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N -Glycosylation is a common form of eukaryotic protein post-translational modification, and
one that is particularly prevalent in plant cell wall proteins. Large scale and detailed charac-
terization of N -glycoproteins therefore has considerable potential in better understanding
the composition and functions of the cell wall proteome, as well as those proteins that
reside in other compartments of the secretory pathway. While there have been numer-
ous studies of mammalian and yeast N -glycoproteins, less is known about the population
complexity, biosynthesis, structural variation, and trafficking of their plant counterparts.
However, technical developments in the analysis of glycoproteins and the structures the
glycans that they bear, as well as valuable comparative analyses with non-plant systems,
are providing new insights into features that are common among eukaryotes and those that
are specific to plants, some of which may reflect the unique nature of the plant cell wall.
In this review we present an overview of the current knowledge of plant N -glycoprotein
synthesis and trafficking, with particular reference to those that are cell wall localized.
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INTRODUCTION
A common feature of plant proteins that are resident in the cell
wall and other compartments of the secretory pathway is gly-
cosylation; a complex form of post-translational modification
(PTM) that has been detected in a spectrum of taxonomic groups,
including eubacteria and archaea (Lechner and Wieland, 1989;
Messner, 1997). Decades of research, primarily focused on yeast
and mammalian glycoproteins, have demonstrated that glycosy-
lation is important in numerous biological processes and affects
protein characteristics such as folding, enzyme activity, traffick-
ing, localization and ligand interactions (Spiro, 2002; Helenius and
Aebi, 2004). However, while glycosylation is particularly prevalent
and often extensive in secreted plant proteins, the detailed struc-
tures, dynamics, and in most cases functional significance, of their
glycans are generally obscure.

Protein glycosylation may be divided into two principal types.
The most studied is N -glycosylation, which involves the attach-
ment of the N -acetylglucosamine (GlcNAc) of an oligosaccharide
moiety by an amide bond to an asparagine residue (Asn) that
is generally referred to as belonging to a consensus sequence
N-X-(S/T; also written as N-!P-[S/T]), where X can be any
amino acid except proline (Pless and Lennarz, 1977). Alternative

Abbreviations: Asn, asparagine; BFA, brefeldin A; CAH, carbonic anhydrase; CNX,
calnexin; Con A, concanavalin A; CSC, cellulose synthase complex; CT, cytosolic tail;
CTR, calreticulin; ECD, electron capture dissociation; ER, endoplasmic reticulum;
ERES, ER export/exit sites; Fuc, α-1,3-fucose; GA, Golgi apparatus; GlcNAc, N -
acetylglucosamine; Hyp, hydroxyproline; Lea, Lewis a; Man,α-mannose; PM, plasma
membrane; PSV, protein storage vacuole; PTM, post-translational modification; S
or Ser, serine; SCAMP2, Secretory carrier membrane protein 2; T or Thr, threonine;
TGN, trans-Golgi network; TMD, transmembrane domain; Xyl, β-1,2-xylose.

non-canonical consensus sequences, such as N-X-C, have been
suggested for small subset of N -glycosylation events (Zielinska
et al., 2010). The second kind of glycosylation is O-glycosylation,
which in plants occurs on serine (S or Ser), threonine (T or Thr),
and hydroxyproline (Hyp) residues (Showalter, 2001; Gomord
et al., 2010; Velasquez et al., 2011), with no apparent single com-
mon core structure or consensus protein sequence. Plant protein
O-glycosylation will not be specifically discussed here, but has
been the subject of several recent reviews (Gomord et al., 2010;
Mohnen and Tierney, 2011; Taylor et al., 2011); rather this article
will focus on plant N -glycoproteins.

The glycan structures that are attached to nascent proteins typi-
cally reflect the actions of an array of often competing glycosidases
and glycosyl transferases in the secretory pathway. While the pres-
ence of the consensus sequence is generally required for N -linked
glycosylation, the occupation of a potential site is not mandatory.
Therefore, a glycoprotein may contain a number of potentially
N -glycosylated sites, each of which may or may not be glycosy-
lated (An et al., 2009). This results in a population of decorated
proteins with a high degree of microheterogeneity at specific sites,
making structural characterization extremely difficult. This chal-
lenge is compounded by the large number of possible stereo- and
regio-isomers (An et al., 2009; Marino et al., 2010). Moreover, the
glycan structures and frequencies cannot be reliably predicted at
the level of primary DNA or protein sequences and there is not yet
a single analytical platform for their accurate or high-throughput
identification (Ruiz-May et al., this issue).

Despite these major obstacles, recent reports have described
the characterization of hundreds of glycoproteins from several
bacterial (Nothaft and Szymanski, 2010) and animal species
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(Bunkenborg et al., 2004; Liu et al., 2005b; Kaji et al., 2007; Gundry
et al., 2009; Lee et al., 2009; Wollscheid et al., 2009; Zielinska et al.,
2010). In contrast, there have been no similar published studies of
plant glycoproteomes on this scale. Rather, the emphasis to date
has typically been on characterizing the N -glycosylation of indi-
vidual proteins (Jamet et al., 2008), often in the context of using
plants as a factories to produce recombinant proteins for human
therapy and diagnostics (Chrispeels and Faye, 1996; Gomord et al.,
2010). The purpose of this review is to provide a summary of
advances in understanding plant N -glycoprotein synthesis and
trafficking, with a specific focus on secreted (i.e., cell wall resi-
dent) proteins. Such studies are laying the foundation for a more
advanced understanding of the plant N -glycoproteome, and con-
sequently the identity, function and targeting of cell wall proteins.

BIOSYNTHESIS OF N -GLYCOPROTEINS
The yeast Saccharomyces cerevisiae has served as a model for the
elucidation of N -glycan biosynthesis in eukaryotes and substantial
numbers of the associated genes have been annotated (Burda and
Aebi, 1999; Kelleher and Gilmore, 2006; O’Reilly et al., 2006). Con-
siderably fewer have been identified and characterized in plants,
but based on existing examples it appears that there is general
conservation of the glycosylation machinery (see examples listed
in Table 1). There follows an overview of recent developments
and questions in the field of plant glycoprotein biosynthesis and
trafficking in the context of other experimental model systems.

