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RNA binding proteins (RBPs) play an important role not only in nuclear gene expression,
but also in cytosolic events, including RNA transport, localization, translation, and stability.
Although over 200 RBPs are predicted from the Arabidopsis genome alone, relatively little
is known about these proteins in plants as many exhibit no homology to known RBPs in
other eukaryotes. Furthermore, RBPs likely have low expression levels making them diffi-
cult to identify and study. As part of our continuing efforts to understand plant cytosolic gene
expression and the factors involved, we employed a combination of affinity chromatography
and proteomic techniques to enrich for low abundance RBPs in developing rice seed. Our
results have been compiled into RiceRBP (http://www.bioinformatics2.wsu.edu/RiceRBP),
a database that contains 257 experimentally identified proteins, many of which have not
previously been predicted to be RBPs. For each of the identified proteins, RiceRBP pro-
vides information on transcript and protein sequence, predicted protein domains, details
of the experimental identification, and whether antibodies have been generated for public
use. In addition, tools are available to analyze expression patterns for the identified genes,
view phylogentic relationships and search for orthologous proteins. RiceRBP is a valuable
tool for the community in the study of plant RBPs.
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INTRODUCTION
Advances in proteomic technology have allowed researchers to
more deeply probe an organism’s proteome resulting in a wealth
of information. These methodologies have in part led to a shift
from a global approach of assessing gene expression to one that
is targeted and aims to identify and characterize proteins involved
in a particular biological event (Köcher and Superti-Furga, 2007).
Although most highly utilized for studies in yeast and animals,
functional proteomic applications in photosynthetic organisms
are on the rise, particularly in Arabidopsis and rice, and have
been employed to investigate such areas as development, stress
response, and post-translational modification (Jorrín-Novo et al.,
2009; Wienkoop et al., 2010; Agrawal and Rakwal, 2011). They
have also been used to explore protein interactions with other
proteins, complexes and particular affinity matrices, which is ulti-
mately important for understanding systems biology (Baginsky,
2009). The use of affinity purification techniques has the added
benefit of simplifying a complex mixture of proteins and enrich-
ing for those present in physiologically low amounts, facilitating
detection.

One area where affinity isolation approaches have had success is
the study of RNA binding proteins (RBPs). RBPs are critical com-
ponents of gene expression events in both the nucleus and cyto-
plasm and are involved in all facets of RNA metabolism including
transcription, pre-mRNA processing, nuclear export, transport,
localization, translation, and stability (Wilkinson and Shyu, 2001;
Dreyfuss et al., 2002). Well-studied in yeast and metazoans, RBPs

are highly diverse and multifunctional (Wilkinson and Shyu, 2001;
Dreyfuss et al., 2002) with many characterized by the presence of
one or more RNA binding domains, such as the RNA recogni-
tion motif (RRM) or K homology (KH) domain (Anantharaman
et al., 2002). Less is known about RBPs in plants, however, and
even though sequence analysis has predicted over 200 RRM- and
KH domain-containing proteins within the Arabidopsis genome
alone, few are functionally characterized (Lorkovic and Barta,
2002). Contributing to this lack of knowledge is that many RBPs
are plant-specific and lack homologs characterized in yeast and
animal models (Lorkovic and Barta, 2002; Lorkovic, 2009). As
the importance of RBPs in plant development and stress response
becomes increasingly clear, it is imperative that more focus be
directed at identifying and elucidating their activity (Fedoroff,
2002; Bailey-Serres et al., 2009; Lorkovic, 2009). A few groups have
attempted to do so by combining nucleic acid and ion exchange
affinity chromatography with 2D gel electrophoresis (2DE) to
enrich for low abundance RBPs in Arabidopsis, spinach, and rice
(Baginsky et al., 2007; Xu et al., 2007; Masaki et al., 2008; Ni et al.,
2010).

