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Gravitropism is a process that allows plant organs to guide their growth relative to the
gravity vector. It requires them to sense changes in their orientation and generate a bio-
chemical signal that they transmit to the tissues that drive organ curvature. Trafficking
between the plasma membrane and endosomal compartments is important for all of these
phases of the gravitropic response. The sedimentation of starch-filled organelles called
amyloplasts plays a key role in sensing reorientation, and vacuolar integrity is required for
amyloplast sedimentation in shoots. Other proteins associated with the vesicle trafficking
pathway contribute to early gravity signal transduction independently of amyloplast sedi-
mentation in both roots and hypocotyls. Phosphatidylinositol signaling, which starts at the
plasma membrane and later affects the localization of auxin efflux facilitators, is a likely
second messenger in the signal transduction phase of gravitropism. Finally, membrane-
localized auxin influx and efflux facilitators contribute to a differential auxin gradient across
the gravistimulated organs, which directs root curvature.
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INTRODUCTION TO GRAVITROPISM
Gravitropism is a dynamic process that involves the perception
of an organ’s abnormal orientation within the gravity field, a
transduction of the corresponding information into a biochemi-
cal signal, the transmission of this signal to a site of response, and
organ curvature. Proper curvature therefore requires the coordi-
nation of multiple cellular activities including signal transduction,
phytohormone transport, and cell expansion. Published work dis-
cussed in this review, mostly on Arabidopsis, indicates that protein
trafficking through the endomembrane system plays a critical role
in all of these processes.

Gravitropism begins with signal perception. In Arabidopsis
roots, the specialized cells that sense gravity, or statocytes, are
located in the root tips within the columella region of the cap
(Blancaflor et al., 1998; Tsugeki and Fedoroff, 1999; Kiss, 2000);
in shoots, the endodermis contains the statocytes (Fukaki et al.,
1998). Both root columella and shoot endodermal cells contain
dense, starch-filled amyloplasts that sediment to the lower sides of
the statocytes upon gravistimulation (Caspar and Pickard, 1989;
Kiss et al., 1989; Leitz et al., 2009). After amyloplast sedimentation,
an auxin gradient is generated (part of the biochemical signal dis-
cussed above) and transmitted so that the auxin concentration on
the lower side of the organ is higher than the concentration along
its upper side (Ottenschlager et al., 2003). This typically promotes
downward curvature of roots and upward curvature of shoots
(Salisbury et al., 1988; Young et al., 1990).

The steps connecting amyloplast sedimentation and auxin
redistribution in the signal transduction phase of gravitropism
are still unclear, although several genes have been implicated in
this phase. The molecular and functional analysis of some of these
genes has suggested roles for endomembrane trafficking in this

process. One possible model for signal perception involves the acti-
vation of stretch-activated mechanosensitive ion channels within
membranes pressed upon by sedimenting amyloplasts (Leitz et al.,
2009). Alternatively, in the ligand-receptor model, the activation
of a transduction pathway occurs through productive interac-
tions between sedimenting plastid-borne molecules and receptors
associated with lower membranes (Braun, 2002). Lastly, in the
hydrostatic pressure model, cellular machinery detects a pressure
differential between the upper and lower sides of the statocytes
caused by the weight of the entire protoplast on the cell wall
(Staves, 1997). There is also substantial evidence for root grav-
ity sensing outside of the columella cells that could involve an
amyloplast-independent mechanism (Wolverton et al., 2002).

Researchers have proposed that several secondary messengers
contribute to the signal transduction phase of gravitropism. For
example, Ca2+ changes occur in response to gravistimulation,
although studies have not found them in the columella cells (Pli-
eth and Trewavas, 2002; Toyota et al., 2008). Cytosolic pH changes,
however, do occur in the columella cells upon gravistimulation,
and changing the pH alters the gravitropic response (Scott and
Allen, 1999; Monshausen et al., 2011). Inositol 1,4,5-triphosphate
(InsP3) also appears to contribute to the formation of the auxin
gradient possibly through a role in vesicle trafficking (Perera et al.,
1999; Wang et al., 2009).