CYTOPLASMIC FACE
As with all eukaryotes, protein glycosylation in plants is initi-
ated in the endoplasmic reticulum (ER). However, the biosyn-
thesis of the N -glycan precursor begins on the cytosolic side
of the ER (Figure 1; Table 1), starting with the transfer of N -
acetylglucosamine-phosphate from soluble UDP-GlcNAc to the
lipid membrane bound dolichyl monophosphate (Dol-P), form-
ing N -acetylglucosamine-pyrophosphatidyldolichol (GlcNAc-
PP-Dol). Dol-P is one of the rate-limiting factors in N -linked
protein glycosylation in yeast and mammalian cells (Burda and
Aebi, 1999; Jones et al., 2005) and while this is likely also to be
the case in plants, it has not yet been demonstrated. However,
mutational defects in the biosynthesis of Dol-P in Arabidop-
sis have been shown cause multiple physiological effects, such
as impaired plasma membrane integrity resulting in electrolyte
leakage, reduced cellular turgor and stomatal conductance, and
increased drought resistance (Zhang et al., 2008). One GlcNAc and
five mannose (Man) residues are subsequently transferred from
UDP-GlcNAc, or GDP-Man, respectively, in a controlled, stepwise
manner to GlcNAc-PP-Dol, producing the Man5GlcNAc2-PP-
Dol branched heptasaccharide intermediate (Helenius and Aebi,
2002).

LUMEN OF THE ENDOPLASMIC RETICULUM
The second phase of synthesis involves the translocation of the
Man5GlcNAc2-PP-Dol moiety across the ER membrane to the
luminal leaflet (Figure 1; Table 1). This is thought to be catalyzed
by a flippase, although the identity of this protein has not yet been
confirmed in eukaryotic cells (Bugg and Brandish, 1994; Higgins,
1994; Sprong et al., 2001). Following transfer to the luminal side of

the ER membrane, the oligosaccharide moiety is extended by the
progressive addition of four mannose (Man) and three glucose
(Glc) residues by several luminal glycosyltransferases to form
GlcMan9GlcNAc2-PP-Dol (Gomord et al., 2010). Genes encoding
a variety of plant glycosyltransferases have been identified (Ross
et al., 2001) and several enzymes involved in N -glycan biosynthe-
sis have been characterized in recombinant forms (Leonard et al.,
2004). However, the functions of many plant glycosyltransferase
homologs remain to be elucidated (Table 1). The basic step of
the biosynthesis of the N -glycan precursor is conserved among
eukaryotic cells but the regulation mechanism and the number
of intermediates vary among species, and even between tissues
(Pattison and Amtmann, 2009).

The third phase of N -linked protein glycosylation (Figure 1)
is the transfer of a mature Glc3Man9GlcNAc2 oligosaccharide to
select Asn residues that are components of the N-!P-[S/T] consen-
sus sequence (Pless and Lennarz, 1977). This step is catalyzed by
the oligomeric oligosaccharyltransferase (OST, Table 1) complex
(Yan and Lennarz, 1999), which in mammals consists of seven or
eight non-identical subunits, but nine protein subunits in yeast
(Knauer and Lehle, 1999). The active site subunits of the eukary-
otic OST are termed STT3 proteins (Nilsson and von Heijne, 1993;
Yan and Lennarz, 2002) and in mammalian systems it has been
shown that two STT3 isoforms (STT3A and STT3B) are respon-
sible for co- and post-translational N -polypeptide glycosylation
(Ruiz-Canada et al., 2009). Sequence homology searches of the
Arabidopsis genome identified five genes encoding putative OST
subunits and two STT3 isoforms (Gallois et al., 1997), but only
three of these have been functionally characterized (Koiwa et al.,
2003; Lerouxel et al., 2005b).

MODIFICATION IN THE ENDOPLASMIC RETICULUM
After transfer from dolichol to the nascent glycoprotein, the
N -glycan is trimmed (Figure 1; Table 1), involving hydrolytic
removal of the distal α-1,2-linked Glc by glucosidase I (Grinna
and Robbins, 1979; Hubbard and Ivatt, 1981), two adjacent α-1,3-
linked Glc residues by glucosidase II (Michael and Kornfeld, 1980;
Kilker et al., 1981) and a single specific Man residue. Glucosidases
I and II were first purified from mung bean (Szumilo et al., 1986a;
Kaushal et al., 1990a, 1993; Zeng and Elbein, 1998) and the char-
acterization of the Arabidopsis mutants gsc1-1 and gsc1-2 resulted
in the cloning of a glucosidase I gene. The encoded protein has
homology to animal and yeast α-glucosidase I, which is involved
in the first step of N -glycan trimming (Boisson et al., 2001). The
first plant glucosidase II gene was identified from potato (Taylor
et al., 2000) and the gene encoding the catalytic subunit was dis-
covered through a study of an Arabidopsis temperature sensitive
mutant (rsw3) with perturbed cellulose synthesis and a swollen
root phenotype (Burn et al., 2002a).

With regard to subsequent trimming and modification of the
Man component by mannosidases, studies in mammalians sys-
tems have resulted in the definition of three subgroups of the class
1 α-mannosidase family, based on sequence similarity and pro-
posed function: ER-α1, 2, mannosidases I (ER-MNSIs), Golgi-α-
mannosidases I (Golgi-MNSIs), and ER degradation-α-enhancing
mannosidase (EDEM) like proteins (Mast and Moremen, 2006).
In humans, only one ER-MNS1 cleaves one terminal Man from
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Table 1 | Homologous yeast, human and plants genes associated with N -glycosylation and phenotypes of related plant mutants.

Reaction Yeast Human Plants Plant mutant feature

CYTOPLASMIC FACE OFTHE ER

1 (Add GlcNAc-1-P) ALG7 DPAGT1 GPT (Koizumi et al., 1999) Overexpression induce BiP and

tunicamycin resistance

2 (Add GlcNAc) ALG13/14 hALG13/14 Partial purification (Kaushal and Elbein,

1986)

3 (Add β-1,4-Man) ALG1 MAT-1

4 (Add α-1,3-Man) ALG2 hALG2

5 (Add α-1,6-Man) ALG2? hALG2?

