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on maternal effects, i.e., the influence of the maternal genotype or 
phenotype on the offspring phenotype beyond the chromosomal 
contribution from each parent (Roach and Wulff, 1987; Wolf and 
Wade, 2009). Maternal effects are, in part, the consequence of the 
environmental conditions experienced by mother plants, including 
during seed maturation (Wulff, 1995). Environmental maternal 
effects result from maternal provision of seed storage-compounds 
and from tissues of maternal origin surrounding embryo and 
endosperm, such as seed coat and accessory seed structures (Roach 
and Wulff, 1987; Rossiter, 1996; Donohue and Schmitt, 1998). In 
addition, the maternal environment can affect traits in the mother 
plant that influence offspring trait-expression (Galloway, 2005), 
e.g., by inherited epigenetic modifications (Molinier et al., 2006).

Maternal effects have been shown to affect a wide array of 
offspring traits, including plant growth and development, plant 
defense against herbivory, acclimation to abiotic stresses, and life 
history traits (Rossiter, 1996; Agrawal, 2002). Environmental mater-
nal effects of elevated CO

2
 affected several components of offspring 

performance, including germination, growth, and biomass pro-
duction. Success of and time to germination and emergence of 
seeds that matured at elevated CO

2
 were significantly modified in 

Introduction
Research during past decades has shown that atmospheric CO

2
-

enrichment influences a wide range of plant processes at the spe-
cies, population, and community level. This includes growth and 
reproduction, biomass production, carbon sequestration, and shifts 
in community composition and species diversity (Körner, 2006). 
Moreover, interactions of plants with other organisms, such as 
pathogens were affected by CO

2
 enrichment. The infection rate with 

plant pathogens and the disease progress can be altered by elevated 
CO

2
 due to changes in plant physiology, morphology, anatomy, and 

phenology (Chakraborty et al., 2000; Mcelrone et al., 2005; Burdon 
et al., 2006; Garrett et al., 2006). In a majority of studies, elevated 
CO

2
 significantly affected plant-pathogen relationships by either 

increasing or decreasing infection rate and disease severity (see 
e.g., Chakraborty et al., 2000; Mitchell et al., 2003; Mcelrone et al., 
2005; Plessl et al., 2007).

Research mainly focused on plants growing directly under CO
2
 

enrichment, and less attention was paid to consequences for per-
formance of offspring. Performance of progenies depends on the 
one hand on their genotypic characteristics and on environmental 
conditions during plant development, but on the other hand also 
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a few species (Farnsworth and Bazzaz, 1995; Andalo et al., 1996; 
Grünzweig and Körner, 2000; Edwards et al., 2001; Thürig et al., 
2003; Hovenden et al., 2008). Subsequent production of shoot and 
root biomass was ambivalent, and both increased and decreased 
biomass was observed in high-CO

2
 compared with low-CO

2
 prog-

enies when grown at ambient CO
2
 (Fordham et al., 1997; Huxman 

et al., 1998; Edwards et al., 2001).
Maternal effects on plant–pathogen interactions have rarely 

been shown in any system. In a tropical tree, the frequency of 
damping-off disease of seedlings depended on seed dispersal and 
seedling density (Augspurger, 1983), which can be influenced by 
the provision of dispersal traits by the mother plant (Donohue 
and Schmitt, 1998). Genetic studies in corn revealed unspecified 
maternal effects on resistance to Fusarium seedling blight and ear 
rot (Lunsford et  al., 1976; Gendloff et  al., 1986). In Arabidopsis 
thaliana, an elicitor of plant defense (a treatment applied to the 
mother plant only) induced genetic changes (enhanced somatic 
homologous recombination) that were passed down to the prog-
eny, suggesting an epigenetic mode of inheritance (Molinier et al., 
2006). To the best of my knowledge, maternal effects on offspring 
susceptibility to pathogens have not been shown in response to 
global-change drivers so far.