In contrast to the signal perception phase of gravitropism, how
a plant generates, maintains, and transmits the auxin gradient, as
well as how this gradient dictates differential cell expansion, are
better understood. The auxin efflux facilitators PIN-FORMED
3 (PIN3) and PIN7 show a distinct relocalization to the lower
side of the root cap columella cells in response to gravistimula-
tion that initiates the differential flow of auxin toward the lower
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flank of the root (Friml et al., 2002b; Kleine-Vehn et al., 2010).
Other auxin transporters help to generate and propagate this gra-
dient along the root, and protein trafficking is critical in this
step. Auxin then may bind to one of two proposed auxin recep-
tor classes, the AUXIN-BINDING PROTEIN 1 (ABP1) receptor
or the TRANSPORT-INHIBITOR-RESISTANT 1 (TIR1)/AUXIN
SIGNALING F-BOX (AFB) proteins. TIR1/AFB receptors bind
auxin in a complex with an Aux/indole-3-acetic acid (IAA) regu-
latory protein, which is degraded upon auxin binding (Dharmasiri
et al., 2005; Kepinski and Leyser, 2005). This de-represses auxin-
response factors, which can then activate or suppress target genes
to cause differential cell expansion on the upper and lower sides
of roots and shoots. Although its mechanism of action is less clear,
ABP1 is required for auxin responses at the plasma membrane and
auxin-responsive gene expression changes, and it has been pro-
posed to coordinate cell division and cell expansion (Shi and Yang,
2011). For more information on the overall gravitropic response,
please see a recent review (Morita, 2010; Strohm et al., 2012).

ENDOMEMBRANE SYSTEM COMPONENTS ARE IMPORTANT
FOR GRAVITY PERCEPTION AND EARLY GRAVITY SIGNAL
TRANSDUCTION
Endomembrane system components are required for normal
shoot and root gravitropism in Arabidopsis. Endocytotic pathways
mediate the transport of proteins from the plasma membrane in
order to control their recycling via the endosome or their degra-
dation. Many proteins targeted to vacuoles are transported from
the ER, to the Golgi, and then to the vacuole, although a Golgi-
independent pathway also exists. Furthermore, some endocytosed
plasma membrane proteins are also targeted to the vacuole. Pre-
vacuolar compartments (PVCs), also called multivesicular bodies
(MVBs), mediate Golgi or plasma membrane to vacuole transport.
For more information, see a recent review on this process (Reyes
et al., 2011). Genetic screens for shoot gravitropism mutants
revealed a contribution of vesicular trafficking to vacuoles in grav-
itropism. Similarly, a screen designed to find compounds that
reduced hypocotyl gravitropic responses identified several small
molecules that link gravitropism and endomembrane traffick-
ing. Although characterization of the proteins that interact with
these molecules is still underway, two of the compounds reduce
gravitropic responses and disrupt the endomembrane system
despite having no apparent effect on auxin, suggesting an auxin-
independent role for endomembrane trafficking in gravitropism
(Surpin et al., 2005).

VACUOLAR INTEGRITY IS ESSENTIAL FOR AMYLOPLAST
SEDIMENTATION IN SHOOTS
Four shoot gravitropism (sgr) mutants have been identified that
share similar phenotypes and suggest a connection between
vacuole integrity, amyloplast sedimentation, and shoot gravit-
ropic responses. SGR3/VAM3 and SGR4/VTI11/ZIG are SNARES,
which are named for SNAP (soluble NSF attachment protein)
receptors and are small proteins that mediate vesicle fusion.
They are divided into vesicle-SNAREs (v-SNAREs), which are
located on vesicle membranes, and target-SNARES (t-SNAREs),
which are located on target membranes. SGR3 is a t-SNARE
(Sato et al., 1997), and SGR4 is a v-SNARE (Zheng et al., 1999).