Our laboratory has been particularly interested in identifying
plant RBPs involved in cytosolic RNA localization, a process com-
mon to eukaryotes that spatially and temporally controls gene
expression by targeting RNAs to specific subcellular locations (St.
Johnston, 2005; Martin and Ephrussi, 2009). RNA localization is
dependent upon cis-localization, or zipcode, sequences within the
RNA which are recognized by one or more RBPs (Singer, 1993).
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Along with other trans-factors, these RBPs form a dynamic ribonu-
cleoprotein complex that regulates nuclear processing and export,
cytoskeleton-associated transport, localization, translation, and
RNA stability (Wilkinson and Shyu, 2001; Dreyfuss et al., 2002;
Martin and Ephrussi, 2009). RNA localization has been well-
characterized in yeast and metazoans, but relatively few studies
have been reported in plants (Okita and Choi, 2002; Crofts et al.,
2004; Bailey-Serres et al., 2009). One of the best models, however,
is the localization of storage protein RNAs in developing rice seed.
For many years, our lab has been investigating the cytoskeleton-
dependent, asymmetric localization of prolamine, and glutelin
mRNAs to distinct subdomains of the cortical endoplasmic reticu-
lum (ER), the predominate site of protein synthesis in endosperm
cells (Crofts et al., 2004, 2005; Doroshenk et al., 2012). Similar to
other eukaryotes, this targeted transport requires cis-localization
sequences likely recognized by RBPs (Hamada et al., 2003; Washida
et al., 2009). Proper RNA localization is critical to subsequent
protein localization, as mis-targeting storage protein mRNAs to
the incorrect ER domain results in improper protein deposition
(Crofts et al., 2005; Washida et al., 2012). In an attempt to elucidate
the trans-acting RBPs involved in RNA transport, we previously
identified OsTudor-SN, a cytoskeleton-associated RBP that binds
both prolamine and glutelin mRNAs in rice endosperm cells and
co-localizes with cytoplasmic prolamine mRNA transport parti-
cles (Sami-Subbu et al., 2001; Wang et al., 2008). It is our goal,
however, to identify the many other RBPs that are likely involved
in this process to better understand the mechanism of transport
and ultimately, cytoplasmic plant gene expression.

As previously mentioned, the increasing popularity of plant
proteomics has led to a massive amount of information and
efforts have been made to catalog these results (Jorrín-Novo
et al., 2009). Here, we summarize our own efforts to pro-
vide such a resource for plant RBPs identified by multi-
ple affinity purification and proteomic experiments through
the creation of the RiceRBP database (Morris et al., 2011;
http://www.bioinformatics2.wsu.edu/RiceRBP). To our knowl-
edge, RiceRBP is the first attempt to catalog experimentally
identified RBPs for use by the plant biology community.

PROTEOMIC IDENTIFICATION OF RICE RBPs
Our interest in cytosolic gene expression in plants and the lack of
available data in the literature led us to investigate what nucleic
acid binding proteins, and in particular RBPs, are found within
the cytoplasm of developing rice endosperm cells. Our ultimate
goal was to deposit these findings into a publicly accessible data-
base to share knowledge and resources with other plant scien-
tists also interested in the field. We attempted to identify such
proteins using a combination of affinity chromatography and
proteomic techniques. As part of a more global approach, we
enriched for nucleic acid binding proteins from a cytoskeleton-
enriched developing rice seed extract using Poly(U)-Sepharose
column chromatography, separated proteins in the bound frac-
tion by 2DE and identified reproducible protein spots by reverse
phase liquid chromatography-tandem mass spectrometry (LC-
MS/MS; Doroshenk et al., 2009). From these experiments, over 150
distinct proteins were identified including putative RBPs, transla-
tion factors, and metabolic enzymes. Of the 20 proteins identified

with suggested roles in RNA metabolism, only four were previ-
ously characterized in the literature including OsTudor-SN (Sami-
Subbu et al., 2001; Wang et al., 2008), confirming the successful
application of such enrichment techniques. Many of the unchar-
acterized RBPs identified were predicted to be involved in RNA
processing based on the presence of RNA binding domains such
as the RRM and KH domain (Anantharaman et al., 2002). Inter-
estingly, review of the literature revealed that a number of proteins
identified from this study categorized as having established roles
in polypeptide biosynthesis or carbon metabolism were similar
to proteins in other organisms that exhibited dual function-
ality and actually possessed RNA binding activity (Doroshenk
et al., 2009, and references therein). This included protein chap-
erones and protein turnover enzymes involved in RNA stability as
well as membrane-associated transport proteins and carbohydrate
metabolic enzymes with suggested roles in RNA localization.

