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Initiation of RNA polymerase II transcription signals the beginning of a series of physically
and functionally coupled pre-mRNA processing events that transform an RNA transcript
into a highly structured, mature ribonucleoprotein complex. With such a complexity of co-
transcriptional processes comes the need to identify and degrade improperly processed
transcripts. Quality control of mRNA expression primarily involves exonucleolytic degrada-
tion of aberrant RNAs. RNA silencing, on the other hand, tends to be viewed separately
as a pathway that primarily functions in regulating endogenous gene expression and in
genome defense against transposons and viruses. Here, we review current knowledge
of these pathways as they exist in plants and draw parallels to similar pathways in other
eukaryotes. We then highlight some unexplored overlaps that exist between the RNA
silencing and RNA decay pathways of plants, as evidenced by their shared RNA substrates
and shared genetic requirements.
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EXONUCLEOLYTIC RNA QUALITY CONTROL
Mature mRNA formation involves a series of inter-dependent and
physically coupled co-transcriptional processing events. With such
a complexity of co-transcriptional processes comes the need to
identify and degrade improperly processed transcripts. Aberrant
transcripts are not just a misuse of cellular resources, but could
potentially be very damaging if translated into atypical proteins.

Exonucleolytic RNA turnover generally begins with the
removal of the poly(A) tail, and proceeds from both the 5′ and
3′ ends of the transcript. In one pathway, the body of the RNA
is degraded in a 3′–5′ direction by a multi-subunit complex of
exoribonucleases called the exosome. The diversity of proteins
that compose a functional exosome varies depending both on
cellular conditions, and the nature of the RNA substrate (Lange
et al., 2009). This diversity allows for controlled degradation of
RNA, for example in the case of 5.8S rRNA synthesis, where lim-
ited, but precise 3′–5′ processing is required (Belostotsky, 2009).
More commonly, however, the exosome carries out complete RNA
degradation, such as for the turnover of tRNAs, small nuclear
RNAs (snRNAs), small nucleolar RNAs (snoRNAs), and mRNAs
(Allmang et al., 1999, 2000; Bousquet-Antonelli et al., 2000; Libri
et al., 2002). The second pathway of RNA turnover involves
removal of the 5′ 7-methylguanosine cap, followed by proces-
sive digestion by a 5′–3′ exoribonuclease. In Arabidopsis, XRN4
is the predominant cytoplasmic exoribonuclease, while XRN2 and
XRN3 have additional roles in degrading transcripts within the
nucleus (Kastenmayer and Green, 2000; Gy et al., 2007).

While polyadenylation by canonical poly(A) polymerases typ-
ically stabilizes transcripts, in some cases, polyadenylation by

non-canonical poly(A) polymerases can flag transcripts as targets
for 5′ or 3′ exonucleolytic degradation (Anderson and Wang, 2009;
Lange et al., 2009).

NONSENSE-MEDIATED DECAY
The nonsense-mediated decay (NMD) pathway is responsible for
degrading transcripts with premature termination codons (PTCs)
that normally arise through improper splicing (Rebbapragada and
Lykke-Andersen, 2009). In doing so, NMD prevents the formation
of potentially deleterious C-terminally truncated proteins.

The UP-FRAMESHIFT gene family, consisting of three mem-
bers (UPF1–3), is conserved between yeast, plants, and humans.
The first member, UPF1, is the most conserved and in metazoans
at least, ultimately directs transcript degradation following phos-
phorylation by SMG1 with assistance from UPF2 and UPF3 (Page
et al., 1999; Yamashita et al., 2001; Kashima et al., 2006). In accor-
dance with this role, Arabidopsis upf1 mutants over-accumulate
transcripts containing PTCs (Yoine et al., 2006; Hayden and Jor-
gensen, 2007). In plants, as in mammals, tethering of UPF1 to
transcripts targets them for NMD (Lykke-Andersen et al., 2000;
Kertesz et al., 2006). How termination codons are recognized as
premature is a topic of intense study, and as yet remains unre-
solved. In plants, NMD degrades transcripts with either a long 3′
UTR or with a termination codon in close proximity to an exon
junction (Kertesz et al., 2006; Kerenyi et al., 2008).

