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Cell-to-cell communication is fundamental to multicellular life. For this to occur effec-
tively there must be pathways and dynamic networks for communication. These might
depend upon electrical or chemical signals or the mass transfer of molecules between
adjacent cells. Molecular communication occurs either via an extra-cellular pathway or
through physical structures, called plasmodesmata, that connect the cytoplasm of neigh-
boring cells. Plasmodesmata bridge the rigid physical barrier presented by the cell wall
to extend the symplasm from single cells to tissue domains that have functional impor-
tance for tissue growth, development, and defense. Although recent years have seen
advances in our knowledge of the physical nature of PD, the trafficked molecules, and of
the wider processes they affect, our knowledge of PD structure and function is still rela-
tively rudimentary.This article will consider the technical/experimental difficulties hindering
PD research and suggest priorities in the future research effort that might advance the field
at a significantly faster rate.
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Cells in multicellular organisms work as social communities, shar-
ing information and resources, and co-ordinating roles to the
benefit of the collective. For this to occur effectively there must be
pathways and dynamic networks for communication. These might
depend upon electrical or chemical signals or the mass transfer of
molecules between adjacent cells. In animals and plants, efflux, and
influx carriers on the plasma membrane (PM) and the processes
of exo- and endo-cytosis provide the means for molecular com-
munication via an extra-cellular pathway. In addition, physical
structures connecting adjacent cells have been identified that con-
nect the cytoplasm of neighboring cells, forming the symplasm.
In animals, gap junctions allow the symplasmic transfer of small
molecules and tunneling nanotubes or cellular bridges provide
the means for larger molecules, and even organelles to pass from
cell-to-cell (Gerdes and Carvalho, 2008). In plants the existence
of similar structures is complicated by the need to overcome the
physical barrier between cells represented by the cell wall. This
is achieved by structures called “Plasmodesmata” (PD). These are
membrane-lined channels that provide symplasmic connectivity
between adjacent cells (Figure 1).

It is clear now that development and patterning of the major
organs of the plant depend upon the symplasmic movement of
transcription factors through PD (Lucas et al., 2009), and that
aspects of plant defense, especially against viruses, involve commu-
nication between cells ahead of the advancing infection (Benitez-
Alfonso et al., 2010a; Harries and Ding, 2011; Lee and Lu, 2011).
More recently, small RNA species have been shown to act as mobile
signals and, together with non-cell autonomous transcription fac-
tors (such as SHORTROOT), generate positional information dur-
ing the specification of root and shoot organs (Furuta et al., 2011).
Despite this fundamental role in plant growth and responses there
are major gaps in our insight into these important structures. Nev-
ertheless, recent years have seen advances in our knowledge of the

physical nature of PD, of their constituent components, of the
trafficking pathways to and through the channel, of the trafficked
molecules, and of the wider processes they affect. This article will
consider the technical/experimental difficulties for the study of
PDs and suggest priorities in the future research effort that might
advance the field at a significantly faster rate.

Plasmodesmata form and function are integral to the structure
of the cell wall. “Primary PD”are formed during cell division when
new PM and cell wall deposition are added to components of the
endoplasmic reticulum (ER) that have been trapped in the devel-
oping phragmoplast (Burch-Smith and Zambryski, 2012). This
results in simple tunnel structures that bridge the cell wall and
provide several distinct physical phases for molecular communi-
cation between cells: the cytosolic channel, the membrane phases
of the ER and PM, and the lumen of the ER. These structures
are surrounded by a pectin-enriched wall matrix and have insolu-
ble glucans (β-1,3-glucan or callose) deposited in the wall matrix
around the neck region. In mature tissues, PD exhibit more com-
plex morphology consistent with PD branching and/or fusion,
although the principle structural components remain the same.
The more complex forms, and the occurrence of clusters of PD in
pit-fields, relate to ontogenic processes influenced by the rigidity
of the surrounding cell wall (Faulkner et al., 2008; Ehlers and van
Bel, 2010) or the deposition of new cell wall material (Burch-
Smith et al., 2011). Generally, PD formed post-cytokinesis are
referred to as “secondary PD.” Simple “primary PD” and com-
plex “secondary PD” may also have different functional properties
reflected in the size of molecules able to pass through the chan-
nel (Burch-Smith et al., 2011) and the nature of their molecular
constituents (Citovsky et al., 1993). These functional differences
also define “symplasmic domains” within and between recogniz-
able tissue types. Hence, for example, while the L1, L2, and L3
layers of the shoot apical meristem have distinct communication
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FIGURE 1 | Plant growth and development depends upon cellular

communication over short and long distances. This communication
depends in part upon movement of molecules via the symplasm – the

cytoplasmic continuum that is connected through cell walls by
plasmodesmata. Through plasmodesmata cytoplasm, plasma membrane and
endoplasmic reticulum are all continuous, providing paths for molecular flux.

properties, so too does the central and peripheral zones of the
meristem L1 layer (Rinne and Van der Schoot, 1998; Ormenese
et al., 2002). Such domains both influence and are regulated by
cell fate specification and patterns of tissue development (Stadler
et al., 2005; Guseman et al., 2010).