The results of the Poly(U)-Sepharose experiments exposed the
complexity of proteins that may be involved in cytosolic gene
expression in plants. As our particular interest lies in the mech-
anism of RNA localization using rice seed storage protein RNA
as a model, a more targeted approach was attempted to iden-
tify those proteins that interacted specifically with the prolamine
RNA cis-localization element, or zipcode. Again taking an affinity
chromatography/proteomics approach, the 36 nucleotide zipcode
sequence from prolamine mRNA was biotinylated and used as bait
to isolate interacting proteins from a cytoskeleton-enriched devel-
oping rice seed extract (Crofts et al., 2010). The binding assay was
performed in the presence of the competitive binding inhibitor
heparin, a highly charged anionic molecule, to ensure specificity.
Bound proteins were separated by 1D SDS-PAGE and analyzed
by LC-MS/MS. Compared to a control capture experiment using
non-zipcode RNA as bait, 15 proteins were identified as having
specificity for the prolamine zipcode (Crofts et al., 2010). Ten
of these proteins contained at least one predicted RNA binding
domain and of those, seven shared significant homology to hetero-
geneous nuclear ribonucleoproteins (hnRNPs), a class of proteins
well-studied in metazoans and yeast with both nuclear and cyto-
plasmic roles in pre-RNA processing, localization, and translation
(Krecic and Swanson, 1999; Dreyfuss et al., 2002). Interestingly,
only one of the 15 proteins identified in the prolamine zipcode
capture experiment was also identified in the Poly(U)-Sepharose
binding fraction detailed above (Doroshenk et al., 2009), likely the
result of the low abundance of these RBPs in the cytosol and need
for enhanced methods of enrichment. Current efforts include fur-
ther characterization of the identified prolamine RBPs to establish
their role in gene expression.

Because of the highly stringent nature of the prolamine zip-
code capture experiment as a result of the addition of heparin
in the binding buffer (Crofts et al., 2010), the experiment was
repeated without the use of heparin to establish whether an even
greater number of RBPs could be identified. This was based partly
on results from previous experiments demonstrating the known
prolamine RBP OsTudor-SN did not bind its target in the pres-
ence of heparin (Sami-Subbu et al., 2001; Crofts et al., 2010). Again
using biotinylated prolamine zipcode RNA as bait, bound proteins
were analyzed by 1D SDS-PAGE and LC-MS/MS (Morris et al.,
2011). 132 putative RBPs were identified including 12 proteins
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from the more stringent prolamine zipcode capture (Crofts et al.,
2010). Importantly, 77 proteins not found in either the Poly(U)-
Sepharose affinity chromatography (Doroshenk et al., 2009) or
stringent prolamine zipcode capture experiments(Crofts et al.,
2010) were identified and include a number of uncharacterized
proteins with predicted RNA binding domains (Morris et al.,
2011). More study is necessary, though, to determine the nature
of their role in plant RNA metabolism.

RiceRBP: A CATALOG OF EXPERIMENTALLY IDENTIFIED RBPs
The three proteomic studies described above which sought to
investigate RBPs involved in plant cytosolic gene expression led
to the combined identification of 257proteins derived from at
least 221 distinct rice genes. These results have been compiled into
RiceRBP (found at http://www.bioinformatics2.wsu.edu/RiceRBP
or bioinformatics1.smb.wsu.edu/RiceRBP), a publicly accessible
database for use by the scientific community (Morris et al., 2011).
RiceRBP is the only database to our knowledge containing data
and analysis tools dedicated to the study of experimentally identi-
fied RBPs. In fact, when compared to the POGs/PlantRBP database
(Walker et al., 2007) which predicts plant RBPs solely on sequence
similarity, only 37% of the experimentally identified rice proteins
had been previously annotated as RBPs (Figure 1; Morris et al.,
2011). Functional annotations from the Rice Genome Annotation
Project (Ouyang et al., 2007) revealed a number of the experi-
mentally identified RBPs had putative roles in RNA processing
(RNA binding/translation) as expected (Figure 1). Of interest,
however, are the numerous proteins that had other unrelated pre-
dicted functions, particularly for the novel RBPs not previously
annotated as such by the POGS/PlantRBP database (Walker et al.,
2007), highlighting how little is known about this important class
of plant proteins and the need for further study.