6 and 7 (Add α-1,2-Man) ALG11 LEW3 (Zhang et al., 2009) Cell wall defect

LUMINAL SIDE OFTHE ER

8 (Add α-1,3-Man) ALG3 NOT56 AtALG3 (Henquet et al., 2008) Abnormal glycosylation

9 (Add α-1,2-Man) ALG9 hALG9/DIBD1

10 (Add α-1,6-Man) ALG12 hALG12 EBS4 (Hong et al., 2009) Abnormal glycosylation

11 (Add α-1,2-Man) ALG9 hALG9/DIBD1

GLUCOSYLTRANSFERASES

12 (Add α-1,3-Glu) ALG6 hALG6

13 (Add α-1,3-Glu) ALG8 hALG8

14 (Add α-1,2-Glu) ALG10 hALG10 AtALG10 (Farid et al., 2011) Defects in glycosylation and leaf

development

OST COMPLEX

STT3 STT3A SST3A (Koiwa et al., 2003) Sensitive to salt and defects in

glycosylation

STT3B STT3B (Koiwa et al., 2003)

OST1 RPN1 RPN1* (Panstruga et al., 1998)

SWP1 RPN2 HAP6* (Mayer et al., 1999)

WBP1 OST48/DDOST DGL1 (Lerouxel et al., 2005a) Defective in cell growth,

glycosylation and differentiation

OST2 DAD1 DAD1 (Gallois et al., 1997) Suppressor of apoptosis in animals

OST3 and OST6 N33 (Isoform a)

N33 (Isoform b)

IAP

OST4 AtOST4* (Kelleher and Gilmore, 2006)

OST5

GLUCOSIDASES

15 (Deletion α-1,2-Glu) CWH41 (Romero

et al., 1997)

GCS1(Kalz-Fuller

et al., 1995)

KNF (Szumilo et al., 1986a; Zeng and

Elbein, 1998; Boisson et al., 2001;

Gillmor et al., 2002)

Reduction of cellulose content and

cell expansion defect

16 and 17 (Deletion α-1,3-Glu) GTB1 (Wilkinson

et al., 2006)

GCS2 (Trombetta

et al., 1996)

MALI/RSW3 (Kaushal et al., 1990a,

1993; Taylor et al., 2000; Burn et al.,

2002a,b)

Change in cell wall structure and

perturbation in cellulose synthesis

The plant sequences marked with asterisk have not been functionally characterized. Modified from Lehle et al. (2006).

Man9GlcNAc2 (referred to as b-branch in Liebminger et al., 2009)
to generate Man8GlcNAc2. In mammals, some N -glycoproteins
bearing Glc1Man9GlcNAc2 (i.e., retaining an extra Glc due to
incomplete processing in the ER) have been shown to traffic to the
cis-Golgi. In such cases, a Golgi resident endo-α-d-mannosidase
can then cleave this molecule internally between two Man residues,
resulting in a Man8GlcNAc2 glycan (Lubas and Spiro, 1987).
However, phylogenetic surveys and enzymatic assays suggests the
absence of such Golgi endo-α-d-mannosidase in higher plants
(Dairaku and Spiro, 1997). More recently, an ER-MNSI (MNS3)

from Arabidopsis was identified and biochemically characterized
(Liebminger et al., 2009). Arabidopsis MNS3 showed 47% of iden-
tity to human ER-MNSI and is required for the efficient trimming
of Man9GlcNAc2 to Man8GlcNAc2 (Liebminger et al., 2009).
The apparent absence of Golgi endo-α-d-mannosidases in higher
plants (Dairaku and Spiro, 1997) and the fact that ER resident
plant glycoproteins predominantly bear Man8GlcNAc2 and min-
imal amount of Man9GlcNAc2, might suggest that MNS3 resides
in the ER. However, transient expression of MNS3-GFP in leaf
epidermal cells of Nicotiana benthamiana showed overlapping
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FIGURE 1 | Representation of the secretory pathway followed by the

N -glycoproteins. The biosynthesis of the N -glycans is initiated on the
cytosolic face of the ER. The resulting Man5GlcNAc-PP-Dol precursor is
then flipped onto the luminal side ER lumen where further maturation of
the sugar precursor occurs (Glc3Man9GlcNAc-PP-Dol). At this point the
N -glycan structure is transferred to the nascent polypeptide. After removal
of three Glc residues the N -glycoproteins enter the calnexin-calreticulin
cycle (CNX/CRT; Hebert et al., 1995). The alternate action of glucosidase II
and UDP-glucose:glycoprotein glucosyltransferase drives the glycoprotein
through this cycle until it is correctly folded and exported from the ER to
the GA. Misfolded proteins are directed from the ER to the cytosol by the
ER-associated degradation (ERAD) machinery for proteasomal hydrolysis

(Hebert et al., 1995; Crofts et al., 1998; Helenius and Aebi, 2004; Jin et al.,
2007; Lederkremer, 2009). Glucosyl transferase and glucosidases
implicated the in the sugar trimming in the ER and identified in plants so
far, are enlisted inTable 1. Subsequent modifications of the N -glycans
occur in the GA and potentially in other cellular compartments, such as the
chloroplast and vacuole (based on a model presented in Gomord et al.
(2010). The first indirect insights into the location and orientation of plant
glycosyltransferases were provided by immunolocalization of the enzyme
products (Laine et al., 1991; Fitchette et al., 1994, 1999). Such studies
indicated that β-1,2-xylose is added to plant N -glycans mainly in the medial
Golgi while the α-1,3-fucosylation occurs predominantly in the trans-Golgi
(Fitchette et al., 1994).
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expression with the Golgi marker GnTI-CTS-mRFP (Liebminger
et al., 2009). In mammalian cells the ER-MNS1 has observed to be
located in the ER-derived quality control compartment (Avezov
et al., 2008), which is adjacent to, but not overlapping with the
Golgi and the ER-to-Golgi intermediate compartment (Kamhi-
Nesher et al., 2001). One hypothesis then is that MNS3 is localized
in a similar, but as yet unconfirmed subcellular compartment.