SGR8/GRV2/KAM2 is a DnaJ domain-containing peripheral
membrane protein that localizes to late endosomes (Silady et al.,
2004, 2008). Lastly, SGR2 encodes a vacuole-localized protein
homologous to the bovine testis phosphatidic acid-preferring
phospholipase A1 (PA-PLA1; Kato et al., 2002).

sgr2, sgr3, sgr4, and sgr8 share reduced shoot gravitropic responses,
abnormal amyloplast localization, and altered vacuole structures
sgr2, sgr3, sgr4, and sgr8 mutants all exhibit strongly reduced shoot
gravitropic responses but normal or slightly enhanced phototropic
and root gravitropic responses; sgr2 and sgr4 mutants also display
very slow hypocotyl gravitropism (Fukaki et al., 1996b; Yamauchi
et al., 1997; Kato et al., 2002; Yano et al., 2003; Silady et al., 2004).
All of these mutants show a generally intact tissue structure con-
sisting of a single layer of epidermis, three to four layers of cortex,
and one layer of endodermis, although the sgr2, sgr4, and sgr8
mutants show some pleiotropic phenotypes including altered cell
size and shape (Kato et al., 2002; Yano et al., 2003; Silady et al.,
2004). This suggests that these genes are likely to function directly
in gravitropism and do not simply have missing or disorganized
statocytes.

In wild-type plants, amyloplasts in shoot endodermal cells are
found sedimented on the lower sides of the cells (Morita et al.,
2002). They are wrapped in thin, tunnel-like cytoplasmic layers
surrounded by vacuolar membranes that are called transvacuo-
lar strands, which pass through the vacuole and are connected
to the peripheral cytoplasm. Amyloplasts can pass through these
transvacuolar strands (Saito et al., 2005). However, in sgr2, sgr3,
sgr4, and sgr8 mutants, the endodermal amyloplasts are found
throughout both the upper and lower sides of the cells where they
localize outside of the vacuole (instead of within the transvacuo-
lar strands), often pressed against the cell periphery (Morita et al.,
2002; Yano et al., 2003; Silady et al., 2004). At least sgr2 and sgr4
amyloplasts can be stained with potassium iodide, suggesting that
they do accumulate starch, although a few amyloplasts appeared
to contain slightly less starch than wild-type (Morita et al., 2002).
Together, these data suggest that altered amyloplast localization,
rather than reduced starch accumulation, results in the abnormal
gravitropic responses of these mutants.

sgr2, sgr3, sgr4, and sgr8 also all show altered vacuolar pheno-
types. sgr2 and sgr4 both have aberrant vacuolar components in the
cytoplasm, although these compartments differ between mutants
(Morita et al., 2002). sgr3 vacuolar membranes form irregular
curves and do not properly surround the amyloplasts (Yano et al.,
2003). sgr8 mutants have irregularly shaped vacuoles and aggre-
gates of endosomes, which suggests that they might not properly
fuse the tonoplast and vesicular membranes (Silady et al., 2008).

Golgi-to-vacuole targeting is critical for proper amyloplast
localization in shoots
SGR2, SGR3, SGR4, and SGR8 are all expressed in all tissues exam-
ined, and at least for SGR2, SGR3, and SGR4, expression in the
endodermis is sufficient to rescue the gravitropic defects of the
mutants (Zheng et al., 1999; Morita et al., 2002; Yano et al., 2003;
Silady et al., 2004). This indicates that these proteins’ contribution
to gravitropism occurs within the statocytes. In root cells, SGR4
colocalizes with ELP, a vacuolar cargo receptor located on the
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trans-Golgi network, as well as with PEP12, a t-SNARE located
at the PVC (Zheng et al., 1999). Experiments have shown that
SGR4 can substitute for yeast Vti1p in vesicle transport from the
Golgi to the PVC (Zheng et al., 1999). SGR3 localizes to the vac-
uole or the PVC, and coimmunoprecipitation experiments suggest
that it forms a complex with SGR4 (Yano et al., 2003). Similarly,
SGR8 plays a role in trafficking from the PVC to the tonoplast
(Silady et al., 2008). Together, these data suggest that traffick-
ing from the Golgi to the vacuole plays an important role in
shoot and hypocotyl gravitropism, possibly by providing a cel-
lular environment that is favorable to amyloplast sedimentation
upon gravistimulation.