For a number of species, significant CO
2
 × genotype interac-

tions for biomass and reproductive output were detected, while 
most species did not show such interactions (Lau et  al., 2007). 
Maternal effects of CO

2
 enrichment were rarely studied on differ-

ent genotypes within a species or on different plant types within a 
population. Maternal CO

2
 concentration interacted significantly 

with genotype for germination success in offspring of wild popula-
tions of A. thaliana that originated from different environments 
(Andalo et al., 1996). Some genotypes germinated at lower rates 
when seeds were produced under high maternal CO

2
 concentra-

tion, while for other genotypes no differences among maternal CO
2
 

treatments were observed.
The objective of the current study was to assess potential mater-

nal effects of elevated CO
2
 on performance of offspring of the 

Mediterranean legume Onobrychis crista-galli (L.) Lam. (cock’s 
comb sainfoin) under ambient climate and CO

2
 conditions. Mother 

plants were grown in an original experiment with species-rich 
assemblages under three different CO

2 
concentrations that spanned 

a range between pre-industrial and future levels (280, 440, and 
600 ppm CO

2
). O. crista-galli was the most responsive species to 

CO
2
 enrichment in the original experiment, with an increase of 

30–150% in number and mass of fruits and seeds per individual 
at elevated CO

2
 (Grünzweig and Körner, 2001a). Specific aims of 

the study were (1) assessing maternal effects of elevated CO
2
 on 

seedling emergence, growth, and development of progenies with 
and without consideration of functionally diverging plants types 
within the same population of O. crista-galli; (2) analyzing suscep-
tibility of progenies to the fungal disease powdery-mildew under 
natural infection.

Materials and methods
Onobrychis crista-galli is a common annual legume in the deserts, 
shrublands, and grasslands of the Middle East and northern 
Africa. It is one of the larger annual legumes in the northern Negev 
of Israel, and has a low to intermediate degree of nodulation 

with symbiotic dinitrogen fixing bacteria under natural condi-
tions (Hely and Ofer, 1972; Atallah et al., 2008). The species was 
characterized as being relatively mesic according to an analysis 
of reproductive traits along an aridity gradient (Ehrman and 
Cocks, 1996).

Seeds of O. crista-galli were collected at the Lehavim Long-Term 
Ecological Research (LTER) site in the semi-arid northern Negev, 
Israel (400 m a.s.l., 31º21′N, 34º51′E; Mediterranean climate, with 
mild winters and 300 mm precipitation, hot summers, and no rain) 
in 1996–1997. Mother plants were grown on native light lithosol as 
part of a species-rich community in model ecosystems (large con-
tainers of 100 cm × 70 cm surface area and 35 cm depth) subjected 
to three CO

2
 treatments (280 ppm, pre-industrial CO2; 440 ppm, 

CO2 concentration expected by the year ∼2025 according to the 
IPCC SRES scenario A1B; 600 ppm CO2, expected by the years 
2060–2075; IPCC, 2007). Model ecosystems were placed in growth 
chambers, and were subjected to a dynamic climate simulation 
over the entire growing season of 5 months. Climate simulations 
included weekly adjustment of light intensity, temperature, precipi-
tation, and relative air humidity to the average natural conditions 
at the Lehavim LTER site (for more details see Grünzweig and 
Körner, 2001b). CO

2
 treatments were replicated by three model 

ecosystems in each of the three growth chambers (one chamber 
per CO

2
 treatment). Chamber effects were minimized by a random 

weekly reallocation of CO
2
 treatments to chambers (Grünzweig and 

Körner, 2001b). Pseudoreplication could be prevented by weekly 
rearranging position and orientation of model ecosystems within 
chambers. Reallocation of chambers and repositioning of model 
ecosystems were performed 23 times in total during the experi-
ment. Mother plants did not show any disease symptoms. Following 
seed maturation at the end of the growing season 1997, seeds were 
collected, stored for 28 months at room temperature and frozen 
thereafter at −20°C for preservation.

This seed stock was used for experiments during the growing 
seasons of 2005, 2006, and 2007, i.e., each year seeds were randomly 
chosen from the same stock to study first-generation offspring per-
formance. Each year, seeds from the three original CO

2
 treatments 

were slightly scarified with sandpaper, sown into soil collected at 
the Lehavim LTER site, and offspring seedlings were grown under 
ambient CO