This tight association between PD and the insoluble matrix
of the wall and consequent difficulties for PD isolation have
presented particular technical challenges for their molecular char-
acterization and have slowed progress in this area. Nevertheless,
proteomic characterizations have recently identified components
of PD that presumably have roles in their structure and function.
Our recent strategy adopted enzymatic methods developed by
others (Levy et al., 2007) to remove the cell wall before PD purifi-
cation, allowing us to report the proteome of isolated Arabidopsis
PD (Fernandez-Calvino et al., 2011). This proteome has proven
to be a rich source of novel PD proteins the functions of which
are mostly unknown. This biochemical approach complements
genetic approaches where, surprisingly, the identified genes encode
proteins that affect PD function only indirectly. Hence genetic
screens based upon passive diffusion of reporter molecules have
identified mitochondrial and plastidial enzymes (Kobayashi et al.,
2007; Benitez-Alfonso et al., 2009; Stonebloom et al., 2009) that
have RNA-binding domains and/or modulate the redox status of
the cells with a consequent impact on cell-to-cell trafficking. An
alternative screen based upon the trafficking of a transcription
factor to activate a developmental program in neighboring cells
identified a component of the chaperonin complex needed for the
refolding of translocated proteins; this protein was also not located
in PDs (Xu et al., 2011).

Our PD proteome is comprised of approximately 1300 proteins
(of which ∼30% are predicted to be contaminants); the remain-
ing “soluble” and “membrane” proteins include some with known
direct or indirect, or inferred, association with PD. This appears
to be a surprisingly large number of proteins for a relatively small
structure and raises the question as to how many and which can

truly be defined as PD proteins. Answering this question is truly a
difficult challenge. Certainly the proteome will contain contami-
nants, which are an inevitable consequence of improvements in the
sensitivity of proteomic technologies. However, predictably when
working with “purified” PD as source material the proteome will
represent an enriched pool of PD proteins that can be “mined”
for the rich nuggets amongst the mining waste. Our approach
has been to view PD as membrane-rich environments in which
membrane-associated PD proteins would be abundant.

Amongst the “membrane” class of proteins are a number of
PD-located receptor-like molecules that point to PD as being a
PM domain rich in receptor-like functions; there is evidence that
the PM in PD has a distinctive composition with respect to the
majority of the PM (Raffaele et al., 2009; Mongrand et al., 2010)
Why should these receptors be located at PD and why should their
activation by ligand- or partner-binding lead to altered traffick-
ing between cells? These questions remain unanswered at present?
That sensing of molecules in the apoplast could lead to symplasmic
control of intercellular communication is not difficult to under-
stand in the context of environmental influences on physiology
and development; the physical location of receptors at PD might
suggest very local control of this process, without the need for
a nuclear or transcriptional contribution. An example of this is
the potential for PD receptor-like proteins to mediate in host
responses to pathogen attack (Lee et al., 2011; our unpublished
data), leading to reduced symplasmic transport and/or altered
host susceptibility. Other relevant proteins identified in the PD
proteome include some with known intercellular mobility (e.g.,
HSPs; Aoki et al., 2002), some associated with callose accumula-
tion and others affecting cellular redox status (Fernandez-Calvino
et al., 2011).

The collective research effort in this area has consumed sig-
nificant research time and resources but has been rewarded in
part by a number of proven PD components that number in the
low teens (Faulkner and Maule, 2011; Fernandez-Calvino et al.,
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2011). However, it has not yet shown the ways in which these
proteins work together to deliver a functionally regulated chan-
nel critical for plant development and defense. Since we know
that PD can control mass flow and specificity, as in the nature of
the trafficked molecules and their direction of travel (Kim et al.,
2002; Christensen et al., 2009), the future priority must be to dis-
sect the mechanisms of regulation and its impact on particular
biological processes. By connecting candidate PD proteins with
specific genetic mutant phenotypes we have revealed roles for PD
in plant–pathogen interactions, plant–insect interactions and in
lateral root development, opening several new angles of research.
The challenge in each of these cases is to identify the additional
and unknown proteins that work together with the candidates to
deliver controlled cell-to-cell communication often at tissue spe-
cific interfaces in a restricted time frame (this spatio-temporal
limitation lies at the heart of the concept of symplasmic domains
that is a feature of many aspects of plant development; (Kim and
Zambryski, 2005; Xu and Jackson, 2010). One weakness in much
of this work is the availability of only relatively crude tools for
measuring cell-to-cell trafficking. Generally, these are based upon
altered trafficking of reporter molecules introduced locally by
microinjection (small dyes) or more commonly now by micropro-
jectile bombardment of surface cells with DNA clones expressing
fluorescent reporters, such as green fluorescent protein (GFP) or
derivatives. These assays measure the movement of non-native
molecules, often in non-representative cells/tissues, and provide
a measure of gross changes in mass flow (Crawford and Zam-
bryski, 2001; Rutschow et al., 2011). What is urgently required is
a collection of more sophisticated tools based upon inducible and
tissue specific expression of native molecules. These could be pro-
vided by the new generations of chemically inducible expression
vectors (Moller and Chua, 2002) or by the generation of pheno-
typic boundaries around genetic tissue sectors in transgenic plants
(Wachsman and Heidstra, 2010) where the movement of mole-
cules across the boundaries can be visualized and/or monitored as
a phenotypic change.