In mammals, early studies showed that the presence of an exon
junction complex (EJC) greater than 50 nucleotides (nt) down-
stream of a termination codon was capable of triggering NMD
(Le Hir and Séraphin, 2008). A model for PTC definition was thus
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proposed to involve the position of the termination codon relative
to EJCs during early rounds of translation (Kashima et al., 2006).
UPF2 and UPF3 are bound to the core EJC, while a complex of
proteins including SMG1 and UPF1 are bound to the terminat-
ing ribosome. The EJC (including UPF2 and UPF3) is normally
removed during these early rounds of translation, except if the EJC
is greater than 50 nt from the termination codon. In this case, the
EJC remains present following translation termination, allowing
UPF2 to bind to UPF1 and trigger SMG1 to phosphorylate UPF1,
which ultimately leads to RNA decay (Kashima et al., 2006).

However, this model does not account for NMD in Saccha-
romyces cerevisiae, which has few intron-containing transcripts.
Furthermore, subsequent studies on intronless mammalian and
plant genes have shown that transcripts with long 3′ UTRs can
be targeted for NMD despite the absence of a downstream EJC
(Chan and Yu, 1998; Rajavel and Neufeld, 2001; Buhler et al.,
2004; LeBlanc and Beemon, 2004). An alternative model, termed
the faux 3′ UTR model, posits that the EJC is not a requisite for
NMD, but rather that it is the length of the 3′ UTR that marks
the transcript for NMD (Amrani et al., 2004). In the case of a
proper termination codon, stimulatory factors present in the 3′
UTR may promote efficient termination of translation. However,
when the distance between these 3′ UTR factors and the terminat-
ing ribosome becomes too great, termination is stalled, and NMD
is triggered.

In yeast, it has been shown that ribosomes do not dissociate
from mRNA when terminating at a PTC, possibly because they
cannot receive the termination-stimulating factor (Amrani et al.,
2004). The nature of the termination-stimulating factor is not
fully known, but studies by Behm-Ansmant et al. (2007) have
shown that artificial tethering of poly(A)-binding protein (PABP)
close to a PTC efficiently suppresses NMD, suggesting that PABP
may be one possible termination-stimulating factor. To account
for the mammalian involvement of the EJC, it has been suggested
that UPF1 phosphorylation by SMG1 may be made more efficient
by the binding of an EJC that remains intact following the early
rounds of translation (Stalder and Muhlemann, 2008).

Although the issue of PTC definition remains contentious, it is
generally accepted to depend on an early pioneer round of trans-
lation, whereby a nuclear-localized ribosome scans the transcript
for PTCs. Support for the pioneer round of translation was pro-
vided by the discovery that most mammalian nonsense transcripts
are down-regulated in the nuclear fractions of cells (Urlaub et al.,
1989; Belgrader et al., 1994; Kugler et al., 1995; Carter et al., 1996).
Furthermore, various forms of evidence have demonstrated that
NMD acts primarily on transcripts bound at their 5′ ends by the
cap-binding complex (CBC; Ishigaki et al., 2001; Lejeune et al.,
2002; Hosoda et al., 2005). The CBC is replaced by eukaryotic
translation initiation factor 4E (eIF4E) soon after nuclear export,
in order to support the bulk of translation. That PTC transcripts
might be detected in the nucleus has led many to believe that
translation occurs there also (Wilkinson, 2003). Others believe
that scanning occurs in both the nucleus and the cytoplasm, or
that translation occurs during nuclear export, when mRNAs are
still associated with the nucleus (Chang et al., 2007). Following
recognition of a PTC, transcripts are generally sent down the typ-
ical deadenylation and decapping decay pathways. In Drosophila,

degradation is usually initiated by endonucleolytic cleavage fol-
lowed by 5′–3′ and 3′–5′ exonucleolytic degradation of the cleavage
fragments (Gatfield and Izaurralde, 2004). In humans, there is also
evidence for the existence of endonucleolytic cleavage of nonsense
transcripts (Eberle et al., 2009).

