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and Schadt, 2010). Genetic control of macro-environmental fac-
tor phenotype stability has been mapped in Arabidopsis as well 
(Hall et al., 2007).

The genetic control of environmental variation has been 
measured using alleles with a long evolutionary history by asso-
ciating genotype variation with phenotype in the quantitative 
trait locus (QTL) and genome-wide association framework 
(Masel and Trotter, 2011). Micro-environmental buffers are 
sex specific and trans-acting in mouse gene expression (Fraser 
and Schadt, 2010), and in Arabidopsis stability QTL differing 
in different environments have been mapped. The alternative 
approach, rather than mapping, is construction of deletion 
or knock-down alleles, which has allowed large-scale tests of 
presence/absence gene effects in yeast (Nogami et al., 2007). In 
yeast environmental capacitors for morphological phenotypes 
are highly interconnected members of both physical and genetic 
networks and tend to have functions associated with response 
to stress (Levy and Siegal, 2008; Lehner, 2011). Essential yeast 
genes have less coupling between environmental plasticity of 
expression and noise, suggesting that uniformity has a fitness 
advantage (Lehner, 2010).

Adaptation to abiotic and biotic stress is the major breed-
ing target today as we experience increasingly intense climate 
change. Future climate change scenarios suggest much larger 
swings in abiotic stresses such as temperature and precipitation 
than we see in today’s target breeding environments (Schneider 
et al., 2007). Thus, it is important to understand genetic control 
of phenotype stability in more typical field environments. Lab 
and controlled field experiments typically examine one environ-
mental factor, which makes extrapolation to multiple-factor field 
environments difficult.

IntroductIon
The ability of one genotype to specify a phenotype consistently – 
the phenotype uniformity – is a key target for selective breeding 
in crops (Fasoula and Tollenaar, 2005). Yield losses associated with 
plant-to-plant variation within a genotype are detectable on small 
and large scales (Martin et al., 2005; Boomsma et al., 2010). High 
density of planting increases variation in fields (Tokatlidis et al., 
2010), and this effect can be reduced in crowding-tolerant geno-
types upon nitrogen fertilization (Rossini et al., 2011). High plant-
ing density and the associated increase in productivity was made 
possible by avoidance of biotic competitive responses (Duvick, 
2005), but more improvement is needed. Efficient schemes for opti-
mization of selection on uniformity have been designed (Fasoula 
and Fasoula, 2002).

Uniformity is also known as phenotype stability and robust-
ness; these terms refer to the ability of a genotype to produce a 
specific phenotype rather than a phenotype that varies. To empha-
size the resistance of biological systems to change in the extent 
of phenotype specification, terms such robustness, buffering, and 
canalization are used, with specific proteins or network structures 
that confer this feature referred to as capacitors (Masel and Siegal, 
2009). Both genetic variation – epistasis and new mutations – and 
environmental variation contribute to varying phenotypes within 
one genotype (Zhang, 2008; Fraser and Schadt, 2010). Variation 
within a single experimental factor is termed micro-environmental 
variation, in contrast to macro-environmental variation across fac-
tors in an experiment. Genetic control of micro-environmental 
variation has been detected and loci mapped in yeast (Nogami 
et al., 2007), Drosophila melanogaster (Mackay and Lyman, 2005), 
Caenorhabditis elegans (Raj et al., 0000), Arabidopsis thaliana 
(Hall et al., 2007), maize (Ordas et al., 2008), and mouse (Fraser 
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It is improbable that every stress has an entirely independent 
set of genes controlling adaptation and acclimation. Some stress 
responses will be unique and others in common in different stresses. 
As yet we have little understanding of how the overlap is config-
ured (Des Marais and Juenger, 2010) and thus we have little ability 
to predict the effect of multiple stresses applied together (Mittler, 
2006). Field environments vary in both temporal and abiotic axes, 
so to isolate factors or locate suitable test environments requires 
very large-scale experimentation.

