacturability (Fuss,
2017). However, none of these FMG solutions are commercially
available yet.

The aim of this paper was to explore an existing prototype
of pressure sensor-based garment (Belbasis and Fuss, 2015;
Belbasis et al., 2015a,b) for opportunities in performance analysis,
specifically muscle activation and fatigue, and to validate the
prototype against EMG, used as the gold standard for muscle
performance assessment.

The method selected for this task had to comprise of a
standardized repeatable activity and a defined fatigue protocol.
We used cycling on a stationary power-controlled bicycle as the
method of choice. Fatigue was assessed through the Fast Fourier
Transform (FFT, gold standard) of the EMG signal, as well as
with FD signal processing. For the latter, the Higuchi’s (1988)
method is considered the gold standard method, however, a new
customizable FD method (Fuss’ method; Fuss, 2013) was selected
that offers advantages over Higuchi’s (1988) method.

MATERIALS AND METHODS

Participants
Seven male participants (age: 28 ± 3.6 years; body height:
1.751 ± 0.059 m; body mass: 78.7 ± 7.9 kg) were involved
in the experiments. This study was granted Ethics approval by
the RMIT University Human Ethics Committee (approval no.
ASEHAPP 45-15) and adhered to the Declaration of Helsinki. An
informed consent form was filled in by all the participants before
the start of the experiment.

All participants were deemed healthy volunteers, passing
RMIT University Ethics Committee approval for health
requirements to sustain the level of exertion required during the
tests. The participants were all of above-average levels of fitness
participating in various sports such as running (participant 1
and 5), soccer (2 and 4), and cycling (3, 6, and 7) at least three
times a week. The overall cycling skill range was from Amateur
(participant 2) through to Semi-elite (participants 3 and 7).

Data Collection
A motion capture system (9 Camera – Qualisys Oqus System,
Göteborg, Sweden) was utilized to capture the limb segment
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angles of the participants, as well as providing tracking for
the rotational crank angle of the bicycle (Figure 1). The data
sampling frequency for motion tracking was set at 100 Hz, where
the marker positions are shown in Figure 1.

A previously developed smart compression prototype garment
(Belbasis and Fuss, 2015; Belbasis et al., 2015a,b) was utilized for
the testing of each athlete. The garment provided capability for
measuring and mapping changes in the surface pressure above
a muscle (Figure 1) where the active movement of the muscle
under the compression fabric was detected by a distributed
network of pressure sensors. The low-pressure sensors were
manufactured from two layers of a conductive piezoresistive
polymer, with an almost linear calibration curve of the average
equation of P = 97282000 σ1.184335 for two layers, where P is the
pressure in Pascal, and σ is the conductivity in Siemens (Fuss
et al., 2016).

The sensors were positioned over five of the thigh muscles
[rectus femoris (RF), vastus medialis (VM) and vastus lateralis
(VL), biceps femoris (BF), and semitendinosus (ST)] of the
participant’s right leg. In addition to the utilization of pressure
sensors, a 16-channel wireless EMG system (Wave Plus Wireless
EMG, Cometa Systems, Bareggio, Italy) was used for recording
the electrical signal (Figure 1) of the same muscles. The general
placement of the electrodes followed the recommendations of
SENIAM [Surface Emg for NonInvasive Assessment of Muscles]
(1999) and the optimum placement of the electrodes was
achieved by using the method of Belbasis et al. (2015a). To ensure
accurate capture of the muscle behavior throughout the tests a
data sampling frequency of 2000 Hz was utilized for both the
pressure and EMG sensors.

Experimental Method
A fatigue-inducing regiment based upon work by Dorel
et al. (2009) was developed to quantify the effects of fatigue
during cycling. The test protocol deliberately introduced
fatigue to the active muscles, allowing for the analysis of
muscle activity and performance under two known definitive
conditions, namely, a non-fatigued and a fatigued state.

To allow for sufficient muscle recovery, participants were
asked to follow the following testing procedures over two
testing sessions which were separated by at least 4 recovery
days.

The tests were performed on the participant’s own bicycle
mounted on the stationary ergometer (Wahoo Kickr, Wahoo
Fitness, United States).