2
 conditions (∼380 ppm). Plants were grown in trays 

with conical compartments of 13 cm depth and 420 cm3 volume 
in 2005 and of 15 cm depth and 320 cm3 volume in 2006 and 2007 
(one seedling per compartment; Quickpot, HerkuPlast-Kubern, 
Ering/Inn, Germany). Trays were placed in a net-house facility at 
the Faculty of Agriculture, Food and Environment, and subjected 
to ambient conditions, except for precipitation. Daily average tem-
perature during the main growing season varied between 12.5°C in 
January and 18.0°C in April, with average monthly temperatures 
varying among years by up to 1.5°C. The net-house decreased 
photosynthetic photon flux density (PPFD) by about 10% relative 
to total incoming PPFD. To adjust precipitation to the semi-arid 
conditions at the Lehavim LTER site, rainfall was intercepted by a 
transparent polyethylene sheet that was set up only during major 
rain events. Water was added to trays at 4-days intervals in 2005 
and at 6-day intervals in 2006 and 2007. These intervals allowed 
transient surface dry-out of the soil as common under field condi-
tions (Grünzweig and Körner, 2001b). Plants were sown in January 
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Seed size was recorded as air-dry mass for each individual seed 
after seed moisture was adjusted in a growth chamber at 22–24°C 
and 40–60% relative humidity for 24 h. Seedling emergence was 
determined at the first aboveground appearance of the cotyledons. 
Anthesis was defined as opening of the first flower of an individ-
ual plant. Biomass was not analyzed in 2007 because plants were 
harvested only after desiccation and seed maturation to record 
offspring seed size.

Powdery-mildew naturally infected seedlings in all 3 years. The 
pathogen was identified as Erysiphe martii Lév, which widely infects 
Onobrychis plants of different species in Israel (Rayss, 1940) and 
elsewhere (Mühle and Frauenstein, 1970; Karaboz and Öner, 1982; 
Amano, 1986). In a preliminary test in 2005, disease severity was 
estimated for each leaf of each plant by rating cover of fungal mat 
on an increasing scale from 0 to 3 (from no cover to full cover by 
fungal mat, respectively) at one point in time. Disease severity was 
more profoundly assessed in 2006 and 2007 by assigning a sever-
ity value to each leaf at various measuring dates according to the 
following scale: 0 (0% leaf cover by fungal mat), 0.05 (1–5%), 0.2 
(6–20%), 0.5 (21–50%), 1.0 (51–100%). For both ways of rating 
fungal mat cover, the values of all leaves of a plant were added up 
and divided by the number of leaves to express disease severity at 
the plant level on a scale ranging from 0 to 1. Area under disease-
progress curves (AUDPC) was calculated over the period between 
disease onset (i = 1) and the last record of disease progress (i = n; 
Figure 2), as follows (Shaner and Finney, 1977):

1

2 1
1

DS DSi i i
i

n

L−( )−
=
∑

	
(1)

where DS
i
 is disease severity at the end of period i and L

i
 is the 

length of period i in days. Disease onset was defined here as the 
day when symptoms became visible on leaves.

Data were analyzed for the following two cases: Case 1 assumed 
a homogeneous population without diverging plant types. This is 
the common case for most studies where no phenotypic or genetic 
information exists to allow splitting up populations into different 
plant types. Case 2 shows the current situation where distinct plant 
types can be defined in the population, here by flower color. Plant 
performance and disease severity were analyzed by one-way mixed-
model ANOVA for Case 1 and two-way mixed-model ANOVA for 
Case 2. The one-way ANOVA for Case 1 included maternal CO

2
 as 

fixed factor and model ecosystem nested within maternal CO
2
 as 

random factor. The random factor was a consequence of sampling 
seeds from the three model ecosystems per maternal CO

2
 treat-

ment in the original CO
2
-enrichment experiment. To test potential 

interactions of maternal CO
2
 with plant type in Case 2, a two-way 

ANOVA was performed that included maternal CO
2
, plant type 

and their interactions as fixed factors, and model ecosystem nested 
within maternal CO

2
 and the interaction of model ecosystem and 

plant type as random factors. Homogeneity of variance was tested 
by Bartlett’s test, and data transformation (Box–Cox) was carried 
out where necessary. In disease-progress studies, time was added 
as an additional fixed factor to the analysis. Multiple comparisons 
among levels of fixed factors were performed by the Tukey–Kramer 
honestly significant difference (HSD) test. ANCOVAs with seed 
size as covariate showed the same results as the above mentioned 

each year, and were harvested close to peak season (but after fruit 
set) in 2005 and 2006, and at the end of the season upon plant 
dehydration in 2007.