There are a few examples of analysis of multiple environmental 
factors in combinatorial experiments (Mittler, 2006). Recent work 
on volatile organic compounds and on genotype and stress com-
binations in cowpea has provided two more examples of unpre-
dictable multiple-stress-environment responses (Holopainen and 
Gershenzon, 2010; Singh et al., 2010). Better understanding of the 
specific genetic loci controlling multiple-stress responses is needed.

A schematic to illustrate detection of genetic control of uni-
formity in mapping populations is provided in Figure 1. The mean 
plant height is the same whether the B73 or Mo17 allele is present, 
but the uniformity within each genotype is different. In this hypo-
thetical example, the B73 allele would confer low uniformity and 
the Mo17 allele confers maximum uniformity. If this approach is 
extended to multiple environments or treatments, genetic control 
of the environmental plasticity of the uniformity can be examined. 
To better connect field-scale experiments with laboratory-scale 
work, we have examined the genetic architecture of uniformity 
in single and combined stress. In combined stress environments 
new loci are found and some single-stress loci disappear – so even 
though there is no significant allelic difference at a locus for the 
second stress, the second stress still affects the phenotype indirectly. 
Alleles conferring high uniformity in single-stress environments no 

longer confer high uniformity when a second stress is added. Thus, 
this mapping population does not segregate for alleles that would 
improve uniformity in multiple-stress environments.

MaterIals and Methods
seed stocks
IBM94 Zea mays intermated recombinant inbred lines (RIL; Lee 
et al., 2002) were supplied by the Maize Co-op1. These lines were 
intermated four times before selfing, which increases the resolution 
of mapping (Lee et al., 2002). These are publically available stocks; 
these lines have been genotyped by several labs and genotype data are 
freely available2. Seed was increased in the field nursery at the North 
Carolina Central Crops Research Station Clayton, NC, USA3. Seed 
genotypes were verified using a set of 11 SSR markers that unambigu-
ously distinguish each line (Lee et al., 2002). A subset of 50 lines was 
chosen using MapPop (Vision et al., 2000) to maximize the number 
of detectable recombinations in the subset. A list of all the mark-
ers used for data analysis is provided in File S3 in Supplementary 
Material; genotypes at each marker for each of the IBM94 RILs can 
be retrieved from http://www.maizegdb.org/map.php.

experIMental desIgn
The field experimental site was located at the North Carolina Central 
Crops Research Station, field G1D. This site is level and has a uniform 
soil type, Norfolk loamy sand. The field was divided into four sectors 
(Figure 2A), with two sectors fertilized using standard corn nursery 
treatments (before planting and side-dress at flowering) and two sec-
tors treated with sulfur but no nitrogen, as sulfur supplementation was 
indicated from soil tests. Irrigation is standard for nursery and yield 
trials at this field site, so two perpendicular sectors were fitted with 
irrigation pipe to create a control sector, a low-nitrogen irrigated sec-
tor, a drought sector, and a drought plus low-nitrogen sector. Fifteen 
seeds of each recombinant inbred line were hand-planted in each 
sector in April 2008 at ∼0.25 m spacing, with one meter between each 
genotype. Hybrid commercial corn seed (Dekalb) was planted to fill in 
gaps, in eight rows between each sector, and bordering the entire field.

plant heIght MeasureMent
Individual plant heights were measured after pollination, when 
the plants had reached full height. Each plant in each genotype 
was measured from soil surface to tassel tip using a pole marked 
in 2.5 cm increments and a consistent procedure. Inter-rater coef-
ficients of variation were less than 5% (data not shown). Complete 
phenotype data for each RIL and environment is provided in File S1 
in Supplementary Material.

data analysIs
Uniformity of the phenotype in each individual RIL was calculated 
using Levene’s mean ratio (LMR). LMR is obtained as the absolute 
value of each individual measurement minus the mean for that RIL 
genotype in that planting sector (the entry mean), divided by the 
entry mean. The LMR measure has a good balance between type I 

B73/B73 Mo17/Mo17

Figure 1 | Schematic example of genetic control of uniformity. Three 
recombinant inbred lines for each parental type (B73 and Mo17) differing in a 
causal allele are shown on either side of the center line, with four plants of 
each genotype arranged vertically. The mean plant height is the same whether 
the B73 or Mo17 allele is present. However, the uniformity differs, with the 
B73 allele conferring low uniformity.