The putative phospholipase SGR2 also localizes to vacuolar
membranes (Morita et al., 2002). It is therefore possible that SGR3,
SGR4, or SGR8 directly mediates the localization of SGR2 or that
another cargo protein transported by SGR3, SGR4, or SGR8 is
important for the localization or activity of SGR2. Alternatively,
SGR2 may contribute to gravitropism independently of SGR3,
SGR4, and SGR8. While the exact function of SGR2 is still unclear,
it is possible that it mediates the degradation of phospholipids
that dictate the composition of membranes in order to modify
their properties. This could consequently result in altered amy-
loplast sedimentation and slow gravitropic curvature. Another
possibility is that cleavage of phospholipids by SGR2 creates signal-
ing molecules required for gravitropism (Kato et al., 2002; Morita
et al., 2002).

Unlike amyloplasts in shoots, those in root columella cells are
not enveloped in vacuolar membranes and move through the
cytoplasm instead of within transvacuolar strands (Zheng and
Staehelin, 2001; Leitz et al., 2009). There is also no large central
vacuole in columella cells like there is in shoot endodermal cells.
Consistent with these observations, none of the mutations iden-
tified thus far as affecting root gravitropism have been associated
with defects in vacuolar biogenesis or function.

SOME ENDOMEMBRANE SYSTEM-ASSOCIATED PROTEINS MEDIATE
EARLY GRAVITY SIGNAL TRANSDUCTION INDEPENDENTLY OF
AMYLOPLAST SEDIMENTATION
ALTERED RESPONSE TO GRAVITY 1 (ARG1/RHG) and its para-
log ARG1-LIKE 2 (ARL2/GPS4) encode DnaJ-domain-containing
peripheral membrane proteins that are necessary for full root
and hypocotyl gravitropism (Fukaki et al., 1997; Sedbrook et al.,
1999; Boonsirichai et al., 2003; Guan et al., 2003; Luesse et al.,
2010). GFP-ARG1 fusions localize to components of the vesi-
cle trafficking pathway including the ER, the Golgi, and vesicles
near the plasma membrane, as well as the cell plate. Addition-
ally, upon treatment with brefeldin A (BFA), which disrupts
vesicle trafficking, cMyc-ARG1 accumulates in BFA-induced com-
partments as do many proteins known to be associated with
vesicle trafficking (Boonsirichai et al., 2003). ARG1 and ARL2
are required for the relocalization of PIN3 to the new lower
sides of the columella cells upon gravistimulation, and at least
ARG1 is required for the gravity-induced cytoplasmic alka-
linization of the columella cells. Both of these processes are
important in generating an auxin gradient (Boonsirichai et al.,
2003; Harrison and Masson, 2008). These genes are espe-
cially interesting because arg1 and arl2 mutants display normal

phototropism, amyloplast starch accumulation, amyloplast sedi-
mentation, responses to phytohormones, and responses to auxin
transport inhibitors (Fukaki et al., 1997; Sedbrook et al., 1999;
Guan et al., 2003; Stanga et al., 2009). Although the specific molec-
ular function of ARG1 and ARL2 remains unclear, these data
suggest that they play a role in the early gravity signal trans-
duction steps that connect amyloplast sedimentation and auxin
redistribution.

PHOSPHATIDYLINOSITOL SIGNALING MEDIATES VESICLE
TRAFFICKING, AUXIN GRADIENT FORMATION, AND THE
GRAVITROPIC RESPONSE
Phosphatidylinositol monophosphate 5-kinase (PIP5K) catalyzes
the synthesis of phosphatidylinositol 4,5-bisphosphate (PIP2), a
plasma membrane-localized phospholipid. PIP2 is then cleaved
by phospholipase C (PLC) to produce the second messenger
InsP3, which diffuses throughout the cell, and diacylglycerol
(DAG), which stays in the membrane. Inositol polyphosphate 5-
phosphatases (InsP 5-ptases) dephosphorylate InsP3 to stop its
activity. In animals, InsP3 can trigger Ca2+ release from the ER
and the vacuole, and Ca2+ itself is another possible second messen-
ger in gravity signal transduction in plants (Plieth and Trewavas,
2002; Monshausen et al., 2011). Additional research in both ani-
mals and plants has shown that PIP2 can bind actin-interacting
enzymes, endocytic and exocytic-related proteins, ion channels,
and regulators of vesicle trafficking. Please see the following
reviews for additional information (Wasteneys and Galway, 2003;
Haucke, 2005).