In addition to maternal CO
2
, the inclusion of plant type in the 

experimental design was tested. The following two plant types 
were detected in the offspring population: a pink-flowering type 
and a white-flowering type, designated “Type P,” and “Type W,” 
respectively (Figure 1). Both plant types belonged to the variety O. 
crista-galli ssp. crista-galli var. crista-galli (L.) Lam. (Heyn, 1962). 
In addition to petal color, plant types proved to differ in various 
characteristics, such as seed size, time to seedling emergence, time 
to anthesis, disease severity, biomass, and fecundity (see Results). 
Plant type as a source of variation was not considered in the original 
CO

2
-enrichment experiment, although both types were present in 

all model ecosystems. Seeds produced by mother plants at the end of 
the original experiment were collected in bulk from each model eco-
system, irrespective of plant type (Grünzweig and Körner, 2001b). 
Therefore, identity of seeds regarding plant type was unknown in 
the current study, and assignment of plant type to maternal CO

2
 

concentration was random. In all cases, each plant-type covered 
at least one-third of all plants per experimental year and maternal 
CO

2
 treatment (Table 1).

Figure 1 | Onobrychis crista-galli (cock’s comb sainfoin) plant with 
developing fruits (A), white-flowering plant type showing symptoms of 
powdery mildew (B), pink-flowering plant type (C).

Table 1 | Fraction of plant types randomly allocated to maternal CO2 

treatments in the three experimental years.

Maternal	 2005	 2006	 2007 

CO2 (ppm)

	 Type P	 Type W	 Type P	 Type W	 Type P	 Type W

280	 0.47	 0.53	 0.68	 0.32	 0.67	 0.33

440	 0.44	 0.56	 0.36	 0.64	 0.35	 0.65

600	 0.45	 0.55	 0.46	 0.54	 0.38	 0.62
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in high-CO
2
 progenies (maternal CO

2
 concentrations of 440 and 

600 ppm) than in low-CO
2
 progenies (maternal CO

2
 concentration 

of 280 ppm) at peak season in 2005 (Tables 2 and 3). High-CO
2
 

offspring also produced 15% less fruits than low-CO
2
 offspring. In 

2006, when plants were growing in smaller compartments than in 
2005 (see Materials and Methods), CO

2
 progenies did not differ in 

shoot biomass. Maternal CO
2
 did not significantly affect phenol-

ogy (emergence, anthesis) and reproductive output (fruit and seed 
production) in 2006 and 2007 (Table 3).

Detailed measurements of disease progress and severity were 
conducted in 2006 and 2007, a heavy-infection year with disease 
incidence of 100% and a low-infection year with disease incidence 
of 81%, respectively. Twelve days after disease onset in 2006 (59 days 
after sowing, DAS), disease severity was 40% higher in high-CO

2
 

compared with low-CO
2
 progenies (Figure  2, insert; Table  4). 

Disease severity increased with time, but differences between 
maternal CO

2
 treatments were maintained 69 DAS. The AUDPC 

over 65 days of disease progress was 21% higher in high-CO
2
 than 

in low-CO
2
 progenies (Figure 3; Table 4). In 2007, disease severity 

was low and was not affected by maternal CO
2
. Preliminary one-

time recording of disease severity in the heavy-infection year 2005 
showed no impact of maternal CO

2
 (Table 4). However, when a set 

of individuals of unknown plant type (no record of flower color) 
was added to the Case 1 analysis, disease severity was 24% higher 
in high-CO

2
 than in low-CO

2
 progenies.

Case 2 (distinguishing between plant types)
Case 2 presents results of the current situation where diverging 
plant types are distinguished within the population. Maternal CO

2
 

as analyzed under the assumptions of Case 2 affected fruit produc-
tion, and interacted with plant types on seed size and disease sever-
ity, but had no effect on offspring biomass and phenology. Fruit 
production of high-CO

2
 offspring was lower (marginally signifi-

cant) than fruit production of low-CO
2
 offspring across both plant 

types in 2005 (Table 3). Maternal CO
2
 had no statistically significant 

impact on plant performance in 2006 and 2007. Seeds of the pink-
flowering plant type (Type P) that matured under high-CO

2
 (440 

and 600 ppm) and all seeds of the white-flowering type (Type W) 
were smaller by 20% on average than Type P seeds produced under 
low CO

2
 (280 ppm; Tables 2 and 3).