1http://maizecoop.cropsci.uiuc.edu/
2www.maizegdb.org
3http://www.ncagr.gov/research/ccrs.htm
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Wagner et al., 2010), so correcting map orders using the reference 
sequence is not yet possible. The dense map also means that adjacent 
markers along the chromosome are highly correlated. We designed a 
mapping method that is robust to errors in marker order and lever-
ages the dense marker information. We located chromosomal regions 
important for LMR phenotype differences by mixed modeling using 
SAS Proc Mixed, v. 9.1 (Cary, NC, USA). We fit each marker and 
treatment environment and the interaction separately and then com-
bined the P-values for correlated markers in chromosomal regions 
using the rank-adjusted truncated product method (Zaykin et al., 
2002; Zaykin and Zhivotovsky, 2005), as implemented in SAS Proc 
PSMOOTH, with the Simes adjustment for multiple tests. Simulations 
for large and small recombinant inbred line sets show that this method 
has excellent power and avoids excessive false positives, at the cost 
of decreased QTL resolution along the chromosome (Balint-Kurti 
et al., 2010; Morrison et al., 2010). Effect sizes for each allele within 
each treatment were estimated by eBLUP. The estimated marker allele 

and type II error rate characteristics, though it is less conservative 
than the median version (Schultz, 1985). For plotting easy-to-read 
graphs with high numbers indicating high uniformity, we reversed 
the sign of the LMR so that uniformity had high values and higher 
variation (higher LMR value) had low uniformity values.

Genotype data for each recombinant inbred line was retrieved from 
MaizeGDB (Sen et al., 2010). Genetic map locations were updated to 
the IBM Neighbors 2005 coordinates to facilitate comparison with 
other mapping studies. Heritability of LMR was calculated by parti-
tioning the variance in the trait with the QTL Network program (Yang 
et al., 2007; Yang et al., 2008). There are a large number of genotypic 
markers for these lines, which provides high resolution for QTL map-
ping. The marker order is error-prone, as the order was fit by genetic 
mapping methods and extrapolation (Cone et al., 2002). Publically 
available genomic sequence assemblies for maize are still in early 
stages, and there are large differences in order and content between 
maize inbreds (Gore et al., 2009; He and Dooner, 2009; Swanson-

Figure 2 | experimental design and effect of field treatment blocks on hybrid maize. (A) Layout of field stress treatment blocks. Each field environment is 
color-coded, with control green, low N pink, drought tan, and combined low N and drought orange. (B) To illustrate the effect of the stress treatments one randomly 
chosen commercial hybrid ear from each treatment block is shown. Ear diameter, kernel number and ear length are affected by the stress treatments. 
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variance (equivalent to SE) of each estimate was used to determine 
if effects were different from the predicted amount. Our SAS code is 
provided in File S2 in Supplementary Material. Because the LMR can 
scale with the mean (Schultz, 1985; Dworkin, 2005) we also mapped 
mean trait values (plant heights) using the same procedure except for 
using the plant height rather than the LMR for each genotype in each 
environment. This allowed us to compare the identified uniformity 
loci to the mean height loci within this experiment. One locus that 
overlapped in the height and LMR maps was eliminated.

results
The unfertilized and un-irrigated field sectors provided a less 
optimal growth environment, generating two different abiotic 
stresses. The stress treatment effects are illustrated in Figure 2B for 

effects (for marker states A or B at each marker position) from each 
single-stress environment were summed to create a predicted value for 
the two-stress environment allele effect. Square root prediction error 

Table 1 | Variance components for Levene mean ratio population mean 

was 0.0656.