To ensure that muscles were activated during the upstroke of
the pedal phase (180–360◦ of the crank cycle) clip-in shoe/pedal
combinations or caged pedals were utilized to prevent separation
of the foot and pedal.

The test persons performed a cycling exercise at a constant
power output equal to 80% of their functional threshold power
(FTP) for as long as possible; and maintained a constant pedaling
rate (cadence). The test continued until the cyclists were no
longer able to maintain their initial test cadence (±5 rpm).

Session One: FTP Ramp Test
Each participant was tasked with completing an incremental
cycling exercise (Ramp test). This involved the incremental
ramp-up of generated power to determine the exercise
limitations of the participant. Other than a heart-rate strap,
no instrumentation of the participant’s body was necessary for
this session. All testing begun at a target power output of 120
Watts with increasing workload increments of 20 W/min until
the target power could no longer be satisfactorily sustained.

To ensure consistent power output during the test the ERG-
mode setting of the Wahoo Kickr ergometer was utilized. This
setting constantly monitors the generated power and cadence
(angular velocity), and enforces a consistent target power output
through automatic adjustments to the cycling resistance level
(torque) through a magnetic actuator.

To prevent artificially enforcing an earlier end to the test,
reasonable changes in both cadence and gearing were permitted
by the participant to find their comfort zone to complete the
task. The FTP, defined as the last stage that was completed in its
entirety, was used to calculate the appropriate workload imposed
by the cycle ergometer during the second test session.

FIGURE 1 | Experimental set-up, motion capture, EMG signal, and muscle pressure signals; the latter three subfigures are screen shots of the software; the unit of
the EMG signal on the screen shot is mV·10−2 and unit of the pressure signal on the screen shot is V.
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Session Two: 80% FTP Fatigue Test
The second session, notably the primary data collection session,
involved the complete instrumentation of the participant’s right
upper leg with EMG, motion capture, and pressure sensor
equipment. Participants performed a self-directed warm-up
routine consisting of at least 3 min of cycling at a lower power
output to the test condition, ensuring sufficient preparation of
the participant for the test. Following the warm-up, subjects
performed a cycling exercise at a constant power output equating
to 80% of their measured FTP for as long as physically
maintainable. The ergometer was set at a fixed resistance
setting and the participant instructed to maintain the two target
parameters displayed to them; the target power output (80%
FTP), and a constant cadence freely adopted from the end
of the warm-up session. Surface muscle pressure, EMG and
angular parameters were recorded continuously throughout the
session.

To enforce repetitive muscle activation, participants were
asked to maintain a single cycling position, where shifting along
the saddle or handlebars was not allowed. The test continued until
the cyclists voluntarily chose to stop the exercise (fatigue-induced
exhaustion) or until they were no longer able to maintain their
initial test cadence (± 5 rpm), which was considered as a failure to
maintain the required task (the target power output at a constant
cadence).

Data Analysis and Statistics
The raw data of both pressure and EMG signals were recorded
in volts and millivolts, respectively, at a frequency of 2000 Hz,
simultaneously and synchronized with the motion capture
data utilizing a centralized trigger device. From the pedal
marker, the top dead center of the crank (highest marker
position) was set to 0◦ with increases in crank angle in the
clockwise direction (as viewed from right-hand side of the
bicycle).

For the muscle activity analysis, the signal amplitude (of
pressure signal and EMG) for ± 1.5 SD (removal of outliers) was
assigned to the crank angle. The average amplitude was calculated
with a running median filter of a window width of 7.5◦.

Subsequently, the average crank cycle data were normalized.
In order to calculate the average signal of each muscle across
all seven participants, the data of all participants were averaged,
squared (thereby assigning a greater weight to higher data),
and normalized again. The average crank angle of each muscle
was determined from that angle that divides the areas under
the signal into two equal parts (integration window = 180◦).
The average crank angle represents the position of the activated
muscle on the crank diagram as a single number for comparative
purposes.