Disease severity was 73% higher in high-CO
2
 progenies than 

in low-CO
2
 progenies of plant type P 59 DAS in 2006 (marginally 

significant interaction; Figure 2; Table 4). Considering the entire 
period of infection by the pathogen (AUDPC), high-CO

2
 progenies 

of Type P were 30% more diseased than low-CO
2
 progenies of the 

same plant type (Figure 3; Table 4). Maternal CO
2
 concentration 

had no impact on disease progress and severity in offspring of 
Type W, and did not affect disease onset in any plant type. In 2007, 
maternal CO

2
 interacted with plant type for disease severity 63 DAS 

(marginally significant).
Plant types differed in phenology, biomass, reproductive output, 

and disease severity. Seedlings of Type P emerged 1  day earlier 
on average in 2006 and 1.5 days earlier in 2007 compared with 
seedlings of Type W (Tables 2 and 3). In addition, Type P plants 
flowered 5 days earlier than plants of Type W in 2006, but not in 
2007. Type P plants had 33 and 56% larger shoot biomass than Type 
W plants in 2005 and 2006, respectively (Tables 2 and 3). Seed size 

ANOVAs, and were not presented here (the covariate was statis-
tically non-significant in almost all analyses). Disease incidence 
(proportion of diseased plants) was analyzed by a Chi-square test.

Sample size (number of individuals per model ecosystem) varied 
greatly according to seed availability. For Case 1 (plant type not 
included as a factor), sample size ranged from 27 to 36 for deter-
mination of seed size in mother plants, from 3 to 12 for variables 
measured in 2005 and 2007, and from 11 to 21 in 2006. Sample size 
for Case 2 (plant type included as a factor) was lower. In 2005, plant 
type was unknown for 25% of the individuals because of technical 
reasons. To enable a comparison with case 2, the analysis of case 
1 in 2005 included only individuals of known plant type, unless 
stated differently. Statistical analysis was conducted by JMP 7.0.1 
(SAS, Cary, NC, USA).

Results
Case 1 (disregarding plant types)
Case 1 simulates the common scenario where no diverging plant 
types are known. When plant types were disregarded maternal CO

2
 

had a significant impact on offspring biomass and fruit production 
and on disease severity. Shoot biomass was lower by 17% on average 

Figure 2 | Disease progress as affected by maternal CO2 concentration 
(280, 440, 600 ppm) and plant type (P = pink flowering, W = white 
flowering) in 2006 and 2007 (Case 2). Inserts show disease-progress 
affected by maternal CO2 only (Case 1). Disease severity was determined for 
each leaf and was subsequently added up for all leaves of a plant and 
expressed on a scale ranging between 0 and 1 (see Materials and Methods). 
Mean ± 1 SE, n = 3 model ecosystems. Non-identical letters indicate 
statistically significant differences among combinations of maternal CO2 
treatments and plant type (main panels) or among maternal CO2 
concentrations (inserts) as analyzed by the Tukey–Kramer HSD test (P ≤ 0.05 
within mixed models, see Table 4). Sixty-three days after sowing in 2007, 
disease severity was significantly higher in 440-ppm progenies of plant-type 
W compared with all Type P progenies (Tukey–Kramer HSD test, P ≤ 0.05).
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number of seeds per individual was 75% higher on average in Type 
P than in Type W plants in 2006. Despite lower fruit production in 
Type P, the amount of seeds per individual was similar in offspring 
of both plant types in 2007, due to higher seed production per fruit 
in Type P (data not shown). Seeds of Type P were 23% larger on 

explained only 11% of offspring shoot biomass in 2006 (P < 0.001, 
r2 = 0.11, n = 119; seed size was not determined in 2005). In 2006, 
the number of fruits per individual was 50% higher on average in 
Type P than in Type W plants, while in 2007, Type P plants had 
15% less fruits than Type W plants (marginally significant). Total 

Table 3 | Probability (P) values from mixed-model ANOVA of the size of seeds developed on mother plants and of performance of offspring.

Variable	E xp. year	 Case 1	 Case 2

		  Maternal CO2	 Maternal CO2	 Plant type	 Maternal CO2 

					     × Plant type

Mother plants

Seed size	 Pre-exp.	 0.131	 0.282	 0.004	 0.031

Offspring					   

Seedling emergence	 2006	 0.880	 0.698	 0.046	 0.696

	 2007	 0.159	 0.353	 0.020	 0.242

Anthesis	 2006	 0.499	 0.562	 0.023	 0.796

	 2007	 0.988	 0.935	 0.149	 0.809

Shoot biomass	 2005	 0.017	 0.146	 0.003	 0.992

	 2006	 0.810	 0.662	 <0.001	 0.948

Number of fruits per individual plant	 2005	 0.039	 0.051	 0.839	 0.182

	 2006	 0.815	 0.780	 0.003	 0.422

	 2007	 0.869	 0.965	 0.087	 0.484

Number of seeds per individual plant Seed size 	 2006	 0.691	 0.646	 <0.001	 0.467

	 2007	 0.867	 0.845	 0.309	 0.221

	 2007	 0.487	 0.439	 <0.001	 0.224

Mixed models consisted of one-way ANOVA (Case 1) or two-way ANOVA (Case 2), and only fixed effects were presented (for random effects, see Materials and 
Methods). P values ≤ 0.05 were indicated in bold digits, P values ≤ 0.1 and > 0.05 were underlined.