Vga/Vpb Vec/Vp Vged/Vp Vre/Vp

0.055 0.0525 0.127 0.7554

aVariance due to genotype.
bTotal phenotype variance.
cVariance due to environmental factor.
dVariance due to genotype by environment interaction.
eRemaining phenotype variance not portioned to Vg, Ve, or Vge.
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Figure 3 | Additive environmental uniformity effect Loci Allele effects for 
loci with significant genotype by environment interactions and measured 
combined-stress environment effects similar to effects predicted by simple 
addition of single-stress effects are shown. For each of the four field sectors 
(control, low nitrogen [N], drought, and low N plus drought) B73 allele effects are 
indicated in solid and Mo17 effects as hatched. Each field environment is 
color-coded, with control green, low N pink, drought tan, and combined low N 

and drought orange. Square root prediction error variance (equivalent to SE) bars 
are indicated for each estimate. Addition of effect size from low N and drought 
provides the predicted effect size at the bottom of each graph. Low allele effect 
numbers indicate more variation, as the X axis on each plot is – LMR. 
(A) Chromosome 2 locus, bin 2.06. (B) Chromosome 5.07/5.08 locus. 
(C) Chromosome 7 locus, bin 7.02. (D) Chromosome 7 locus, bin 7.02. 
(e) Chromosome 8 locus, bin 8.07/8.08. (F) Chromosome 9 locus, bin 9.06.
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cob characteristics in hybrids. Plant heights in a field setting are 
more difficult to photograph; plant heights of each recombinant 
inbred line (genotype) in each environment are given in File S1 
in Supplementary Material. We chose to measure individual plant 
heights for this analysis as plant height is a less complex trait 
than overall yield (which includes yield components such as cob 

diameter, cob length, kernel size, and kernel number) and excess 
variation in plant height is a key factor in yield loss (Boomsma 
et al., 2010).

Genotype by environment effects on uniformity have 
approximately twice as much heritability as simple genetic 
effects (Table 1); these effects are the focus of our analysis. We 
identified nine QTL that have significant genotype by environ-
ment effects for uniformity of plant height. These loci were 
grouped into predictable and non-linear sets by the pattern of 
allele effects across the single and combined-stress environ-
ment factors. Predictable QTL are loci with an allele effect in 
the combined-stress condition similar to the sum of the allele 
effects from each individual stress. Six QTL had an additive-
environment pattern of allele effects (Figure 3), with the pre-
dicted allele effects in the combined stress (gray bars) within 
the SE ranges for the experimental combined stress (orange 
bars). Loci with significant interacting effects can have a variety 
of allele differences in the stress and control environments. 
There can be an overall interaction, but with no significant 
differences when the control allele differences are considered, 
as in Figures 3A,B. In these two loci the B73 and Mo17 alleles 
are significantly different from each other in the low-nitrogen 
environment, but not different from the control allele effects 
(the error bars overlap). We also find stress-specific effects, such 
as the B73 allele conferring increased uniformity in the low-
nitrogen environment as compared to the control environment 
(Figure 3), and B73 alleles conferring decreased uniformity 
under drought stress as compared to control B73 allele effects 
(Figures 3D,E). Finally, we can see dose-specific effects, as in 
Figure 3F, where the Mo17 allele has less uniformity in the 
combined-stress environment only.