QUALITY CONTROL CNX/CRT CYCLE
During translation and glycosylation in the ER, N -glycoproteins
undergo a quality control process that prevents the arrival of incor-
rectly folded proteins at their final destinations and involves their
redirection to the protein degradation machinery (Figure 1, and
for more information see Liu and Howell, 2010). The N -glycan
structure assembled in the ER serve as a recognition tags for the
ER quality control and reflect the folding status of proteins (Hele-
nius and Aebi, 2004). The membrane bound calnexin (CNX) and
its soluble luminal homolog calreticulin (CRT) are chaperones
that facilitate maturation and detection of defective folding (Led-
erkremer, 2009). The cleavage of the terminal glucose residues
of the N -glycans can be crucial to protein folding (Lupattelli
et al., 1997). Indeed, the mono-glycosylated core glycan (Figure 1,
GlcMan9GlcNAc2) generates the interaction with the CNX/CRT
complex (Ruddock and Molinari, 2006). The dissociation of the
CNX/CRT complex from the glycoproteins is made possible by
the removal of the third glucose linked mannose residue by glu-
cosidase II. However, the enzyme UDP-glucose: glycoprotein glu-
cosyltransferase (GT) can then re-glucosylate the N -glycan chain
and recreate a ligand for CNX/CRT (Hebert et al., 1995). An Ara-
bidopsis GT has been identified that plays such a role (Jin et al.,
2007). It is not clear how this cycle of glycoprotein binding and gly-
can modification promotes protein folding or oligomerization, but
one suggestion is that CNX/CRT facilitates ER retention once the
GT has recognized and signaled the unfolded, or partially folded,
state of a protein (Crofts et al., 1998). This cycle continues until
proper folding is achieved, which prevents further recognition by
the GT folding sensor (Jin et al., 2007). Another contributor to this
process is the luminal binding protein (BiP). It is thought that BiP
binds to translocation intermediates, misfolded proteins and pep-
tides with exposed hydrophobic regions (Blond-Elguindi et al.,
1993; Gething, 1999), preventing aggregation that could lead to
permanent misfolding (Gaut and Hendershot, 1993; Hendershot
et al., 1996). However, the nature and extent of any interaction
between CNX/CRT and BiP that allows the proper folding of the
glycoprotein intermediates through the ER is unclear at present.
Similarly, it is not known whether other ER resident proteins or
some other interacting molecules are also involved. Misfolded pro-
teins released from the CNX/CRT cycle are redirected from the ER
to the cytosol for proteasomal degradation; a poorly understood
process in plants, referred to as ER-associated protein degradation
(ERAD; Di Cola et al., 2001, 2005; Lederkremer, 2009; Liebminger
et al., 2010; Liu and Howell, 2010).

ER EXPORT OF GLYCOSYLATED PROTEINS
After the initial glycosylation event involving the addition of Man
and Glc residues with transfer of the N -glycan donor on the
protein and final deletion of three glucose and one MAN residues,

N -glycoproteins carrying Man8GlcNAc2 are delivered from the
ER to the cis-Golgi generally via the COPII machinery (Figure 2)
using cargo receptors or bulk flow transport (Kuehn et al., 1998;
Phillipson et al., 2001). Several soluble cargo receptors have been
characterized in mammals and yeasts by mutant analysis. For
example, ERGIC-53 and Emp46p/47p are soluble ER resident
receptors that interact with the glycosylation motif of soluble car-
gos, while Erv29p is a cargo receptor that interacts with the ILV
motif of glycosylated proteins (Appenzeller et al., 1999; Belden and
Barlowe, 2001; Otte and Barlowe, 2004). Both in vitro and in vivo
interaction experiments have demonstrated that the absence of
these functional cargo receptors leads to defective secretion, sug-
gesting that they are essential for packing soluble cargo into COPII
vesicles prior to transport from the ER to the Golgi. Considering
their binding specificity for the glycosylation motif, ERGIC-53,
and Emp46p/47p could be regarded as a glycosylation checkpoint
(Appenzeller et al., 1999; Otte and Barlowe, 2004). Although recep-
tor mediated cargo recruitment by the COPII machinery has not
been characterized in plants, delivery of soluble glycoproteins by
bulk flow via COPII machinery has been shown in tobacco, using
calreticulin without the ER retention signal HDEL (calreticulin
ΔHDEL) and α-amylase fused with HDEL (Phillipson et al., 2001).
Calreticulin binds to glycosylated proteins for quality control and
has the ER retention signal (HDEL) that mediates retrieval from
the Golgi to ER. It has been reported that over-expressed calretic-
ulin ΔHDEL is secreted by the default secretory pathway; however,
secretion of calreticulin ΔHDEL decreases when COPII machin-
ery is partially inhibited (Phillipson et al., 2001). These results
demonstrate the existence of COPII-mediated bulk flow of gly-
cosylated proteins in tobacco. Interestingly, no close homologs of
soluble cargo receptors have been identified in plants, although
given the conservation of the COPII machinery among eukary-
otes, it is reasonable to hypothesize that plants may also have such
receptors.

Peptide sequences in the cytosolic domain of glycoproteins
have been reported to be important for their transport from the
ER to the cis-Golgi. For example, a GDP-mannose transporter
(GONST1) and Arabidopsis AtCASP have diacidic DXE motifs in
their cytosolic domains that are required for efficient ER export
(Hanton et al., 2005). Similarly, the diacidic motifs are also impor-
tant for efficient ER export in yeast, where the interaction between
the diacidic motif and a Sec23p/24p complex has been studied
(Nishimura and Balch, 1997;Votsmeier and Gallwitz, 2001). Physi-
cal association between the diacidic motif of a K+-channel (KAT1)
and the COPII coat component Sec24 has been demonstrated
in vivo in guard cells using a fluorescence resonance energy trans-
fer (FRET) approach (Sieben et al., 2008). Sec24 isoforms from
yeast and mammals have been reported to have their own specific
binding domains for cargo selection (Miller et al., 2002; Mancias
and Goldberg, 2008) and studies of the three Arabidopsis Sec24 iso-
forms (Faso et al., 2009) suggest that they may also have a specific
binding motif (Wendeler et al., 2007). Further characterization of
sorting signals other than a diacidic motif for the interaction with
Sec24 isoforms in plants is an important future goal.