Evidence points to callose accumulation as a mechanism
for both quantitative and absolute control of cell-to-cell
communication (Figure 2). The latter has been shown to be
important in establishing symplasmic domains during develop-
ment (e.g., Ruan et al., 2004; reviewed in Chen and Kim, 2009;
Zavaliev et al., 2011). Callose accumulation results from the
balanced activities of β-1,3-glucanases (glycosyl hydrolases) and
callose synthases (CALS or glucan synthase-like – GSL) and its
variable deposition at the neck of PD serves to regulate the mass
symplasmic flow by constriction of the channel. These enzymes
are the products of gene families and it is clear that only specific
members of the families serve in the regulation of PD-associated
callose. For example, Arabidopsis GSL8 (also called CALS10) is
responsible for callose synthesis at PD (Guseman et al., 2010) and
CALS7 for callose accumulation at phloem sieve pores, which are
modified PD (Xie et al., 2011). For β-1,3-glucanases, only mem-
bers of the glycosylphosphatidylinositol (GPI)-anchored glycosyl
hydrolase family 17 have been associated with PD (Levy et al.,
2007; Rinne et al., 2011); signals for GPI anchorage lead to tether-
ing of the C-terminus of the protein to the external face of the PM
appropriate for modification of callose deposits in the near cell

FIGURE 2 | Plasmodesmal aperture is regulated by callose deposition

in the cell wall surrounding the neck of the pore. Plasmodesmata-
located callose synthases and β-1,3-glucanases control callose turnover
which dictates whether a plasmodesma is open (left) or closed (right) and
whether movement can occur freely between cells (left) or is obstructed
(right).

wall. GPI-anchored proteins are also commonly found associated
with the PM microdomains present within PD (Mongrand et al.,
2010). Significant opportunities exist in understanding how and
why only particular activities are targeted to or serve to catalyze
PD-associated callose.

Callose accumulation is also affected by alterations in cellu-
lar or local redox status for which, in turn, calcium signaling
has been implicated (Benitez-Alfonso et al., 2010b). Redox sta-
tus can be controlled at the cellular or subcellular levels by a
suite of proteins that use thiol groups (e.g., thioredoxins; Benitez-
Alfonso et al., 2009) or metal ions (e.g., cupredoxins) as electron
donors/acceptors, or indirectly by proteins without obvious bio-
chemical connection (Stonebloom et al., 2009, 2012; Burch-Smith
and Zambryski, 2010). So far there is little published evidence
that these proteins are active at or in PD, although antibodies to
peroxidase enzymes have been shown to have reactivity in the
locality of PD (Ehlers and van Bel, 2010). The importance of
subcellular regulation of redox has been highlighted in recent
work (Stonebloom et al., 2012) where plastidial and mitochon-
drial oxidation were shown to have opposing affects on molecular
transport through PD.

Hence, emerging is a fragmented picture of PD and their
function comprising PD-located proteins and ancillary activities
connected with mechanisms of physical control of the symplasmic
aperture and mechanisms of molecular translocation. Urgently
needed are strategies with the potential to reveal functional net-
works of activity. These might come from further analysis of the
PD proteome or from transcriptomic network analysis (Obayashi
et al., 2007; Krouk et al., 2010) or a combination of the two; we
have already identified candidate regulatory nodes arising from
these combined approaches.

What we have tried to do in this article is to highlight the
importance of PD for plant growth and to suggest priority areas
for research interest and support. That cell-to-cell communication
is a topic of keen interest to the plant community is highlighted
by recent high profile publications that connect the process to
aspects of plant development and RNA silencing (Molnar et al.,
2010; Hyun et al., 2011). It is not yet however a topic that
attracts the attention and interest that it deserves. The components
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of PD may seem trivial and obscure to those outside the field
(Ruben, 2011), or at times within the field, but they are sophisti-
cated and complicated structures that are absolutely fundamental
to the multicellularity of plants. Without an understanding of
the operational mechanics of these channels our understand-
ing of plant development and environmental responses will,
quite frankly, be limited. We are poised to make relevant and

exciting advances in this field of biology that will impact on our
understanding of all areas of plant growth and development.
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