Some of the features of RiceRBP are demonstrated in Figure 2
using RBP-P, a putative oligouridylate binding protein identified
from the stringent prolamine zipcode capture experiment (Crofts
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11

Translation,
RNA binding

1

RNA binding
33

Other
110
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25
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FIGURE 1 | Classification of experimentally identified RNA binding

proteins (RBPs) cataloged within RiceRBP. Functional annotations were
obtained from the Rice Genome Annotation Project (Ouyang et al., 2007)
and the number of entries in each grouping is indicated. Proteins predicted
to be RBPs by the POGs/PlantRBP database (Walker et al., 2007) are
represented in brown, while those newly identified as such are in green.
Reproduced with permission from Morris et al. (2011).

et al., 2010), as an example. Each unique, identified protein in
RiceRBP has been assigned a random identifier (i.e., RBP-A, -
B or RBP-1, -2, etc.) and cross-referenced to accession numbers
representing gene, cDNA and protein sequences from a variety of
sources (when available) including NCBI, the Rice Genome Anno-
tation Project, Rice Annotation Project Database and UniProt
(Morris et al., 2011 and references therein). Information regarding
predicted molecular weight, protein domains, subcellular local-
ization, and functional annotation are given for each entry, as is
whether the identification resulted from the Poly(U)-Sepharose
(PolyU capture; Doroshenk et al., 2009), high stringency pro-
lamine zipcode (prolamine capture 1; Crofts et al., 2010), and/or
low stringency prolamine zipcode (prolamine capture 2; Morris
et al., 2011) affinity chromatography experiments. Detailed exper-
imental methodologies for each of these experiments are provided
in printable format as well. For each protein entry, the peptide
sequences identified by mass spectrometry and position within
the entire polypeptide sequence are highlighted (a sub-set of mass
spectrometry data is shown in Figure 2). Separate links are also
provided for each entry to view sequence alignments and phylo-
genetic tress highlighting paralogous family members within rice,
as well as prokaryotic and eukaryotic orthologs, including impor-
tant agricultural species such as barley (Hordeum vulgare), maize
(Zea mays), sorghum (Sorghum bicolor), and wheat (Triticum
aestivum).

A variety of tools are offered for users of RiceRBP including
the ability to search the database for particular entries of interest
using keywords or gene, transcript or protein accession identifiers.
User supplied transcript or amino acid sequence can be entered to
BLAST against rice proteins within the database as well. Another
resource includes visualization of transcript expression data from
microarray experiments compiled from multiple public sources
(Morris et al., 2011 and references therein) for a particular RBP
entry if available. These datasets have been generated from a vari-
ety of rice tissue samples as well as developmental stages and
experimental treatments. For those users interested in identify-
ing proteins related to rice RBPs in a specific species, an ortholog
search tool is available with the option of selecting prokaryotic
and/or eukaryotic queries and a downloadable results format. For
details of the specific methodology for constructing RiceRBP and
available analysis tools, readers are directed to Morris et al. (2011).

THE FUTURE OF RiceRBP
RiceRBP continues to be a work in progress with the aim of provid-
ing a current and extensive plant RBP resource to the community.
For instance, we hope to update the database with additional RBP
orthologs as more plant genome sequences become available. We
also plan to incorporate results from current efforts aimed at char-
acterizing the functional roles of specific rice RBPs in cytosolic
gene expression, and particularly RNA localization, as this data
becomes available. Antibodies have been generated to some of
these proteins and their availability to the public has been noted
within RiceRBP. These antibodies are being used for RNA bind-
ing and immunofluorescence localization studies, as illustrated by
RBP-A and RBP-D, two putative hnRNPs identified from the strin-
gent prolamine zipcode RNA capture experiment (Crofts et al.,
2010). RNA-immunoprecipitation (RNA-IP) using RBP specific
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FIGURE 2 | Illustration of several features of RiceRBP using RBP-P, a

prolamine RNA binding protein (Crofts et al., 2010), as an example.

Each protein entry contains information regarding accession identifiers,
predicted function, antibody availability, and from which RBP capture
experiment it was identified. Links to web pages dedicated to each RBP

provide additional information on predicted domains and subcellular
localization as well as peptide data obtained from mass spectrometry
analysis. A list of orthologous and paralogous family members for each
entry, visualized by phylogenetic trees and sequence alignments, is also
available.

antibodies revealed both RBP-A and RBP-D interact with pro-
lamine and glutelin RNA in vivo (Crofts et al., 2010; Crofts et al.,
unpublished results). Furthermore, both proteins exist as multiple
populations within rice endosperm cells, with RBP-A localized to
the nucleus, microtubules, and cortical ER (Crofts et al., 2010) and
RBP-D to the nucleus and particulate structures associated with
actin filaments (Crofts et al., unpublished results). Dual localiza-
tion of nuclear assembled ribonucleoprotein complex components
has been demonstrated in other organisms as well (Giorgi and
Moore, 2007)and for RBP-A and -D may suggest multiple, diverse
roles in pre-mRNA processing, nuclear to cytoplasmic shuttling,
cytoskeletal-associated RNA transport, translational regulation or
anchoring to the ER. Additional rice RBPs will be subjected to
similar studies.