The second class of uniformity QTL are those with a combined-
stress allele effect that is not predictable from the allele’s effect in 
the single-stress environment (Figure 4), which can be seen by 
comparison of the gray bars for the summed effect to the orange 
bars for the experimental effect of the alleles at these loci in the 
combined stress. We see patterns that may result from “ascendancy” 
of one signal, as in Figures 4A,C where the change in uniformity 
conferred by the B73 allele in low nitrogen is lost in the combined-
stress environment, even though drought alone has no significant 
effect. The chromosome 6 QTL (Figure 4B) shows different allele 
effects in drought and combined stress; however, this QTL is large 
and inspection of the P-value distribution suggests that two linked 
QTL may be present.

We found 20 QTL with effects on mean plant height in at least 
one of the treatments (Table 2). Some are stress-specific (italics 
in Table 2), some have an additive effect, where the allele effect 
for the combined-stress environment is similar to the expected 
amount from the allele effects in each separate stress, and some are 
non-linear (shaded boxes in Table 2). The non-linear allele effects 
are often higher than predicted, indicating that plant height is not 
decreased as much as expected with two combined stresses. We 
did not find any general stress-resistance alleles, where an allele 
conferred a difference in both drought and low-nitrogen single-
stress environments. The 20 mean height QTL are in different 
places in the genome than the uniformity QTL (Figures 3 and 4; 
Table 2; File S3 in Supplementary Material).
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Figure 4 | Non-additive environmental uniformity effect Loci Allele 
effects for loci with significant genotype by environment interactions 
and measured two-stress environment effects different from effects 
predicted by simple addition of single-stress effects are shown. For 
each of the four field sectors (control, low nitrogen [N], drought, and low N 
plus drought) B73 allele effects are indicated in solid and Mo17 effects as 
hatched.  Each field environment is color-coded, with control green, low N 
pink, drought tan, and combined low N and drought orange.  Square root 
prediction error variance (equivalent to SE) bars are indicated for each 
estimate.  Addition of effect size from low N and drought provides the 
predicted effect size at the bottom of each graph.  Low allele effect  
numbers indicate more variation, as the X axis on each plot is – LMR. (A) 
Chromosome 3 locus, bin 3.01. (B) Chromosome 6 locus, bin 6.01/6.03. 
(C) Chromosome 7 locus, bin 7.01.
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Table 2 | Plant height loci – allele effects in each treatment environment.