For the fatigue analysis, the raw signal amplitude was
expressed as a time series with a fourth-order Butterworth
bandpass filter (10–350 Hz) applied to the EMG data to remove
noise. Raw pressure values were utilized with no further filters
applied, however, the original sampling frequency was reduced
to 80 Hz via postprocessing, due to the smoothness of the
pressure signals. Each of the muscle signals were subjected to
FFT (EMG only) and fractal dimensional analysis (EMG and

pressure signal). De Luca (1997) established that the median
frequency of an EMG signal over a set time period shifted
toward lower frequencies as a result of increasing muscular
fatigue. The negative trend of the median frequency over time
provided an understanding of the performance decrease in the
muscle under investigation. More specifically to cycling and this
research, the analysis builds on the approach taken by Dingwell
et al. (2008) by utilizing a Short-Time Fourier Transform (STFT)
technique, whereas the calculation of the power spectrum, and
the resultant median frequency, is performed over individual
time segments attributed to each crank cycle revolution. All
calculation was made using the FFT function within MATLAB
(The MathWorks, Inc., Natick, MA, United States) and a sliding
average window of 1 min width to define the averaged trend of
the data.

The FD of EMG and pressure signals was calculated with
the method developed by Fuss (2013). This method allows for
maximal separation of two conditions (e.g., fresh and fatigued
muscle states) by means of adjusting and optimizing the signal
amplitude multiplier. If this multiplier is set to high values
(infinity in theory), then Fuss’ method is identical to Higuchi’s
(1988) method. In order to identify the optimal amplitude
multiplier, the EMG and pressure signal’s FDs were calculated
for the second (fresh muscle) and second last (fatigued muscle)
full minute of the tests at different multipliers. The differential
of the FDs of fatigued and fresh states (Figure 2) was plotted
against the decadic logarithm of the multiplier (Fuss, 2013) and
the optimal multiplier was identified at the maximum differential.
This amplitude multiplier was then used to calculate the FDs
continuously through the signals with a running window width
of 1 min.

Both median frequency data and FDs data were normalized.
For comparing the fatigue development across all participants,
the time was normalized as well (due to different experiment
durations; cf. Table 2). The median frequency data and FDs data
were linearly correlated to the normalized time to assess the
percentage of the time dependence by means of R2. The R2-values
were compared as to their significant difference with Fisher’s
Z-test for comparing correlations from independent samples.

RESULTS

Power Data
The primary objective of the first testing session was to determine
each participant’s achievable FTP wattage level, allowing for
the normalized testing FTP target during the second test.
Outputs from the cycling trainer pertaining to the participant’s
performance data were collected and are shown in Table 1.
Application of the ramp test specifically assessed an individual’s
ability to increasingly deliver higher power output over time, as
such we expect a distribution in the resultant efforts throughout
the sample group because of differences in physical ability and
familiarization with the task. Due to the similarity in skill set
and fitness between the participants, five participants fell within
the bounds of one SD from the mean of the duration and
achieved FTP level. The other two participants, namely, the
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FIGURE 2 | Fractal dimension (FD) optimization procedure (Fuss, 2013); (Left) EMG; (Right) pressure; top row: raw data and data segments used for calculating the
FD differential of fresh (blue) and fatigued (red) muscle; bottom row: FDs and FD differential against multiplier of signal amplitude; blue curve: FD of fresh muscle;
dashed red curve: FD of fatigued muscle; bold orange curve: FD differential (FD of fatigued muscle – FD of fresh muscle); the optimal multiplier of signal amplitude is
found at the maximum (peak) of the bold orange curve.

TABLE 1 | Session one activity summary.

Participant Duration
(min:s)

Duration
(s)

FTP Level
(W)

Total work
(kJ)

Mean cadence
(rpm)

Mean cadence
(rad/s)

Mean power
(W)

Mean torque
(Nm)

1 10:35 635 320 141 88 9.2 222 24.1

2 06:09 369 220 62 58 6.1 168 27.7

3 17:11 1031 420 272 82 8.6 264 30.7

4 12:12 732 320 151 74 7.7 206 26.6

5 09:11 551 260 100 70 7.3 181 24.8

6 12:14 734 340 167 90 9.4 228 24.1

7 13:07 787 360 189 68 7.1 240 33.7

Mean 11:31 691 320 154.57 75.71 7.9 216 27.4

SD 03:26 206 65.32 66.92 11.57 1.2 33 3.7

FTP = functional threshold power, i.e., the maximal power achieved in the incremental ramp-up of generated power (stepwise increase of power starting at 120 W).

least experienced cyclist (participant 2; Table 1), and the most
experienced (participant 3) were within two SDs.