RNA binding protein specific antibodies are also being used
to identify both RNA and protein targets which may offer fur-
ther insight into functionality. RNA-IP combined with microarray
and next generation sequencing will identify RNA targets spe-
cific to each RBP to better understand the global role of that
particular RBP within the cell. Based on the interacting RNA

sequences identified, prediction software is being utilized to deter-
mine whether particular RNA sequence or structural motifs exist,
which could be used to elucidate additional RNA targets in rice.
This information could also be used to identify targets of orthol-
ogous RBPs in other plant species. RBP specific antibodies are
also being used in traditional immunoprecipitation experiments
to determine what other proteins may be associated. Ribonucle-
oprotein complexes contain multiple proteins and RNAs (Jansen,
2001; Martin and Ephrussi, 2009) and it would be of great interest
to identify other protein components to understand the diverse
mechanisms of RNA transport, localization and stability within
the cell.

Finally, mutant studies to further our knowledge of proteins
involved in RNA metabolism are underway. A number of RNAi
lines for particular rice RBPs of interest have been generated while
others are in construction. For example, characterization of RBP
OsTudor-SN RNAi transgenic plants not only revealed a decrease
in OsTudor-SN transcript and protein levels, but also a decrease in
prolamine transcript and protein levels, indicating a role in pro-
lamine gene expression (Wang et al., 2008).In addition, rice genetic
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mutants are being screened using the TILLING method (Suzuki
et al., 2008) to identify those lines containing mutations within
RBPs of interest for further characterization. Successful screens
have identified candidate mutants for OsTudor-SN and RBP-Pand
are currently being studied. Specific to our interest in RNA local-
ization, genetic mutants impaired in storage protein synthesis,
sorting or processing, which may be an indication of disrupted
RNA transport, have also been identified (Crofts et al., 2004, 2005).
One such mutant, glup4, has been found to partially mislocalize
both glutelin RNA and protein and displays highly irregular mem-
brane architecture within endosperm cells (Doroshenk et al., 2010;
Fukuda et al., 2011). The Glup4 gene encodes Rab5 (Satoh-Cruz
et al., 2010), a small GTPase with roles in early endosome for-
mation and cytoskeleton-dependent transport, cargo recruitment,
and ER structuring (Zerial and McBride, 2001; van der Bliek, 2005;
Audhya et al., 2007). Proteomic characterization of glup4 develop-
ing rice seed by two-dimensional difference in gel electrophoresis
(2D-DIGE) revealed a number of proteins that were differentially
expressed in the mutant, including membrane-associated proteins
and those involved in the biosynthesis of cell wall components
and seed storage reserves (Doroshenk et al., 2010). The com-
bined results of these studies suggest an interesting possibility
that RNA transport from the nucleus to the cortical ER in rice
endosperm is a membrane-associated process mediated by Rab

proteins(Doroshenk et al., 2010, 2012), an idea supported by work
in Drosophila oocytes (Ruden et al., 2000; Jankovics et al., 2001;
Dollar et al., 2002). As part of its role in membrane trafficking,
the rice Rab5 may bean important component of gene expres-
sion events within the cell. Current studies include investigating
whether Rab5 plays an actual role in RNA transport and if so, what
other factors (such as RBPs) may be involved. Similar 2D-DIGE
analysis of other genetic and transgenic mutants is also of interest.

We anticipate that future versions of the RiceRBP database
will incorporate RNA binding targets of selected RBPs based
on RNA-IP microarray and sequencing data. Additional func-
tional and localization studies of RBPs may also be included in
the RiceRBP database as such data becomes available. Hence,
we expect that the RiceRBP database will continue to provide a
centralized resource for biologists interested in this important,
yet understudied, class of proteins and their role in plant gene
expression.
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