QUALITY CONTROL OF IMPROPERLY SPLICED TRANSCRIPTS
Unspliced or mis-spliced transcripts may be subject to several
different RNA decay pathways, with the specific pathway taken
depending on the nature of the mis-spliced or unspliced tran-
script. Transcripts containing introns that fail to be recognized by
the spliceosome are exported to the cytoplasm, just as an intron-
less transcript would be, where they are likely to be translated
and subject to NMD (He et al., 1993; Jaillon et al., 2008; Sayani
et al., 2008; Kawashima et al., 2009). Evidence for the widespread
use of NMD in degrading unspliced transcripts has come from
studies by Jaillon et al. (2008), who found that unspliced eukary-
otic introns rarely maintain the translation reading frame, and
thus result in premature termination and NMD. In yeast and
animal systems, intron-containing transcripts are recognized and
committed to splicing by formation of the commitment complex
(Legrain and Rosbash, 1989; Rain and Legrain, 1997; Galy et al.,
2004). Improper splicing will lead predominantly to 3′–5′ degra-
dation by the nuclear exosome, with a contribution from the 5′–3′
exonuclease-mediated decay pathway (Bousquet-Antonelli et al.,
2000; Hilleren et al., 2001).

Most studies tracing the fate of unspliced pre-mRNAs have been
conducted in yeast and animal systems, and little is known about
the processes that regulate the fate of unspliced transcript levels in
plants. Interestingly however, it has been shown that unspliced pre-
mRNAs accumulate in the nucleoli of Arabidopsis, together with
components of the NMD (Kim et al., 2009) and gene silencing
(Pontes and Pikaard, 2008) pathways. How these aberrant RNAs
are recognized is not known, but they are thought to induce gene
silencing or are exported from the nucleus into specialized pro-
cessing bodies (P-bodies), where the degradation phase of NMD
takes place (Kim et al., 2009).

RNA SILENCING
The gene silencing pathways of plants are characterized by dupli-
cated genes with unique, redundant, and/or overlapping functions.
They are crucial to regulating endogenous gene expression and
protecting plants from transposons and viruses. RNA-mediated
gene silencing pathways vary in their processing steps and their
target loci, but all share three features: (i) production of double-
stranded RNA (dsRNA), (ii) dicing of dsRNA by Dicer-like (DCL)
enzymes to generate small interfering RNA (siRNA) or microRNA
(miRNA), ∼21–24 nt in length, and (iii) siRNA- or miRNA-
directed execution of gene silencing. These small regulatory RNAs,
together with Argonaute (AGO) proteins, can direct either post-
transcriptional gene silencing (PTGS) by mRNA cleavage and/or
translational repression, or transcriptional gene silencing (TGS)
through DNA methylation and chromatin modifications. The pro-
duction of dsRNA can be brought about either by direct transcrip-
tion of an inverted repeat locus (Waterhouse et al., 1998; Smith
et al., 2000) or through the activity of an RNA-dependent RNA
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polymerase (RDR) on a single-stranded RNA template (Dalmay
et al., 2000; Mourrain et al., 2000).