Following the determination of the participant’s FTP level,
individual 80% FTP calculations were made for each participant
and utilized for the second session to ascertain fatigue behavior.
This inclusion of the additional biomechanical measurement
systems (Pressure, EMG, and MOCAP) within the second test
session allowed for greater insight into the onset and continued
fatigue behavior of the muscles in the lower limbs.

A summary of key test data relating to each test is shown in
Table 2. Accuracy of achieving the target of 80% FTP loading
required was met within a satisfactory range (5%) for each
participant with the mean accuracy within 1% of the grouped
aim.

A noticeable deviation in the results was the duration of
the test for participant 2 (least experienced). While all other
participants concluded the test within one SD of the test mean
(9:33 min of exercise), the fatigue tolerance for participant 2
forced an end to the test after only 3:28 min. This result aligns
with the experience level of the participant in comparison with

that of the other participants, where duration of the test is
largely driven on the physiological and psychological conditioned
nature of the muscle and participant to operate under increasing
fatigue-limiting conditions. The experience level also correlated
with the mean power and torque (Table 2) such that the least
(participant 2) and most experienced (participants 3 and 7)
participants exhibited the lowest and highest values, respectively.

Muscle Activation
Through the motion capture of the pedal stroke movement, the
muscle activity was resolved to the corresponding angle of the
crank where each individual muscle was utilized, shown on polar
diagrams.

The polar diagrams of three representative participants are
shown in Figure 3. The EMG graphs of the extensors (RF, VM,
and VL) exhibited overlapping activity in the same sector of
the diagram, with individual differences: in Figure 3 (top and
bottom rows) at 330–360◦, whereas in Figure 3 (middle row) at
30◦. The pressure-based activity deviated from the EMG-based
activity in general by a clock-wise phase shift. For example, in
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TABLE 2 | Session two activity summary.

Participant Duration
(min:s)

Duration
(s)

Mean
power (W)

Total work
(kJ)

Mean
cadence (rpm)

Mean cadence
(rad/s)

Mean
torque (Nm)

Target Power
(W)

Target
Accuracy %

1 09:28 568 259 147 84 8.8 29.4 256 98.84

2 03:28 208 175 36 68 7.1 24.6 176 100.57

3 11:18 678 330 224 81 8.5 38.9 336 101.82

4 09:15 555 257 143 71 7.4 34.6 256 99.61

5 12:41 761 208 158 64 6.7 31.0 208 100

6 09:52 592 268 159 80 8.4 32.0 272 101.49

7 12:00 720 275 198 66 6.9 39.8 288 104.73

Mean 09:43 583 253 152.00 73 7.7 32.9 256 101.01

SD 03:03 183 49.6 59.1 8.1 0.8 5.4 52.3 1.94

Target power = 80% of FTP shown in Table 1; target accuracy = target power/mean power × 100.

Figure 3 (bottom row), the extensors still overlap, although not
that perfectly as in the EMG plot, but the peak activities are
shifted by 30–60◦ clockwise. In Figure 3 (middle row), RF shows
pressure and EMG activity in the same sector, whereas for VM,
the pressure signal is shifted counter clockwise by approximately
30◦ with respect to the EMG signal, and VL is shifted clockwise
by more than 60◦. In Figure 3 (top row), RF and VM are
shifted clockwise by 30◦ and 70◦, respectively, and VL by almost
180◦.

Comparing the three pressure plots, the activity of RF ranges
from 20 to 30◦, VM from−10 to 50◦, and VL from 40 to 150◦.

The flexor muscles (BF and ST) showed less consistent EMG
activation patterns than the extensors: ST at 90◦, 90◦, and 180◦;
and BF at 100◦, 110◦, and 340◦. The pressure activation patterns
are, in general, shifted clockwise as already seen in the extensor
muscles, namely the BF by 70◦, 70,◦ and 200◦; and the ST by
−30◦, 70◦, and 150◦.