Considering the proposed specific membrane-anchored cargo
selection by Sec24 isoforms, it is possible that membrane-anchored
cargos are sequestered at different ER domains, dependent upon
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FIGURE 2 | Overview of the secretory pathway of glycosylated proteins.

Glycosylated proteins are transported from ER to cis-Golgi by either bulk flow
transport or receptor mediated transport. COPII and COPI proteins are
involved in anterograde and retrograde trafficking between ER and Golgi,
respectively. Secretory and vacuolar proteins are sorted at TGN. Vacuolar

proteins in TGN are transported to vacuole via prevacuolar compartment (PVC)
formed from maturation of TGN as well as late PVC (LPVC). Secretory proteins
are accumulated in the secretory vesicles (SV) and delivered to the cell
surface. A transport route indicated by dashed arrows represents a
hypothetical pathway for GPI-anchored proteins (PMEI1 and PGIP2).

the isoform. This hypothesis finds further support in light of the
recent result that a partial loss of function of Arabidopsis Sec24A
led to the deformation of the ER into skein-like structures at the
perinuclear area, suggesting that Sec24A may control ER export of
cargo that is important for ER morphology in specific regions of
the cell (Faso et al., 2009). This hypothesis has yet to be tested since
it is still not know whether the COPII coat at the sites of ER pro-
tein export, the so-called ER export/exit sites (ERES), may contain
different Sec24 isoforms, or only one isoform. A diversification of
ERES within the cell might facilitate ER export of cargo to specific
regions of the cell and allow efficient communication with the
surrounding environment. A detailed analysis using fluorescent
protein tagged Sec24 isoforms under the control of endogenous
promoters could provide important insights into the composi-
tion of ER export sites and test the potential importance of ERES
diversification.

MATURATION OF PLANT N -GLYCOPROTEIN GLYCANS IN THE
GOLGI APPARATUS
Once N -glycosylated proteins reach the cis-Golgi, a num-
ber of enzymes then contribute to further the N -glycan
processing and maturation (Figure 1; Lerouge et al., 1998).

After the generation of Man5GlcNAc2 by the MNS1/2 2 (Lieb-
minger et al., 2009; Schoberer and Strasser, 2011), the N -
acetylglucosaminyltransferase I (GNT I) catalyze the addition of
GlcNAc yielding GlcNAcMan5GlcNAc2 (Johnson and Chrispeels,
1987; Tezuka et al., 1992). The cDNA encoding GNT I was isolated
from tobacco and its identity confirmed by heterologous expres-
sion and activity assays (Strasser et al., 1999) and several other
cDNA clones encoding GNT I from potato and Arabidopsis have
been characterized (Wenderoth and von Schaewen, 2000). Subse-
quently, α-mannosidase II (MAN II) acts to sequentially remove
two Man residues (Kaushal et al., 1990b; Strasser et al., 2006)
and N -acetylglucosaminyltransferase II (GNT) adds a single Glc-
NAc (Johnson and Chrispeels, 1987; Tezuka et al., 1992; Strasser
et al., 1999) to generate GlcNAc2Man3GlcNAc2. MAN II has been
purified from mung bean (Szumilo et al., 1986b; Kaushal et al.,
1990b) and the corresponding gene was identified from Arabidop-
sis based on homology with human and Drosophila sequences
(Strasser et al., 2006). At this point additional structural features
are introduced that are apparently unique to plants (Fitchette et al.,
1994), insects (Kubelka et al., 1993; Altmann et al., 1999), cer-
tain invertebrates (van Kuik et al., 1985), and parasitic nematodes
(Haslam et al., 2001; Faveeuw et al., 2003). In plants, these comprise
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the addition of an β-1,2-xylose (Xyl) by β-1, 2-xylosyltransferases
(Zeng et al., 1997; Strasser et al., 2000; Pagny et al., 2003) and α-1,3-
fucose (Fuc) to the 3-position of the innermost GlcNAc residue by
an α-1,3-fucosyltransferase (Leiter et al., 1999; Wilson et al., 2001a;
Figure 1). The resulting N -glycans can be further decorated by the
consecutive addition of β-1,3-galactose and α-1,4-fucose residues
to the outermost GlcNAc residue to yield the so-called Lewis
(Lea) epitope (Fitchette-Laine et al., 1997; Melo et al., 1997). The
first reaction is catalyzed by a β-1,3-galactosyltransferase (1,3 β-
GalT), which has been identified and characterized in Arabidopsis
(Strasser et al., 2007). The second reaction is catalyzed by an α-1,4-
fucosyltransferase (1,4 α-FucT). In humans, α-1,4-fucosylation is
primarily mediated by the Lewis fucosyltransferase, Fuc-TIII, a
member of the α-1,3-fucosyltransferase family, which can catalyze
the formation of both α-1,3- and α-1,4-fucose linkages (Palma
et al., 2001). Genes encoding 1,4 α-FucT have been cloned from
several plant species and the corresponding enzymatic activity
shown to have strict acceptor substrate specificity for type 1 chain-
based glycan structures (Galβ1-3GlcNAc), but not type 2 chains
(Galβ1-4GlcNAc) that are typical of mammalian N -linked glycans
(Fitchette-Laine et al., 1997; Oriol et al., 1999; Bakker et al., 2001;
Palma et al., 2001; Wilson, 2001; Wilson et al., 2001b; Leonard
et al., 2002, 2005).

These plant-associated differences in N -glycan structures have
important implications for human health as plant glycoproteins
are often extremely immunogenic (Garcia-Casado et al., 1996) and
there are a number of reports that ascribe IgE cross reaction with
pollen and dietary components to the carbohydrate component of
glycoproteins (Wilson et al., 2001b). Indeed, it has been claimed
that the major food allergens are typically water soluble glycopro-
teins (van Ree et al., 2000). Plant N -glycan structural differences
are also significant in terms of experimental procedures that can
be used for their analysis. For example, GlcNAc substituted with
α-1, 3-fucose is not recognized by the enzyme PNGase-F, which
is commonly used to deglycosylate mammalian, fungal and yeast
proteins. PNGase-A can be used as an alternative, but this enzyme
is only active on shorter peptides (Ytterberg and Jensen, 2010),
which is an obstacle to the systematic study of plant glycoproteins.