InsP3 MAY ACT AS A SECOND MESSENGER IN GRAVITROPISM
SIGNALING
Multiple lines of evidence point to a role for phosphatidylinosi-
tol signaling in gravity signal transduction. InsP3 levels increase
threefold on both the upper and lower sides of gravistimulated oat
pulvini after only 15 s. Over the next 30 min, InsP3 fluxes con-
tinue, resulting in a threefold increase in the levels on the upper
compared to the lower side. After about an hour, InsP3 returns
to its basal level (Perera et al., 2001). Several other observations
also support a role for InsP3 in gravitropism. Phosphatidylinositol
4-phosphate 5-kinase levels increase in the lower halves of grav-
istimulated pulvini, suggesting that PIP2 biosynthesis increases
in this region (Perera et al., 1999). Additionally, inhibiting PLC
also blocks the long-term InsP3 increase and reduces gravitropic
bending (Perera et al., 2001). Some genes show InsP3-dependent
changes in expression in response to gravitropic and/or pho-
totropic stimuli, suggesting that this second messenger may play a
key role in coordinating these two responses (Salinas-Mondragon
et al., 2010).

Arabidopsis inflorescence stems can perceive a change in ori-
entation while at 4◦C but cannot respond until after they are
returned to room temperature (Fukaki et al., 1996a). InsP3 changes
are similar in plants gravistimulated at 4◦C and at room temper-
ature, and plants expressing a constitutively active InsP 5-ptase
show decreased bending after gravistimulation at 4◦C and a subse-
quent return to room temperature (Perera et al., 2001,2006). These
results support the hypothesis that phosphatidylinositol signaling
functions early in gravity signal transduction.
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PLANTS CARRYING MUTATIONS IN GENES ASSOCIATED WITH
PHOSPHATIDYLINOSITOL SIGNALING SHOW ALTERED
GRAVITROPIC AND AUXIN-RELATED PHENOTYPES
PIP5K and InsP 5-ptases are each encoded by 15 genes in Ara-
bidopsis. pip5k2 seedlings have decreased PIP2 levels, and 5-ptase13
mutants are likely to have a decreased ability to dephospho-
rylate InsP3 (Wang et al., 2009; Mei et al., 2012). Therefore,
it is not surprising that these mutants share many opposite
phenotypes. pip5k2 seedlings respond slowly to gravity, while
5-ptase13 mutants show an enhanced response (Wang et al.,
2009; Mei et al., 2012). In agreement with this finding, plants
expressing a constitutively active InsP 5-ptase do not exhibit
the characteristic InsP3 increase in response to gravistimulation
and show decreased gravitropic bending (Perera et al., 2006).
pip5k2 mutants are more sensitive to the polar auxin transport
inhibitor 1-N-naphthylphthalamic acid (NPA) than are wild-
type plants, which suggests impaired polar auxin transport in
this mutant (Mei et al., 2012). In contrast, 5-ptase13 mutants
show a reduced response to NPA, which indicates increased
polar auxin transport (Wang et al., 2009). Plants carrying the
constitutively active InsP 5-ptase also show decreased basipetal
auxin transport (Perera et al., 2006). Indeed, a greater percent-
age of 5-ptase13 mutants and a smaller percentage of pip5k2
mutants generate an asymmetric auxin gradient in roots in
response to gravistimulation compared to wild-type seedlings,
resulting in altered gravitropic phenotypes (Wang et al., 2009; Mei
et al., 2012).