Comparing the three pressure plots, the peak activity of BF
occurs around 170–180◦, whereas the one of ST ranges from 150
to 240◦.

Figure 3 (top row) shows a co-contraction of the three
extensors and the BF on the EMG plot, whereas the
pressure plot confines the co-contraction to VL and BF.
The same is true for both the hamstrings and the VL on the
pressure plot [Figure 3 (middle row)], whereas the EMG
plot appears to be free of co-contractions. The latter is
true for both pressure and EMG plots in Figure 3 (bottom
row).

Figure 4 shows the average muscle activation patterns of all
seven participants combined, thereby highlighting the sectors
used by most participants.

In general, while the muscle activities, measured with EMG
or pressure, are relatively consistent across athletes, they do not
coincide when the two different methods are compared directly
(Figures 3, 4).

The average angles of the EMG signal are: RF – 8◦, VM – 24◦,
VL – 23◦, BF – 110◦, and ST – 122◦; and of the pressure signal of
the five muscles are: RF – 24◦ (phase shift+16◦), VM – 8◦ (phase
shift−16◦), VL – 124◦ (phase shift+101◦), BF – 143◦ (phase shift
+33◦), and ST – 156◦ (phase shift+34◦);

The pressure plots of all but one muscle are characterized by a
clockwise phase shift with respect to the EMG plots of 16–101◦.

Only VM is shifted counter-clockwise by 16◦. This phase shift
phenomenon is attributed to the electromechanical delay of the
muscle signal, which will be explained in detail in the section
“Discussion.”

Muscle Fatigue
Assessment of the fatigue performance over the entirety of
the second test was made through two different measurement
methods and two different algorithms resulting in the need to
compare by correlation three different fatigue signals, namely, the
FFT (FFT median frequency; FFT-EMG) and the FD (FD-EMG
and FD-Pressure).

In general, when considering the overall behavior of each
participant (Figure 5), the overall fatigue trend is clearly seen in
all signals, with increasing (fractals) and decreasing (FFT) trends.

The normalized pressure fractals correlate with the
normalized cycling time in 84% of the results (R2 = 0.8405,
linear fit; 84% of the fatigue level is explained from the time
progression of the exercise). The normalized EMG fractals and
median frequencies correlate with the normalized cycling time
in 51% (R2 = 0.5081) and 71% (R2 = 0.7092) of the results
respectively. All three R2 values are significantly different (p = 0).

The R2-value expresses merely that, for the FFT method,
71% of the fatigue level are time-dependent whereas 29% are
not time-dependent. Time-independent fatigue would be if a
fatigue level or the average fatigue was kept relatively constant
over a longer time. Furthermore, the different performance levels
of the subjects could also contribute to the time-independent
fatigue; for example, more experienced athletes are more skilled
in fatigue management over time. FD-EMG reflects more time
independent fatigue (49%) compared to FD-pressure (16%), i.e.,
approximately three times as much. This phenomenon will be
discussed in more detail in the section “Discussion.”

DISCUSSION

The purpose of this study was to explore the applicability of a
smart compression garment based on FMG with pressure sensors
(Belbasis and Fuss, 2015; Belbasis et al., 2015a,b), measuring
muscle contraction, for assessment of muscle activity and fatigue,
as an alternative to EMG.
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FIGURE 3 | Polar plots of the activity of five muscles and three participants; Left column: EMG data, Right column: force myography data (pressure data).

Frontiers in Physiology | www.frontiersin.org 8 April 2018 | Volume 9 | Article 408

https://www.frontiersin.org/journals/Physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/Physiology#articles


fphys-09-00408 April 17, 2018 Time: 19:8 # 9

Belbasis and Fuss Smart Compression Garment Force Myography

FIGURE 4 | Combined polar plots of the activity of five muscles of all seven participants; Left plot: EMG data, Right plot: force myography data (pressure data).

First of all, it is worth noting, that while the maturity
of the pressure monitoring technique is still in development,
the majority of common experimental issues (such as restarts,
corrupted data, time-consuming instrumentation of athletes)
was attributed to the installation and attachment of the EMG
equipment and electrodes, and the motion capture markers. The
simplicity and robustness of the wearable smart compression
garment system limited the possibility of experimental failures.