Silencing of transgenes is a problem plaguing plant molecular
biologists aiming to achieve high and stable transgene expression.
Initial studies of transgene silencing in plants noted a correla-
tion between high expression levels and the induction of silencing
(Napoli et al., 1990; Smith et al., 1994; Elmayan and Vaucheret,
1996). It was proposed that gene silencing would be induced fol-
lowing a “quantitative aberration” in gene expression (Smith et al.,
1994; Elmayan and Vaucheret, 1996). While this model held true
in most cases, a report showing that equivalent transcription rates
could exist in both silenced and expressing plants, meant that
refinements to the model were needed (English et al., 1996). It
was proposed that specific RNA molecules may have qualitative
aberrations that lead to the induction of RNA silencing (English
et al., 1996), perhaps by acting as a template for an RDR and lead-
ing to the synthesis of dsRNA. Supporting this idea, it has been
shown that de-capped and improperly terminated read-through
transcripts are direct substrates for RDR6, the key RDR required
for transgene silencing in Arabidopsis (Gazzani et al., 2004; Luo
and Chen, 2007). Under high rates of transcription, these aberrant
RNA molecules would be more likely to accumulate as a result of
transcriptional errors, and would therefore become increasingly
likely to trigger the RNA silencing cascade. This so-called “thresh-
old model” accounts for both qualitative and quantitative aspects
of gene expression, and posits that excessive transcription can lead
to an accumulation of aberrant transcripts. These abnormal tran-
scripts would in turn increase the likelihood of being recognized
by an RDR and ultimately trigger RNA silencing.

GENETIC OVERLAPS BETWEEN RNA DECAY AND RNA
SILENCING
As more is learnt about the mechanisms of mRNA decay and
RNA silencing, it is becoming increasingly apparent that spatial
and functional overlaps exist between them (Figure 1). Similar
to siRNA-directed gene silencing that targets transposons and
viruses, miRNAs target endogenous transcripts as a way of nega-
tively regulating gene expression. In animals, some miRNA targets
are degraded in a similar way as NMD targets; via the deadenyla-
tion and decapping pathways (Bagga et al., 2005; Rehwinkel et al.,
2005; Behm-Ansmant et al., 2006; Eulalio et al., 2009). Accordingly,
the 5′–3′ exonuclease XRN1 and the decapping DCP1:DCP2 com-
plex are required for both NMD as well as miRNA-mediated gene
silencing of many metazoan mRNAs (Souret et al., 2004; Orban
and Izaurralde, 2005; Rehwinkel et al., 2005). In humans, UPF1
is involved in miRNA-directed transcript down-regulation, and
co-localizes with AGO1 and AGO2 in P-bodies (Jin et al., 2009).
The C. elegans UPF1 ortholog, SMG2, has also been shown to be
required for the maintenance of RNA silencing (Domeier et al.,
2000). In Arabidopsis, UPF1 is primarily involved in NMD but has
also been shown to play a role in inverted repeat-induced PTGS
(Arciga-Reyes et al., 2006).

Interestingly, a genome-wide analysis of UPF1 targets in Ara-
bidopsis found that in addition to many PTC-containing tran-
scripts, several non-coding RNAs are upregulated in upf1 mutants,
which, given the translational requirement of NMD, implicates
UPF1 in other additional RNA decay pathways (Kurihara et al.,

FIGURE 1 | Model for the relationship between RNA silencing and RNA

decay pathways. Exonucleolytic mRNA decay can be initiated by
deadenylation, followed by 3′ → 5′ degradation by the exosome, or
decapping, followed by 5′ → 3′ degradation by the XRN family of
exoribonucleases (closed arrows). Alternatively, RNA silencing can be
induced by miRNA- or siRNA-guided cleavage of mRNA (dotted arrows).
This generates uncapped and unpolyadenylated RNA products, which can
either be substrates for RDR6 and secondary siRNA biogenesis to reinforce
RNA silencing (dotted arrow), or substrates for the exonucleolytic RNA
decay pathways (closed arrows).

2009). Moreover, UPF1 and AGO1, as well as SDE3, an RNA heli-
case with an undetermined role in gene silencing, co-localize to
Arabidopsis P-bodies (Zhang et al., 2006; Pomeranz et al., 2010;
Xu and Chua, 2011). Plant P-bodies are largely defined by the
accumulation of the decapping enzymes DCP1, DCP2, DCP5 and
VARICOSE (VCS), and the 5′–3′ exoribonuclease XRN4, suggest-
ing that, as in animals, plant P-bodies are sites of mRNA decapping
and decay (Xu and Chua, 2011).