GOLGI DISTRIBUTION OF GLYCAN MODIFYING ENZYMES
It has been proposed that the N -glycan modifying enzymes
described above are spatially separated in the different Golgi stacks
consistent with the sequence of glycan processing and matura-
tion (Lerouge et al., 1998). Thus, their localization must be highly
regulated in the Golgi. Previous efforts to explain this regulation
have shown several Golgi localization or retention determinants in
type-II membrane enzymes for N -glycosylation and type-I mem-
brane proteins. The transmembrane domain (TMD) itself has
been found to be important for the ER exit and Golgi localiza-
tion (Brandizzi et al., 2002; Saint-Jore-Dupas et al., 2006). The
membrane thickness is different among endomembrane systems:
the ER and the Golgi membranes are 4–5 nm thick, while the post-
Golgi membranes are thicker than those of the ER, or the Golgi
membranes of fungi and mammals (Grove et al., 1968), suggesting
that the length of the TMD domain is important for insertion into
the correct membrane. Studies of the human lysosomal protein
LAMP1 demonstrated that TMD lengths of 17, 20, and 23 amino

acids are required for the insertion into the membranes of the ER,
Golgi or the plasma membrane, respectively. A similar distribu-
tion dependency on TMD length has been shown for the TMD of
pea vacuolar sorting receptor BP-80, a type-I membrane protein
(Brandizzi et al., 2002), and the TMD of soybean α-1,2 man-
nosidase I (ManI) appears to be sufficient for the Golgi targeting
(Saint-Jore-Dupas et al., 2006). While TMD length is important
for membrane insertion, it has also been proposed that the compo-
sition of amino acids in the TMD, together with membrane lipid
composition, is important for the Golgi localization in mammalian
cells. Cis-, medial-, and trans-Golgi membranes have been found
to have different sphingolipid:glycerophospholipid ratios and the
nature of the amino acids that comprise the TMD may influ-
ence the affinities or partitioning with the membrane structural
variants, and thus localization in different Golgi compartments
(Patterson et al., 2008; Jackson, 2009). It is not yet known whether
this model also applies to plants.

In addition to the TMD, the cytosolic tail (CT) domain of ER
or Golgi membrane bound enzymes contains sorting signals. The
CT domain has been investigated for ER retention in plant and
mammalian cells, as well as intra-Golgi trafficking in yeast and
mammalian cells. It has been suggested that there are several types
of CT domain, which have a role in determining the localization
of the proteins. The di-lysine motif in the CT of type-I membrane
proteins and di-arginine motif in the CT of type-II membrane
proteins are necessary for the COPI-mediated ER retrieval and
are conserved in mammals, yeasts, and plants (Benghezal et al.,
2000; McCartney et al., 2004; Kabuss et al., 2005; Okamoto et al.,
2008; Boulaflous et al., 2009; Uemura et al., 2009). A number of
yeast proteins have been found to have Vps74p binding motifs in
their CT domain (Tu and Banfield, 2010). Vps74p forms a tetramer
complex and functions as a bridge between COPI coat protein and
CT domain (Schmitz et al., 2008). The localization of Vps74p is
dependent on phosphatidylinositol 4-phosphate (PtdIns4P), syn-
thesized by the enzyme phosphatidylinositol 4-kinase, and lack of
PtdIns4P causes mislocalization of a Vps74p interacting Golgi res-
ident protein, α-1,2-mannosyltransferase, to the vacuole (Tu et al.,
2008; Wood et al., 2009). In addition, knock-down of a gene encod-
ing the lipid phosphatase Suppressor of actin mutations 1 (SAC1)
disrupts the restricted distribution of PtdIns4P in the trans-Golgi
network (TGN), resulting abnormal Golgi morphology and mis-
localization of Golgi enzymes in mammals. This result suggests
that enrichment of PtdIns4P in the TGN is required for main-
taining Golgi structure and proper distribution of Golgi proteins
(Cheong et al., 2010).

In addition to Vps74p, COG complexes have been shown to be
involved in the distribution of Golgi proteins in yeast and Ara-
bidopsis (Bruinsma et al., 2004; Ishikawa et al., 2008). The COG
complex is considered to be a tethering factor and is required for
the typical SNARE- and COPI-mediated vesicle transport (Brown
and Pfeffer, 2010). Mutation in one subunit in the Arabidop-
sis COG complex causes mislocalization of Golgi proteins and
abnormal cell growth and organization, presumably by affecting
localization of glycosylation enzymes (Ishikawa et al., 2008). These
results suggest that the COPI machinery contributes to steady-state
Golgi distribution of enzymes with specific CT domains, which
may be required for the interaction with trafficking components
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in COPI vesicles. Considering the suggested role of the COPI
vesicles in retrograde trafficking from the cis-Golgi to the ER, or
from the trans-Golgi to cis-/medial-Golgi (Donohoe et al., 2007),
and the conserved role of the COG complex in Golgi distribu-
tion (Ishikawa et al., 2008), the COPI machinery could contribute
to steady-state Golgi distribution of enzymes with specific CT
domain, which is necessary for the interaction with trafficking
components in COPI vesicles in plants. Although little is known
about PtdIns4P in plants, it is known to be enriched in the trans-
Golgi and plasma membrane in BY-2 cells, cowpea protoplasts
and Arabidopsis (Vermeer et al., 2009). Receptors such as Vps74p
and cognate interacting motif in Golgi proteins are not present in
plants (Schoberer and Strasser, 2011), but a conserved role for the
COG complex and high accumulation of PtdIns4P in the plant
Golgi apparatus suggests that plants may utilize distinct cargo
receptors and interacting motifs that utilize COPI machinery.