The first question to address is whether muscle activity can be
assessed and measured with the smart compression garment. The
signals obtained, related to the contraction pattern when cycling,
were highly comparable and consistent on the polar diagrams,
with some individual differences between participants.

The second objective of this study was to validate the muscle
activity pattern obtained from the smart compression garment
with a gold standard, i.e., a laboratory-based EMG system.
However, the muscle activation patterns obtained from EMG
and the smart compression garment were, to some extent,
not comparable (Figures 3, 4). The reason for this is not the
inferiority of the smart compression garment, which could be
easily deduced from the data, but rather the choice of the gold
standard. Undoubtedly, EMG is the (even if the only) gold
standard for assessment of muscle activity and fatigue. Yet,
EMG measures the electrical activity of the muscle, whereas the
smart compression garment detects the mechanical activity, i.e.,
muscle bulging that compresses the pressure sensors between
skin and garment. The difference between EMG and pressure-
sensor polar plots simply reflects the difference between electrical
and mechanical activity. The electro-mechanical delay (De Luca,
1997) of the contraction force with respect to the electrical
stimulation of a muscle is explained from the time difference
between onset of electrical activity and the increasing muscle
force. This delay is also dependent on muscle fiber distribution,
i.e., the percentage of fast- and slow-twitch fibers. For example,
to reach a contraction level of 50% of the maximal muscle force,
it takes a fast- and slow-twitch fiber approximately 0.15 and

0.25 s, respectively (De Luca, 1997). When cycling at a cadence
of 73 rpm (average cadence from Table 2), these two delay times
would cause, in theory, a phase shift of 66◦ and 110◦ on the polar
diagram. The differences seen in the EMG and pressure sensor
polar diagrams are therefore expected. According to EMG data
of Jorge and Hull (1986) and Hug et al. (2010), the quadriceps is
active from 300 to 130◦ and from 235 to 162◦, respectively, and
the hamstrings from 15 to 255◦ and from 324 to 288◦, respectively
(maximal ranges). The data seen in Figure 4 perfectly fit into
these ranges, which the exception of the VL, which exceeds 130◦.
Jorge and Hull (1986) also reference other papers, the results of
which show considerable differences and fluctuations, suggesting
that there is considerable variety of EMG results.

Nevertheless, EMG is still a gold standard for validating
the smart garment, as there is no other system available. The
gold standard therefore serves primarily for understanding the
differences between the data, and the underlying principles of
the different measurement systems. Validation is still possible, if
differences are known in the first place or at least expected, and
subsequently confirmed through a validation study. This issue
poses a new challenge for wearable technology not experienced
before, specifically when dealing with lateral innovation (Fuss,
2017). Finding a suitable gold standard could then become a
problem.

The third objective of this study was to assess whether
muscle fatigue can be measured from the pressure signals. The
evaluation was based on the calculation of the FDs of pressure
and EMG signals. For calculating these FDs, Fuss’ method
was used as it maximally separates the FDs of a normal and
an abnormal signal, by finding the maximum differential of
FD-abnormal − FD-normal, when subjecting both signals to
the same amplitude multiplier. Normal and abnormal signals
could be physiological/pathological ones, less/more chaotic ones,
signals from fresh and fatigued states, low/high activity signals,
etc. From common sense, the abnormal signal is expected to have
a higher FD. Common sense is confirmed if there is a maximum
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FIGURE 5 | Normalized average fatigue (fractal dimensions and median frequency) vs. normalized time: (A) pressure fractal, (B) EMG fractal, and (C) EMG median
frequency.

differential, and the two asymptotic fractal differentials at
multipliers of close to 0 or to infinity (Figure 2) are smaller
than the maximum. It has been seen on numerous occasions,
that Higuchi’s (1988) method, corresponding to Fuss’ method
with an infinite multiplier, returns higher FD for normal signals

(Fuss, 2013, 2016), compared to abnormal ones. This problem is
seen in Figure 2 as well, more pronounced in the EMG FD data,
though. This behavior is not unexpected in the EMG signal, as the
decreased amplitude of high frequencies in the power spectrum
(typically seen in fatigued muscles) leads to a decrease of FD.
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The increase in EMG amplitude, also typical for fatigue, increases
the FD. If the cadence drops, so does the FD. Even if there are
multiple influences that affect the FD, it would be more logical to
assume that the FD of a fatigued muscle’s signal is smaller than the
one of a fresh muscle, if the principle of left-shift of the median
frequency is known.