PHOSPHATIDYLINOSITOL SIGNALING AFFECTS VESICLE TRAFFICKING
AND PIN PROTEIN TURNOVER
Phosphatidylinositol signaling is required for proper vesicle traf-
ficking that leads to the establishment of an auxin gradient. PIN
auxin efflux facilitators play important roles in controlling the
direction and rate of auxin fluxes that allow for differential cell
expansion upon gravistimulation (see The PIN Family of Auxin
Efflux Facilitators). Normally PIN proteins cycle between the
plasma membrane and endosomal compartments. This process
is sensitive to BFA and requires clathrin-mediated endocytosis
(Steinmann et al., 1999; Friml et al., 2002b; Geldner et al., 2003;
Dhonukshe et al., 2007; Kleine-Vehn et al., 2010). Compared to
wild-type, 5-ptase13 mutants have an increased ability to inter-
nalize the endocytosis marker FM4-64, are less sensitive to BFA,
and show faster resumption of PIN1 and PIN2 polar localiza-
tion at the plasma membrane after BFA removal (Wang et al.,
2009). In contrast, pip5k2 mutants show a decreased ability to
internalize FM4-64, increased sensitivity to BFA, slower recovery
after BFA removal, and decreased cycling of PIN2 and PIN3 (Mei
et al., 2012). The phosphatidylinositol-3-kinase (PI3K) inhibitor
wortmannin also results in altered PIN protein localization and
gravitropic defects (Jaillais et al., 2006; Kleine-Vehn et al., 2008).
Together, these data indicate a role for phosphatidylinositol signal-
ing in vesicle trafficking that affects PIN protein turnover and the
generation of the auxin gradient that is required for differential
cell elongation in response to a gravity stimulus. It remains possi-
ble, however, that the 5-ptase13 and pip5k2 mutants have altered
membrane lipid composition, which is known to affect PIN cycling
(Men et al., 2008).

AUXIN TRANSPORT ACROSS CELL MEMBRANES RESULTS
IN AN AUXIN GRADIENT THAT DIRECTS DIFFERENTIAL
CELL EXPANSION
The major natural auxin, IAA, is a weak acid that can diffuse
through membranes only when protonated (Rubery and Shel-
drake, 1974; Raven, 1975). The pH in the apoplast remains low,
and so a proportion of IAA molecules are protonated, which
allows them to diffuse across the membrane into the cytoplasm
(Rubery and Sheldrake, 1974; Raven, 1975). Additional apoplas-
tic IAA can be actively imported by the AUX1 and LIKE-AUX1
(LAX) permeases and at least one ATP-binding cassette (ABC)
transporter/P-glycoprotein (PGP) (Marchant et al., 1999; Santelia
et al., 2005; Yang et al., 2006; Yang and Murphy, 2009; Péret et al.,
2012). Once in the cytoplasm, far fewer IAA molecules are proto-
nated, being exposed to more neutral pH, and active auxin efflux
mediated by PIN proteins and some ABC transporters is required
(Figure 1F). The polar localization of these proteins at the plasma
membrane can dictate directional auxin transport within cell files
(Wisniewska et al., 2006). In vertically growing roots, this results
in the flow of auxin down the vasculature to the columella cells
where it is redirected along the outer layers of the root in what is
termed the reverse fountain model of auxin transport (Swarup and
Bennett, 2003). Upon gravistimulation, the PIN3 and PIN7 auxin
efflux carriers switch from a non-polar localization to a preferen-
tial distribution at the lower side of the plasma membrane (Friml
et al., 2002b; Kleine-Vehn et al., 2010). This causes auxin to accu-
mulate in the lower sides of shoots and roots where it alters cell
expansion rates to cause organ curvature (Salisbury et al., 1988;
Young et al., 1990). Vesicle trafficking therefore plays a critical role
in mediating this auxin gradient through its effects on the abun-
dance, activity, and subcellular localization of auxin efflux and
influx carriers. Membrane composition and differences in the sen-
sitivity of certain cells to auxin over time also influence curvature
kinetics (Willemsen et al., 2003; Benjamins and Scheres, 2008).

THE PIN FAMILY OF AUXIN EFFLUX FACILITATORS
There are eight PIN proteins in Arabidopsis, and at least five of them
function directly or indirectly in gravitropism. This is achieved
through their asymmetric localization at the plasma membrane,
which can determine the direction of auxin flow (Wisniewska et al.,
2006). These proteins often have overlapping functions; when one
protein is non-functional, auxin-dependent ectopic expression of
other PIN proteins can sometimes compensate for the loss (Blilou
et al., 2005; Vieten et al., 2005).