Table 4 | Probability (P) values from mixed-model ANOVA of disease severity and area under disease-progress curve (AUDPC) in the experiments of 

2006 and 2007.

Year	 Variable	 Time (days	 Case 1	 Case 2 

		  after sowing)

			   Maternal CO2	 Maternal CO2	 Plant type 	 Maternal CO2 × Plant type

2005	 Disease severity	 76	 0.606z	 0.780	 0.005	 0.759

2006	 Disease onset		  0.560	 0.897	 0.067	 0.714

	 Disease severity	 59	 0.008	 0.220	 <0.001	 0.304

		  69	 0.020	 0.328	 0.001	 0.095

	 AUDPC		  0.007	 0.411	 <0.001	 0.008

2007	 Disease severity	 55	 0.631			 

		  63	 0.413	 0.755	 0.001	 0.081

		  69	 0.365	 0.621	 0.004	 0.147

		  76	 0.514			 

	 AUDPC		  0.457	 0.894	 0.001	 0.201

Mixed models consisted of one-way ANOVA (Case 1) or two-way ANOVA (Case 2), and only fixed effects are presented (for random effects, see Materials and Methods).  
A more complex model with time as additional factor resulted in interactions between time and other factors (data not shown). P values ≤ 0.05 were indicated in 
bold digits, P values ≤ 0.1 and > 0.05 were underlined. Empty fields and missing time points represent variables which failed to meet the assumptions of ANOVA.  
zIncluding only individuals with known plant type in Case 1. If individuals of unknown plant type (flower color was not determined) were also included, the ANOVA 
of disease severity resulted in P < 0.001. In the latter case, disease severity was significantly higher for high-CO2 (440 and 600 ppm maternal CO2) than for low-CO2 
progenies (280 ppm maternal CO2; Tukey–Kramer HSD test, P ≤ 0.05).
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CO
2
 can impair reproductive output and susceptibility to diseases 

in offspring. The effect of elevated CO
2
 still needs to be tested 

when both mother plants and offspring are grown at elevated CO
2
. 

However, the consequences of maternal CO
2
 for progeny may be 

independent of the CO
2
 concentration during progeny develop-

ment, as shown for a majority of temperate legume and grass species 
(Fordham et al., 1997; Steinger et al., 2000; Edwards et al., 2001; 
Lau et al., 2008).

Maternal effects and their modification by plant types and 
growing conditions
Considering Case 1, elevated CO

2
 imposed on mother plants 

reduced offspring shoot biomass and reproductive output (number 
of fruits) compared with low CO

2
 in 2005. In addition, severity of 

the fungal disease powdery mildew was higher in high-CO
2
 than in 

low-CO
2
 offspring in the heavy-infection year 2006, and the same 

results was obtained in 2005, if all individuals were considered. 
However, maternal effects of elevated CO

2
 in Case 1 were often 

modified when plant types were distinguished in Case 2. The effect 
of maternal CO

2
 on offspring biomass in 2005 was not significant 

anymore when the population was divided into two plant types. The 
seemingly maternal effect in the normal case when no function-
ally diverging plant types are obvious (Case 1) turned out to be a 
plant-type effect in Case 2. Changes in statistically significant main 
effects from maternal CO

2
 in Case 1 to plant type in Case 2 could 

be caused by a different distribution of the two plant types among 
maternal CO

2
 treatments. However, this was not the case in 2005 

where plant types were distributed at almost identical proportions 
among maternal CO

2
 treatments (Table 1). In contrast to offspring 

biomass, lower reproductive output in high-CO
2
 compared with 

low-CO
2
 offspring in 2005 was significant in both Case 1 and Case 

2, with no obvious plant-type effect in the latter case. Fruit produc-
tion is of particular importance for dispersal of O. crista-galli, since 
the indehiscent, spiny fruit is the dispersal unit of this species. Less 
fruits in high-CO

2
 progeny might result in less dispersal and lower 

colonization potential compared with low-CO
2
 progeny.