N -GLYCOPROTEIN SORTING AND TRAFFICKING TO THE CELL
SURFACE AND APOPLAST
Following maturation in the ER and the GA (Figure 1), plant
N -glycans can be further modified during the transit of glycopro-
teins to their final destinations, which can include the chloroplast,
vacuole, and apoplast (Rose and Lee, 2010). Although cargo sort-
ing can occur in earlier secretory compartments and also continue
beyond the TGN, it may reach a particularly high level of complex-
ity and sophistication in the TGN, where the sorting machinery
controls multiple divergent pathways directed to spatially segre-
gated acceptor compartments (De Matteis and Luini, 2008). No
specific sorting determinants have been reported in secreted pro-
teins, which are normally sorted at the TGN and transported to
the plasma membrane/apoplast by the default pathway. This has
been demonstrated by the secretion of non-plant soluble proteins
fused with the signal peptide for ER translocation (Denecke et al.,
1990; Batoko et al., 2000). At the TGN, vacuolar proteins are trans-
ported to the vacuole via the prevacuolar compartment (PVC),
which originates from the TGN, and late PVC (Figure 2; Scheur-
ing et al., 2011; Bottanelli et al., 2012). However, secretory vesicles
have been reported to have no coat proteins and form secretory
vesicle clusters at the TGN (Toyooka et al., 2007). The secretory
carrier membrane protein 2 (SCAMP2) has been established as a
marker of secretory vesicles containing pectin and secretory solu-
ble GFP fusion marker (secGFP), and mammalian SCAMP2 has
been reported to be involved in vesicle fusion at the PM (Liu et al.,
2002, 2005a; Toyooka et al., 2007). Considering the localization
and high degree of sequence conservation of plant SCAMP2 with
its mammalian homolog, it could also be involved in membrane
fusion at PM.

Another characterized protein in the secretory pathway is
SYP121 (Figure 2), a soluble NSF (N -ethylmaleimide-sensitive
factor) Attachment Protein Receptors (SNARE) at the plasma
membrane. It has been reported that SYP121 is involved in many
aspects of the response of plants to their environment, such as
non-host resistance phenomena and cellular processes includ-
ing the regulation of ion channels and membrane fusion at the
plasma membrane (Geelen et al., 2002; Sutter et al., 2006; Zhang
et al., 2007). The Sp2 cytosolic domain of SYP121 was reported
to inhibit secretion of the fluorescent secreted marker protein

secGFP, presumably by preventing SNARE-mediated vesicle fusion
at the plasma membrane (Tyrrell et al., 2007). This dominant-
negative feature of the Sp2 domain suggests that SYP121 is a
SNARE that controls bulk flow secretory pathways. Recently, new
secretory pathways for cell wall proteins, a pectin methylesterase
inhibitor protein (PMEI1) and a polygalacturonase inhibitor pro-
tein (PGIP2) have been proposed (De Caroli et al., 2011). The
secretion of these two proteins was not inhibited by the Sp2
domain, and a glycosylphosphatidylinositol (GPI) anchoring of
PMEI1 was found to be essential for the secretion of PMEI1. The
new proposed secretory pathway for PMEI1 and PGIP2 suggests
that the SYP121 independent vesicles are responsible for the trans-
port of the GPI-anchored proteins. For the characterization of the
new type of vesicles, the characterization of SNAREs for mem-
brane fusion and the visualization of vesicles containing PMEI1
or PGIP2 using electron microscopy will provide new insights into
the future of the alternative secretory pathway for GPI-anchored
proteins.

In addition to the above examples of features of cell wall pro-
tein associated trafficking pathways, the microtubule-dependent
secretion pathway of the cellulose synthase complex (CSC) has
also been established. The CSC, which is responsible for cellu-
lose biosynthesis, is formed in the trans-Golgi, and microtubules
and kinesins are involved in the distribution of CSC and cellulose
deposition (Haigler and Brown, 1986; Zhong et al., 2002; Lloyd,
2006; Wightman and Turner, 2008). Recently, it was reported that
CSC is transported from the Golgi to the plasma membrane along
cortical microtubules (Crowell et al., 2009; Gutierrez et al., 2009),
consistent with previous results. Additionally, CSC was found to
be internalized under abiotic stress or cellulose synthesis inhibitor
treatment, indicating the putative regulation of the CSC by endo-
cytosis (Crowell et al., 2009; Gutierrez et al., 2009). Endocytosis in
plants is important for maintaining cellular functions and trans-
mitting signals resulting from developmental or environmental
cues. Other examples include the polar distribution of auxin efflux
carriers and the shuttling of the receptor-like kinase, BRI1 from
the plasma membrane to endosomes for signaling (Geldner et al.,
2003, 2007; Abas et al., 2006). Endocytosis of the CSC would pre-
sumably allow cellulose synthesis to be directed to new sites by
redistribution to the PM, or rapidly inhibit cellulose synthesis
by compartmentalizing CSC in endosomes, although a detailed
mechanism has not yet been determined. Thus, investigation of
the endocytic regulation of the CSC, as well as related traffick-
ing components and signaling pathways by endocytosis is likely
to provide important information on the regulation of cellulose
synthesis during development or under various environmental
conditions.

FUNCTIONAL SIGNIFICANCE OF CELL WALL PROTEIN
N -GLYCOSYLATION
There are numerous reports, spanning several decades, describ-
ing the secretion of plant glycoproteins both in vitro and in vivo
(Jamet et al., 2008; Agrawal et al., 2010; Rose and Lee, 2010;
Ruiz-May et al., 2010). In vitro culture systems, such as sus-
pension cell cultures (SCCs), have provided a useful platform to
study secreted glycoproteins through characterization of protein
populations in the cell culture medium (Kieliszewski and Lamport,
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1994; Fitchette-Laine et al., 1997; Fitchette et al., 1999; Kieliszewski,
2001; Misaki et al., 2001; Luczak et al., 2008; Agrawal et al., 2010;
Ruiz-May et al., 2010). While there are several reports describ-
ing the analysis of secreted plant protein populations (Rose and
Lee, 2010), there have been few systematic surveys that specifically
target plant glycoproteins from complex tissues. One of the first
efforts involved an analysis of N -glycoproteins from Arabidop-
sis stems using affinity chromatography with the carbohydrate
binding lectin Concanavalin A (Con A; Minic et al., 2007). This
resulted in the identification of 102 glycoproteins, 94% of which
were predicted to be targeted to the secretory pathway, while 87%
had putative cell wall or PM localization (Minic et al., 2007).
Zhang et al. (2010) identified 127 putative Arabidopsis glycopro-
teins using a combination of multidimensional lectin chromatog-
raphy and boric acid chromatography. N -glycopeptides for 20
proteins were also predicted using ProTerNyc software (Albenne
et al., 2009). Recently, Catala et al. (2011) used affinity chro-
matography with Con A to identify a population of proteins
that are predicted to be resident in the cell wall in ripe tomato
(Solanum lycopersicum) fruit. However, in these studies no glyco-
sylation sites or N -glycan identification and characterization were
described.