PIN proteins are required for the generation and propagation of the
gravity-induced auxin gradient
PIN1 localizes to the rootward sides of the cells that form the
vasculature whereas PIN4 localizes to the rootward sides of the
proximal meristem cells; the latter also shows non-polar local-
ization in the columella cells (Friml et al., 2002a). These patterns
suggest that PIN1 and PIN4 play indirect roles in gravitropism
by contributing to auxin efflux through the vasculature to the
columella cells (Gälweiler et al., 1998; Geldner et al., 2001; Friml
et al., 2002a). This is important for auxin to be transported to
the root tip so that it can later be distributed laterally across
the cap and up to the elongation zones upon gravistimulation.
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FIGURE 1 | Cellular control of auxin carriers. (A) Phosphorylation by
PINOID kinase and dephosphorylation by PP2A regulate PIN protein
localization. (B) PIN proteins are removed from the plasma membrane
through clathrin-mediated endocytosis into endocytic compartments. (C) PIN
proteins may also be ubiquitylated and targeted to the vacuole via PVCs for
degradation. (D) Alternatively, following endocytosis PIN proteins may be
exocytosed in a selective, polar manner that requires the activity of an
unidentified ARF GTPase. The activity of the GTPase is controlled by a GEF

called GNOM, which removes the used GDP and allows fresh GTP to reload.
(E) Treating plants with BFA inhibits GNOM, which likely inactivates the ARF
GTPase. As a result, PIN proteins accumulate in intracellular aggregates
termed BFA bodies. (F) Auxin can be actively transported across the plasma
membrane. PIN proteins are gradient-powered auxin efflux carriers. Members
of the ABC transporter family are ATP-driven and act as either auxin influx or
efflux facilitators. AUX1 and its relative LAX are auxin influx carriers that use
an existing ion gradient to allow auxin into cells.

While mutations in PIN4 cause root meristem disorganization
that makes it difficult to analyze their gravitropic responses, pin1
mutants have normal roots with no gravitropic defects, suggesting
that other PINs are able to compensate for the loss of this gene
(Friml et al., 2002a).

In contrast, PIN3 and PIN7 may function immediately upon
gravistimulation to generate the initial auxin gradient across the
cap. PIN3 is normally expressed in the upper S1 and S2 layers of
the columella cells, while PIN7 localizes to the S2 and S3 tiers.
However, PIN7 expands its expression into the S1 layer in pin3
mutants, suggesting its ability to compensate for the loss of PIN3
(Kleine-Vehn et al., 2010). In roots growing vertically, these pro-
teins show a generally non-polar localization in the columella cells,
but upon gravistimulation they are internalized and resorted into
vesicles that direct them to the lower plasma membrane. This
gravity-induced relocalization of the PIN3 and PIN7 proteins
within the statocytes may be responsible for the development of
a lateral auxin gradient across the cap, with accumulation on the
new lower side of the root (Friml et al., 2002b; Kleine-Vehn et al.,
2010). Consistent with this conclusion, the pin3 and pin7 mutants

show gravitropism defects, and the pin3 pin7 double mutant shows
stronger defects than either single mutant (Friml et al., 2002b;
Kleine-Vehn et al., 2010).

PIN2/EIR1/AGR1/WAV6 localizes to the shootward sides of lat-
eral root cap and epidermal cells where it plays a critical role in
transporting auxin from the cap to the elongation zone both in ver-
tically growing roots and upon gravistimulation. It also localizes
to the rootward sides of the cortical cells in the meristem, where it
may play a negative regulatory role that allows for optimal auxin
fluxes in this region (Müller et al., 1998; Blilou et al., 2005; Abas
et al., 2006; Rahman et al., 2010). Here it may also contribute to
an auxin reflux loop through the root epidermal and cortical cells
in which the auxin maximum that forms on the lower side of the
root is reinforced. pin2 mutants do not establish an auxin gradient
upon gravistimulation and therefore exhibit gravitropic defects
(Luschnig et al., 1998; Müller et al., 1998; Abas et al., 2006).

PIN protein regulation affects gravitropic responses
PIN proteins can be regulated at the levels of transcription, protein
stability, subcellular localization, and transport activity (Petrásek
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and Friml, 2009). Because auxin efflux requires a membrane H+
gradient and because PIN proteins do not have recognizable ATP-
binding motifs, PIN proteins are thought to be gradient-driven
secondary transporters (Krecek et al., 2009). However, they can
act together with ATP-dependent ABC transporters when needed
(Blakeslee et al., 2007).