Irrespective of logical assumptions, all three methods applied,
FD-Pressure, FD-EMG, and FFT-EMG, showed the same clear
trend, namely, that fatigue increases with time, with some
individual differences between participants.

The fourth objective of this study was to validate the
muscle fatigue trend obtained from the smart compression
garment with a gold standard, i.e., a laboratory-based EMG
system. The same gold-standard problem as seen in the
muscle activation patterns is also applicable to fatigue to some
extent. When comparing FD-Pressure and FD-EMG to FFT-
EMG, all three variables correlated to the normalized time of
the experiments, FD-pressure showed highest time dependent
correlation (84%), and FD-EMG the highest time-independent
component (41%). These differences come from the fact that
FD-Pressure is more related to mechanical fatigue, whereas FD-
EMG and FFT-EMG are related to central and peripheral fatigue,
respectively.

There is indication (Mesin et al., 2009) that shift of the median
frequency of the EMG signal is related to peripheral muscle
fatigue (decrease in conduction velocity) whereas the FD of the
EMG signal is related to central fatigue (increase in motor unit
synchronization). This seems illogical at first sight, as the higher
the amplitude of higher frequencies is, the greater is the FD,
and therefore any reduction of median frequencies is coupled
to a smaller FD. This principle can be easily verified when
using synthetic fractal signals, such as Knopp/Takagi function,
Weierstrass cosine and Weierstrass-Mandelbrot functions, and
stochastic Brownian Motion function (Fuss, 2013). However,
EMG data are not based on functions that generate signals with
predefined FDs. As such, low median frequencies and small FD
do not necessarily exhibit a parallel trend. This possibility is also
affected by the method used for calculating FDs.

Furthermore, there is indication that a power-trained subject
was more affected by peripheral fatigue whereas an endurance-
trained subject was more prone to central fatigue (Mesin et al.,
2009). It is therefore expected that the correlation of fatigue
parameters that measure different components of fatigue is not
necessarily high. This correlation is not just affected by the
fatigue component, but also by the distribution of training type
across the participants of a study. For example, participant 3 is
a long-distance cyclist and therefore endurance-trained, whereas
participant 4 is a soccer player and thus power-trained.

If FD-EMG and FFT-EMG are related to central and
peripheral fatigue, respectively, then FD-pressure could be

related to mechanical fatigue. Mechanical fatigue is actually
defined as the failure of the muscle system, i.e., that the force
level cannot be maintained anymore (Basmajian and De Luca,
1985). Nevertheless, metabolic fatigue (measured with EMG)
becomes apparent even before system failure (Basmajian and De
Luca, 1985). As such, the term mechanical fatigue is probably not
appropriate, and should be replaced by mechanical pre-fatigue.

CONCLUSION

The smart compression garment based on FMG with pressure
sensors returned performance parameters (muscle activity and
fatigue) comparable to the surface EMG, used as gold standard
for validation. The major differences were that the EMG
measured the electrical activity whereas the pressure sensor
measured the mechanical activity. As such, there was a phase shift
between electrical and mechanical signals, with the electrical ones
preceding the mechanical ones in most cases. This is specifically
important in high-speed cycling, the activity investigated in this
study. Using the activity sectors on the polar diagrams, obtained
from EMG, for biomechanical models, could result in incorrect
outcomes, compared to using the activity data obtained from
FMG. The latter are considered more appropriate as input for
biomechanical modeling.

In terms of fatigue, apart from individual differences between
the participants, the fatigue trend over the duration of the cycling
exercise was clearly reflected in the fatigue parameters (FDs and
median frequency) obtained from pressure and EMG signals.
The fatigue parameter of the pressure signal (FD) showed a
higher time dependency (R2 = 0.84) compared to the EMG signal.
This reflects that the pressure signal puts more emphasis on the
fatigue as a function of time rather than on the origin of fatigue
(peripheral or central).
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