Whereas translational repression has long been observed in
animals, only recently, the widespread existence of miRNA- and
siRNA-guided translational repression has been reported in Ara-
bidopsis (Brodersen et al., 2008). The importance of translational
repression in gene silencing however has been questioned by
the Bartel group, who found that mRNA decay accounts for
most of the miRNA-mediated translational repression observed
in mammals (Guo et al., 2010). Similar small RNA-directed decay
pathways have not yet been observed in plants. However, the Ara-
bidopsis decapping protein, VCS, has been shown to contribute
to translational repression (Brodersen et al., 2008), warranting
further investigations into this possibility.

COMPETITION AND DIVISION OF SUBSTRATES BETWEEN
RNA DECAY AND RNA SILENCING
In Arabidopsis, RNA silencing and RNA decay pathways share sim-
ilar substrates, suggesting that competition or antagonism may
exist between these pathways (Figure 1). De-capped RNAs, such
as those arising from siRNA-directed cleavage, are substrates for
both RDR6 as well as XRN2, 3, and 4 (Gazzani et al., 2004; Gy et al.,
2007). Accordingly, XRN2, 3, and 4 are endogenous suppressors of
RNA silencing (Gazzani et al., 2004; Gy et al., 2007). Improperly
terminated transcripts are another form of aberrant RNA demon-
strated to be a template for RDR6 (Herr et al., 2006; Luo and Chen,
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2007). The first indication that improperly terminated transcripts
might be substrates for RDR6 came from Herr et al. (2006), who
isolated a series of mutants that were defective in 3′ end processing
and also hyper-sensitive to RNA silencing. Later, this hypothesis
was tested empirically with a GUS reporter, which displayed a
progressive reduction in transgene silencing when cloned with
either zero, one, or multiple terminators (Luo and Chen, 2007). In
theory, read-through transcripts possess long 3′ UTRs and might
therefore also be targeted for NMD (Kertesz et al., 2006). Indeed,
a genome-wide analysis of exosome targets in Arabidopsis found
that mRNAs extending beyond their annotated 3′ end, indicative
of defective 3′ end processing, are targets for exosome-mediated
decay (Chekanova et al., 2007).

Given the involvement of the poly(A) tail in nuclear mRNA
export (Eckner et al., 1991), it is likely that at least some forms of
aberrant RNA would become concentrated in the nucleus, and may
be recognized by either the RNA silencing or NMD machinery.
Indeed, as mentioned earlier, components of both RNA silencing
and NMD pathways have been localized to sub-nuclear compart-
ments, as have their substrates (Pontes and Pikaard, 2008; Kim
et al., 2009; Hoffer et al., 2011). The question remains then as to
how aberrant RNAs are sorted between the NMD and RNA silenc-
ing pathways. With RNA silencing acting in trans to degrade all
homologous transcripts and NMD degrading individual nonsense
transcripts in cis, the division of RNA substrates between these
pathways is likely to have major consequences for the genome-wide
regulation of gene expression.

One possible scenario is that NMD acts before RNA silenc-
ing, but has a limited capacity for RNA substrates. Normally, in
the event of a spontaneous defect in 3′ end formation, a defective
transcript will be recognized and degraded by the NMD machin-
ery. When aberrant mRNA formation becomes more frequent, for
example following a mutation in critical motifs within the termi-
nator sequence, these NMD degradation pathways may become
inadequate, leading to a build up of aberrant RNAs in the cell.
This, according to the threshold model, would trigger RNA silenc-
ing, leading to the degradation of all transcripts homologous to
the defective transcripts. This model posits that RNA decay is the
front line RNA quality control pathway, and that RNA silencing
may be induced only when the capacity of the NMD pathways
become saturated.