While the functions of large numbers of plant cell wall proteins
have been determined (Lee et al., 2004; Jamet et al., 2008; Agrawal
et al., 2010; Rose and Lee, 2010), it is rare that the associated glycan
structures or their functional significance are addressed. One early
report described proteins that are secreted into the medium of
carrot cell cultures coincident with the formation of embryogenic
cells and somatic embryos (van Engelen et al., 1991). These tran-
sitions were inhibited by treatment with tunicamycin at an early
preglobular stage, leading to the suggestion that N -glycoproteins
secreted to the extracellular environment contribute to cell devel-
opment: the active glycoprotein was subsequently identified as a
secreted cationic peroxidase (Cordewener et al., 1991). However,
it is important to note that such cell cultures are highly artifi-
cial experimental systems. In a related study, it was shown that
a somatic embryogenesis defect in a temperature sensitive carrot
cell mutant was effectively rescued by the addition to the culture
medium of a mixture of proteins secreted by wild type embryo
cultures (Lo Schiavo et al., 1990). The active component was puri-
fied and shown to be an acidic endochitinase bearing complex type
N -glycans (De Jong et al., 1992).

In addition to the glycans that are attached to proteins, a
variety of free N -glycans have been found in plant tissues as
precursors of glycosylation or resulting from glycoprotein pro-
teolysis (Priem and Gross, 1992; Nakamura et al., 2008; Meli
et al., 2010). Particular attention has been paid to N -glycans that
are present in the pericarp tissue of tomato fruit and that both
accumulate during ripening (Priem et al., 1993) and that have
been reported to promote ripening when infiltrated into fruit tis-
sues. Blocking N -glycosylation with tunicamycin slows the rate
of ripening (Handa et al., 1985), but it is not clear whether this
is a consequence of altering levels of free N -glycans, or modify-
ing the properties of the many ripening related N -glycoproteins.
Recently, Meli et al. (2010) reported that suppression of α-
mannosidase or β-N -acetyl hexosaminidase genes reduced rates
of softening in transgenic tomato fruits. α-mannosidase cleaves

the terminal α-mannosidic linkages from both the high man-
nose type and plant complex type N -glycans (Kimura et al.,
2002), while β-N -acetyl hexosaminidase removes terminal N -
acetyl-d-hexosamine residues and generates the paucimannosidic
N -glycans present in most plant glycoproteins (Takahashi and
Nishibe, 1978; Nakamura et al., 2009). Both enzymes are present
at high levels in ripening fruit from a range of species, includ-
ing tomato (Suvarnalatha and Prabha, 1999; Jagadeesh et al.,
2004). The authors also reported that the α-mannosidase and
β-N -acetyl hexosaminidase suppressed fruits showed reduced
levels of the transcripts expression encoding a range of glyco-
proteins that are associated with cell wall degradation in (Meli
et al., 2010). In this study, impaired glycosylation in the trans-
genic fruit would clearly have affected many glycoproteins and
no new insights were provided into the specific proteins that
contribute to fruit softening, but the results do suggest the
existence of some currently unknown mechanism of feedback
regulation.

CONCLUSION AND FUTURE PERSPECTIVES
Glycoproteins have long been of interest to biochemists and biol-
ogists from a wide range of fields. It is now clear that that the
glycans on glycoproteins play numerous important roles, such as
influencing protein folding, regulation of protein function by dif-
ferential glycan processing (Moloney et al., 2000; Lee et al., 2005;
Lauc, 2006; Lauc et al., 2010), providing protection from proteases,
acting as recognition motifs for specific lectins and mediating
cell-cell interactions (Lee and Lee, 1995), as well as enabling intra-
cellular protein transport (Lauc and Heffer-Lauc, 2006) and many
other functions, some of which are still poorly understood (Varki,
1993).

Most studies of glycoproteins focus on their protein compo-
nents (Lauc, 2006). However, in order to have a comprehen-
sive knowledge of their functions and properties there can be
great value in adopting an integrative approach to study both
the sugar and protein moieties as a functional unit. For exam-
ple, Con A, one of the most studied plant lectins, is synthe-
sized as an inactive glycoprotein precursor and various post-
translational events, such as endoproteolytic cleavages and deg-
lycosylation, are required to generate the mature lectin. Impor-
tantly, deglycosylation appears to be a key step and N -glycanase
action is sufficient for activation of the lectin precursor (Shel-
don and Bowles, 1992; Ramis et al., 2001), suggesting that
de-N -glycosylation is a control key for glycoprotein activation.
Another example is a prion protein that has two variably occu-
pied glycosylation sites and generally a GPI anchor (Stahl et al.,
1987). The implications of glycosylation for the structure and
function of this glycoprotein are far reaching and the regula-
tion of glycan modifications and their effects on the subsequent
structure and function continue to be an extremely important
and active area of current research into prion diseases (Rudd
et al., 2002). In such cases critical aspects of protein function
would be obscure if the research focus was solely directed to the
polypeptide.

The same generic conclusions should likely be applied to
the glycans that decorate plant proteins, but studies of the
plant glycoproteome are still in their infancy and are lagging
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behind equivalent analyses of their microbial, yeast and animal
counterparts. Indeed, as far as we are aware, there exist no reports
of systematic screening of plant glycoproteins: a remarkable defi-
ciency in the “omics” compendium that will doubtless change
in the near future as plant scientists exploit the current explo-
sion of gene sequence information and new mass spectrometry
technologies.
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