A maternal CO
2
 effect on disease severity in Case 2 was recorded 

only in Type P plants. High maternal CO
2
 increased disease sever-

ity above the level obtained for low maternal CO
2
 in the more 

resistant plant-type P, but not in the more susceptible plant-type 
W. Therefore, high-CO

2
 reduces the relative advantage of Type P 

over Type W and might impair its fitness through maternal effects.
Additionally, Case 2 revealed CO

2
 effects on seed size that were 

not observed in Case 1. The larger size of seeds on Type P plants 
from low CO

2
 could have contributed to some of the growth and 

disease-resistance effects observed on offspring of this combination 
of CO

2
 and plant type.

Interannual variation in maternal effects
Maternal effects of elevated CO

2
 on plant performance were 

recorded in 2005, but not in the following 2 years. Since seeds 
were randomly selected from the same stock for each experimental 
year, it can be assumed that interannual variation in maternal 
effects were related to environmental factors, not to a biased seed 
source. On the one hand, interannual variation in climatic con-
ditions might influence maternal effects (Gendloff et al., 1986). 
On the other hand, growing conditions, such as larger growth 

average than seeds of Type W. Root biomass and root/shoot ratio 
were not significantly affected by maternal CO

2
 and plant type 

(data not shown).
Type P plants were less affected by the disease than Type W 

plants in all three experimental years (Figures 2 and 3; Table 4). 
In 2005, the reduction in disease severity in Type P compared with 
Type W plants amounted to 30% (0.47 vs. 0.61 on average across 
maternal CO

2
 treatments, scale between 0 and 1, 76 DAS). Over the 

entire disease period (AUDPC) in 2006 and 2007, Type P plants 
were 24 and 86% less affected by the disease than Type W plants. 
Fungal mats became visible on plants 46–48 DAS in 2006, with 
disease onset being 1 d earlier in Type P than in Type W plants 
(marginally significant).

Discussion
This study on the Mediterranean legume O. crista-galli showed that 
atmospheric CO

2
-enrichment potentially exerts maternal effects on 

the next generation’s performance and, most notably, also on its 
susceptibility to natural infection by a fungal pathogen. However, 
maternal effects on susceptibility to diseases in offspring might 
differ among plant types within a population. Maternal effects of 
global change on disease severity in plants have not been shown 
so far, but they could affect the species’ performance and fitness 
under future conditions.

Environmental maternal effects have evolutionary consequences 
when offspring fitness is influenced by the maternal environment 
(Rossiter, 1996; Galloway and Etterson, 2007; Wolf and Wade, 
2009). This study presents some evidence that rising atmospheric 

Figure 3 | Area under disease-progress curve (AUDPC) as affected by 
maternal CO2 concentration (280, 440, 600 ppm, Case 1; left panels) and 
maternal CO2 × plant type (P = pink flowering, W = white flowering, Case 
2; right panels) in 2006 and 2007. AUDPC was calculated according to Eq. 1. 
Mean ± 1 SE, n = 3 model ecosystems. Non-identical letters indicate 
statistically significant differences among maternal CO2 concentrations (left 
panels) or combinations of maternal CO2 treatments and plant type (right 
panels) as analyzed by the Tukey–Kramer HSD test (P ≤ 0.05 within mixed 
models, see Table 4).
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compartments which resulted in larger plants in 2005 than in 2006 
and 2007 might also influence maternal effects. Regarding disease 
severity, degree of infection seemed to affect interactions between 
maternal CO

2
 and plant type. High maternal CO

2
 increased dis-

ease severity in the more resistant plant type in a heavy-infection 
year, but had not in a low-infection year. The year 2005 was also 
characterized by heavy infection by the disease, but measure-
ments of disease severity in that year were rather preliminary, and 
potential differences in severity among maternal CO

2
 treatments 

went undetected.
The study investigated natural infection of seedlings which, on 

the one hand, is of relevance for pathogenesis under real field condi-
tions. On the other hand, homogenous infection of plants had to 
be assumed to allow for proper analyses of findings. Studies with 
controlled infection could provide further information on maternal 
effects on susceptibility to fungal and other diseases.