bin cM
PH 

QTL
Control Low nitrogen Drought

Low nitrogen 

and drought

Two-stress environm-

ent effect comments

B73 Mo17 B73 Mo17 B73 Mo17 B73 Mo17
B73 prediction 

for two stress

Mo17 predicted 

two-stress

1.01 48-67 1 −0.24 

± 0.90

0.56  

± 0.90

−0.84 

± 0.90

0.95 

± 0.90

0.04 

± 0.90

−0.76 

± 0.90

1.03  

± 0.90

−0.75 

± 0.90

−0.80 0.19 Additive

1.1 950–

955

2 −1.00 

± 1.61

2.05  

± 1.61

−1.00 

± 1.61

1.22  

± 1.61

−0.65 

± 1.62

−2.23 

± 1.61

2.65  

± 1.62

−1.04 

± 1.61

−1.65 −1.01 B73 allele not additive, 

higher than additive 

prediction

1.11 1057–

1097

3 −0.96 

± 1.15

1.40  

± 1.15

−0.51 

± 1.15

0.59  

± 1.15

0.12  

± 1.15

−1.28 

± 1.15

1.35  

± 1.15

−0.71 

± 1.15

−0.39 −0.69 Additive

2.09 654–

682

4 0.60  

± 1.32

0.10  

± 1.32

1.41  

± 1.32

−1.22 

± 1.32

−2.60 

± 1.32

0.89  

± 1.32

0.59  

± 1.32

0.23  

± 1.32

−1.19 −0.33 Additive

3.06 398–

411

5 −0.66 

± 1.31

1.33  

± 1.31

−0.98 

± 1.31

1.20  

± 1.31

0.58  

± 1.31

−2.30 

± 1.31

1.06  

± 1.31

−0.23 

± 1.31

−0.40 −1.10 Additive

3.06 430–

450

6 −0.48 

± 1.41

1.29  

± 1.41

−1.16 

± 1.41

1.40  

± 1.41

0.73  

± 1.41

−2.76 

± 1.41

0.90  

± 1.41

0.07  

± 1.41

−0.42 −1.35 Additive

4.01 41–81 7 −0.46 

± 1.44

1.29  

± 1.44

−1.26 

± 1.44

1.63  

± 1.44

0.05  

± 1.44

−2.06 

± 1.45

1.68  

± 1.44

−0.87 

± 1.44

−1.22 −0.43 Additive

5 17–30 8 1.86  

± 1.56

−0.89 

± 1.56

1.35  

± 1.56

−1.11 

± 1.56

−2.32 

± 1.56

−0.16 

± 1.56

−0.89 

± 1.56

2.16  

± 1.56

−0.97 −1.27 Mo17 allele not 

additive, higher

5.03 289–

295

9 −0.51 

± 1.39

1.25  

± 1.39

−1.25 

± 1.39

1.37  

± 1.39

−0.20 

± 1.39

−1.62

 ± 1.39

1.97  

± 1.39

−1.01 

± 1.39

−1.46 −0.25 B73 allele not additive, 

higher

6.04 204–

229

10 −0.30 

± 1.59

1.46  

± 1.59

−1.36 

± 1.59

1.67  

± 1.59

−1.07 

± 1.59

−1.70 

± 1.59

2.73  

± 1.59

−1.42 

± 1.59

−2.43 −0.04 B73 allele not additive, 

higher

7.02 170–

180

11 1.41  

± 1.48

−0.48 

± 1.48

1.61  

± 1.48

−1.41 

± 1.48

−2.73 

± 1.48

0.37  

± 1.48

−0.29 

± 1.48

1.53  

± 1.48

−1.12 −1.04 additive

7.03 300–

318

12 1.88  

± 1.46

−0.84 

± 1.46

0.71  

± 1.46

−0.49 

± 1.46

−3.52 

± 1.46

0.78  

± 1.46

0.94  

± 1.46

0.55  

± 1.46

−2.81 0.30 B73 allele not additive, 

higher, back to control

8.01 95–

129

13 −0.79 

± 1.54

1.75  

± 1.54

−1.10 

± 1.54

1.31  

± 1.54

−0.60 

± 1.54

−1.92 

± 1.54

2.49  

± 1.54

−1.14 

± 1.54

−1.70 −0.61 B73 allele not additive, 

higher

8.03 254–

275

14 −0.28 

± 1.11

0.74  

± 1.11

−0.96 

± 1.11

1.06  

± 1.11

−0.36 

± 1.11

−0.77 

± 1.11

1.60  

± 1.11

−1.03 

± 1.11

−1.32 0.29 B73 allele not additive, 

higher

9.01 17–30 15 −0.83 

± 1.20

1.39  

± 1.20

−0.54 

± 1.20

0.68  

± 1.20

0.80  

± 1.20

−2.10 

± 1.20

0.57  

± 1.20

0.04  

± 1.20

0.26 −1.43 additive

9.02 147–

170

16 −0.76 

± 1.24

1.41  

± 1.24

−0.59 

± 1.24

0.80  

± 1.24

−0.42 

± 1.24

−1.06 

± 1.24

1.78  

± 1.24

−1.14 

± 1.24

−1.01 −0.27 B73 allele not additive, 

higher

9.03 197–

215

17 −0.61 