For plant biotechnologists, this could present an opportunity
to limit the undesirable effects of transgene silencing. According
to the threshold model of silencing induction, by intentionally tar-
geting NMD against transcripts expressed from a transgenic locus,
the incidence of RNA silencing could be reduced (Figure 2). Par-
tial triggering of NMD may be achieved by exploiting the nature
of translational initiation, which in eukaryotes, occurs mainly at
the 5′ end of an mRNA, with ribosomes generally finding the start
codon (i.e., AUG) via a scanning mechanism (Kozak, 1986, 2002).
Inclusion of PTCs in small upstream open reading frames (uORFs)
can decrease but does not prevent translation of the main open
reading frame (Wang and Rothnagel, 2004). Re-initiation can still
occur when the ribosome has completed translation of the uORF
but has not completely disassociated from the transcript and con-
tinues to translate the major downstream open reading frame
(Wang and Rothnagel, 2004). Inclusion of uORFs, terminating

FIGURE 2 | Model for the relationship between nonsense-mediated

decay (NMD) and induction of RNA silencing in plants. The gene on the
left hand side expresses a single open reading frame (filled), while the gene
on the right hand side has an additional small upstream ORF (uORF; filled)
in the 5′ UTR (open) that causes premature termination by the scanning
ribosome. Transcripts containing uORFs may therefore be partially subject
to NMD and reduce the pool of RNA molecules that would otherwise
contribute the threshold-dependent induction of RNA silencing.

with a PTC upstream of the main AUG, could therefore induce
NMD but still allow sufficient translation re-initiation on the main
coding sequence of the transgene. Interestingly, ∼27% of endoge-
nous Arabidopsis mRNAs contain one or more uORFs within their
5′ UTRs (Kawaguchi and Bailey-Serres, 2005). In plant viruses,
leaky ribosome scanning associated with uORFs and translation
re-initiation are used for the production of multiple separately ini-
tiated proteins from a single mRNA (Ryabova et al., 2006). Another
possible role for these uORFs in viral transcripts, and indeed one
that has not been investigated, is to trigger NMD and consequently
limit viral RNA levels below the threshold limits of the host’s RNA
silencing machinery. The use of such decoy PTCs could enhance
NMD and permit the expression of transgenes at levels below the
threshold that would induce gene silencing.

CONCLUDING REMARKS
An increasing number of studies are demonstrating a strong inte-
gration between RNA processing and RNA silencing pathways in
plants, suggesting that an unforeseen role for RNA silencing may
be in mRNA quality control (Chen, 2008). Additionally, a growing
overlap is being uncovered between RNA silencing and RNA decay
pathways. Perhaps the most exciting possibility not yet reported
in plants, is the existence of small RNA-guided exonucleolytic
removal of targeted RNAs. siRNA- or miRNA-directed exonucle-
olytic decay would avoid the generation of 5′ unpolydenylated and
3′ de-capped fragments that would otherwise become substrates
to RDR-dependent gene silencing. As such, this form of silencing
might limit the activity of RDRs, and therefore allow for subtle reg-
ulation of endogenous mRNA levels. miRNA-directed decay has
already been demonstrated to account for most of the translational
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repression observed in mammals (Guo et al., 2010), but similar
experiments have not yet been performed to determine whether
the same is true for the translational repression observed in plants
(Brodersen et al., 2008; Lanet et al., 2009). The involvement of
VCS, a protein demonstrated to have decapping activity, in trans-
lational repression hints of this possibility, especially when one
considers that decapping usually takes place following deadenyla-
tion (Brodersen et al., 2008). The existence of both translational
repression and RNA decay may be resolved by a kinetic model

in which the formation of translationally repressed RNAs pre-
cedes mRNA decapping and subsequent degradation (Franks and
Lykke-Andersen, 2008; Xu and Chua, 2009). From the work pre-
sented in this review, it is clear that while much is known about
the RNA decay and RNA silencing pathways of plants, there is a
distinct possibility of further overlap between the two pathways
that remains to be uncovered. This area of investigation could
provide more important discoveries into the mechanisms of small
RNA-directed gene regulation in plants.
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