Potential mechanisms of maternal CO2 effects
Maternal effects are a mechanism for phenotypic adaptation to 
environmental variation (Donohue and Schmitt, 1998; Mousseau 
and Fox, 1998). For example, life history of progenies in a forest 
understory was largely determined by the environment encountered 
by mother plants, and maternal effects in this context represented 
adaptive plasticity that was transmitted to offspring (Galloway and 
Etterson, 2007). Several potential mechanisms for environmental 
maternal effects could be discussed regarding the results obtained 
in this study. Mother plants of Type P that developed at low CO

2
 

could have transmitted traits related to growth and reproduction 
to the next generation. However, those plant could not transmit 
traits for disease susceptibility, since the disease was not evident 
in the original CO

2
 experiment. Type P seeds that matured on 

mother plants at high-CO
2
 were smaller than seeds that matured 

at low CO
2
, which could result from a trade-off between total seed 

production and the investment in each seed at high vs. low CO
2
. The 

smaller high-CO
2
 seeds can give rise to reduced seedling vigor on 

the one hand, and less investment in defense mechanisms against 
infection by pathogens on the other hand (Herms and Mattson, 
1992). Smaller nitrogen stores, as obvious in high-CO

2
 O. crista-galli 

seeds across plant types (Grünzweig and Dumbur, in press), might 
provide less nitrogen-based defense compounds in seeds and subse-
quently in young offspring (Glen et al., 1990; Agrawal, 2002). Other 
mechanisms might involve inherited epigenetic changes affecting 
interactions between offspring and the abiotic or biotic environ-
ment, including pathogens (Bossdorf et al., 2008). Such epigenetic 
changes might include yet unspecified mechanisms related to plant 
defense in offspring (Molinier et al., 2006).

No direct transfer of powdery-mildew propagules from the 
mother plant to seeds is to be expected, since the disease was not 
apparent on mother plants and the pathogen is not seed-borne. This 
also excludes the possibility of a selection effect for more disease 
resistance during development of mother plants. Although atmos-
pheric CO

2
 enrichment can impose selective pressure on annual 

C
3
 plants (Ward and Kelly, 2004), such an effect was not obvi-

ous on growth and reproductive traits. Offspring of the 440-ppm 
treatment were not superior to offspring of the other treatments, 
despite the fact that this CO

2
 concentration was closest to ambient 

CO
2
 of ∼380 ppm.

Plant types
In many cases, diverging plant types are not obvious when het-
erogeneous natural populations are randomly sampled. In this 
study, plant types within this population of O. crista-galli could 
be distinguished by differences in flower color (Figure 1). It turned 
out that the two plant types diverged in all measured variables of 
plant performance and disease severity, at least in some years. Both 
plant types were part of the same population, and, thus, represent 
population-level functional diversity. Without a clear phenotypic 
marker, many studies are necessarily affected by unknown underly-
ing interference by the variability among plant types, unless detailed 
genetic analyses are carried out.

The modifying effect of dividing the population of O. crista-
galli into plant types on maternal CO

2
 effects derives mainly from 

the fact that the two plant types diverge in most variables of plant 
performance and susceptibility to the disease. Mostly, Type P plants 
were more vigorous than Type W plants, and disease severity in Type 
P plants was consistently less pronounced than in Type W plants.

This study also provides a potential explanation for the co-
existence of the more disease-resistant Type P and the more sus-
ceptible Type W at the same site. In both 2006 and 2007, emergence 
and initial plant growth was accelerated in Type P compared with 
Type W seedlings. However, a greater number of leaves produced by 
Type W plants during mid-season of 2007 indicated that vigor of the 
latter plant type was at least as high as vigor of Type P plants in nearly 
disease-free years. This might have evolutionary consequences. In a 
year with a high disease rate (2006), Type P produced more fruits 
than Type W, but in a year with low disease rates (2007), Type W 
produced more fruits (marginally significant). The opposed relative 
success in fruit production between plant types in contrasting years 
should result in alternate predominance in dispersal success. This fact 
may also lead to higher mean fitness of the overall population in that 
location. However, rising atmospheric CO

2
 might reduce the relative 

advantage of plant-type P in heavy-infection years as obvious in 
2005, which could negatively affect dispersal success in the long term.

Conclusion
Elevated CO

2
 applied to mother plants potentially affects offspring 

performance and susceptibility to a fungal pathogen. However, 
maternal effects differed among years, and, notably, were modified 
when the plant population was divided into functionally diverg-
ing plant types. Environmental maternal effects are a considerable 
source of variation in offspring trait-expression, and their conse-
quences for population fitness and for interactions with pathogens 
could be of high significance for global-change impacts on plant 
communities.
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