± 1.53

1.66  

± 1.53

−1.20 

± 1.53

1.56  

± 1.53

−0.39 

± 1.53

−2.07 

± 1.53

2.20  

± 1.53

−1.15 

± 1.53

−1.59 −0.51 B73 allele not additive, 

higher

9.03 230–

238

18 −0.90 

± 1.38

1.66  

± 1.38

−0.79 

± 1.38

1.02  

± 1.38

−0.15 

± 1.38

−1.69 

± 1.38

1.83  

± 1.38

−0.99 

± 1.38

−0.94 −0.67 additive

10.04 242–

246

19 −0.72 

± 1.34

1.43  

± 1.34

−0.98 

± 1.34

1.21  

± 1.34

0.08  

± 1.34

−1.80 

± 1.34

1.62  

± 1.34

−0.83 

± 1.34

−0.89 −0.59 B73 allele not additive, 

higher

10.07 433–

450

20 −0.22 

± 1.54

1.50 ± 

1.54

−0.92 

± 1.54

1.38  

± 1.54

−1.44 

± 1.54

−1.14 

± 1.54

2.59  

± 1.54

−1.75 

± 1.54

−2.37 0.24 B73 allele not additive, 

higher

Estimated allele effect is indicated, ±SE. Significantly contrasting allele effects for each QTL are shaded, with estimated allele effects different than control are 
shaded green, and joint-stress effects different than single-stress but equal to control allele shaded blue. A suggestive difference (bin 2.09) is indicated with lighter 
font. Differences between alleles within a particular environment are italicized.

Makumburage and Stapleton Combined stress maize uniformity loci

Frontiers in Plant Science | Plant Genetics and Genomics  May 2011 | Volume 2 | Article 12 | 6

http://www.frontiersin.org/plant_genetics_and_genomics/
http://www.frontiersin.org/plant_genetics_and_genomics/archive


Fasoula, V. A., and Fasoula, D. A. (2002). 
Principles underlying genetic 
improvement for high and stable 
crop yield potential. Field Crops Res. 
75, 191–209.

Fasoula, V. A., and Tollenaar, M. (2005). 
The impact of plant population 
density on crop yield and response 
to selection in maize. Maydica 50, 
39–48.

Fraser, H. B., and Schadt, E. E. (2010). The 
quantitative genetics of phenotypic 
robustness. PLoS ONE 5, e8635. doi: 
10.1371/journal.pone.0008635

Gore, M. A., Chia, J.-M., Elshire, R. J., Sun, 
Q., Ersoz, E. S., Hurwitz, B. L., Peiffer, J. 
A., McMullen, M. D., Grills, G. S., Ross-
Ibarra, J., Ware, D. H., and Buckler, E. 

Duvick, D. N. (2005). The contribu-
tion of breeding to yield advances 
in maize (Zea mays L.). Adv. Agron. 
86, 83–145.

Dworkin, I. (2005). “Canalization, cryp-
tic variation and developmental 
buffering: a critical examination and 
analytical perspective,” in: Variation, 
eds B. Hallgrimsson and B. K. Hall 
(Waltham, MA: Academic Press) 
131–158.

Espinosa-Soto, C., Martin, O. C., and 
Wagner, A. (2011). Phenotypic 
robustness can increase phe-
notypic variability after non-
genetic perturbations in gene 
regulatory circuits. J. Evol. Biol. 24, doi: 
10.1111/j.1420-9101.2011.02261.x

 tillage system in a long-term experi-
ment. Soil Tillage Res. 106, 227–240.

Cone, K. C., McMullen, M. D., Bi, I. V., 
Davis, G. L., Yim, Y.-S., Gardiner, 
J. M., Polacco, M. L., Sanchez-
Villeda, H., Fang, Z., Schroeder, S. 
G., Havermann, S. A., Bowers, J. E., 
Paterson, A. H., Soderlund, C. A., 
Engler, F. W., Wing, R. A., and Coe, 
E. H. (2002). Genetic, physical, and 
informatics resources for maize. On 
the road to an integrated map. Plant 
Physiol. 130, 1598–1605.

Des Marais, D. L., and Juenger, T. E. (2010). 
Pleiotropy, plasticity, and the evolu-
tion of plant abiotic stress tolerance. 
Ann. N. Y. Acad. Sci. 1206, 56–79. doi: 
10.1111/j.1749-6632.2010.05703.x

RefeRences
Baker, R. (1984). “Some of the open 

pollinated varieties that contributed 
the most to modern hybrid corn,” 
in Illinois Corn Breeders School. 
University of Illinois, Urbana, IL.

Balint-Kurti, P., Simmons, S. J., Blum, J. 
E., Ballare, C. L., and Stapleton, A. E. 
(2010). Maize leaf epiphytic bacte-
ria diversity patterns are genetically 
correlated with resistance to fungal 
pathogen infection. Mol. Plant Microbe 
Interact. 23, 473–484.

Boomsma, C. R., Santini, J. B., West, T. 
D., Brewer, J. C., McIntyre, L. M., and 
Vyn, T. J. (2010). Maize grain yield 
responses to plant height variabil-
ity resulting from crop rotation and 

Discussion
Plant height phenotype stability is important for yield in certain 
environments, such as no-till in maize (Boomsma et al., 2010). 
We show that height uniformity is genetically controlled, and that 
non-linear genotype by environment interactions results in some 
loci controlling uniformity only in combined-stress environments 
(Figure 3). We observe a decrease in uniformity with two combined 
stresses in all cases, both for additive uniformity loci and for non-
linear response loci (Figures 3 and 4). This mapping population 
thus does not carry useful alleles for improvement in uniform-
ity in abiotic stress environments, though it does segregate alleles 
for height difference per se (Table 2). B73 and Mo17 were derived 
from selective breeding programs (Zuber, 1973; Baker, 1984; Troyer, 
1999) which typically include substantial selection for uniformity, 
and thus may already have fixed the some stress-uniformity enhanc-
ing alleles. Analysis of plant height uniformity in normal non-stress 
growth conditions using a Spanish maize mapping population 
localized one QTL on chromosome 10 (Ordas et al., 2008), while 
we observed no uniformity QTL on that chromosome. Broader 
surveys of maize germplasm, such as multiparent populations, 
may provide better sources for uniformity improvement for future 
selective breeding. One caveat to this strategy is that in models of 
transcriptional regulatory networks, environmental perturbation 
always increases variance, provided the network is already robust 
to mutational change (Espinosa-Soto et al., 2011). If this is the case 
for plant stress responses, then it may not be possible to select for 
improved alleles in adapted material, and wide crosses may be the 
best source of alleles for uniformity selection.

In contrast to loci important for uniformity control, both nega-
tive and positive alleles for height mean are seen, with the most 
common combined-stress pattern having height less affected than 
predicted (Table 2). Environment-specific QTL for mean height 
are found primarily in the drought treatment (Table 2), suggesting 
that there is more genetic variation for drought responses than for 
 low-nitrogen adaptation in B73 and Mo17. Both inbreds are some-
what sensitive to drought (W. Xu, personal communication), but 
the mechanism of drought sensitivity is different in the two inbreds, 
and the F1 hybrid is drought tolerant (A. Hallauer, personal com-
munication). We thus expected segregation of drought-response 
alleles in this population, as we observed.

We detect both stress-specific plasticity QTL and loci for phe-
notype stability, but these sets of loci do not significantly overlap. 
Differences in controlling loci for uniformity and mean suggest 
that there are separate evolutionary trajectories for these two 
aspects of plant height, as proposed for in yeast for gene expres-
sion (Lehner, 2010).

The loci we detected have additive effects, which are useful 
for selective breeding. To understand the genetic control of sta-
bility, it would also be useful to examine epistatic interactions, 
especially those interactions that are important only when both 
alleles are present (loci with no marginal effect). This may be 
especially important if good additive alleles were already fixed. 
Our mapping experiment is underpowered to detect epistasis, 
so in future work larger populations could be used to address 
this point. Phenotype stability to temporal variation in stress as 
well as to factorial combinations would also be informative for 
future analysis.
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