Guanine nucleotide exchange factors regulate PIN protein
localization. Intracellular trafficking is required for the polar
localization of PIN proteins, which cycle between the plasma
membrane and endosomal compartments (Steinmann et al., 1999;
Figure 1B). GNOM is a GTP–GDP exchange factor (GEF) for ADP
ribosylation factor (ARF) small G-proteins, which are important
for cargo selection and vesicle budding (Figure 1D). BFA binds
to ARF-GEF/ARF-GDP complexes and prevents ARF activation
(Peyroche et al., 1999; Robineau et al., 2000). When this hap-
pens, PIN1 and PIN3 endocytosis continues, but these proteins
are no longer secreted, causing them to accumulate in intra-
cellular compartments (Geldner et al., 2001; Kleine-Vehn et al.,
2010; Figure 1E). Therefore, BFA treatment blocks the relocaliza-
tion of PIN3 to the lower membrane upon reorientation, alters
auxin transport, and reduces gravitropism (Geldner et al., 2001;
Kleine-Vehn et al., 2010; Rahman et al., 2010). Plants expressing a
BFA-resistant version of GNOM, however, show proper PIN1 and
PIN3 localization, robust auxin gradients after gravistimulation,
and normal gravitropism even in the presence of BFA (Geldner
et al., 2003; Kleine-Vehn et al., 2010). This confirms that GNOM
regulates PIN1 and PIN3 localization and demonstrates that ARF-
GEFs can modulate certain endosomal trafficking routes. BFA also
partially affects PIN2 localization, suggesting that the gravitropic
defects associated with BFA treatment might not be due entirely
to its effects on PIN1 and PIN3 (Geldner et al., 2003).

SPIKE1 (SPK1) acts as a GEF for Rho-like GTPase from Plants
6 (ROP6; Basu et al., 2008). In spk1 mutants, PIN2 levels at
the plasma membrane are decreased. Consistent with this, spk1
mutants show a less robust auxin gradient upon reorientation and
a slow gravitropic response (Lin et al., 2012). Plants carrying muta-
tions in ROP6 or its effector ROP-INTERACTIVE CRIB MOTIF
1 (RIC1) share some of these phenotypes, whereas ROP6 over-
expression causes an increased gravitropic response (Chen et al.,
2012; Lin et al., 2012). Normally auxin increases active ROP6 lev-
els, but this does not happen in spk1 mutants. Additionally, while
exogenous application of the synthetic auxin 1-naphthalene acetic
acid (1-NAA) normally prevents BFA-induced PIN2 accumula-
tion in internal BFA compartments, spk1, rop6, and ric1 mutants
do not show this effect (Lin et al., 2012). These data suggest that
SPK1, ROP6, and RIC1 inhibit PIN2 internalization through their
effects on auxin signaling.

Protein degradation, protein phosphorylation, and small pep-
tides also regulate PIN2 localization. PIN2 is also clearly
regulated at the protein stability level. Upon gravistimulation,
PIN2 is internalized and degraded preferentially on the upper
side of the root, which is required for the generation of the
auxin gradient. When BFA or the proteasome inhibitor MG132
is applied, this asymmetry is disrupted and PIN2 levels increase;
this correlates with gravitropism defects (Abas et al., 2006). PIN2

endocytosis and targeting to the vacuole are normally triggered by
ubiquitylation (Figure 1C). However, in pin2 mutants in which
six or more potential ubiquitylation sites are mutated, PIN2 is not
internalized and targeted to the vacuole upon gravistimulation.
Therefore, PIN2 levels stay constant at the plasma membrane in
these mutants, and these seedlings do not form a robust auxin gra-
dient upon reorientation (Leitner et al., 2012). Short-term auxin
treatment also interferes with intracellular PIN2 accumulation,
but long-term treatment causes PIN2 internalization and degra-
dation (Abas et al., 2006). This may reflect a feedback mechanism
in which PIN2 is degraded after the auxin level reaches a threshold,
preventing additional auxin transport and excessive root curva-
ture. Ubiquitylation could control the rate of PIN2 degradation in
this process.

BFA inhibits the targeting of PIN2 to the vacuole, which sug-
gests the involvement of an ARF-GEF. However, plants expressing
the BFA-resistant GNOM showed BFA-sensitive PIN2 vacuolar
targeting, indicating that the ARF-GEF of interest is not GNOM.
Like GNOM, SORTING NEXIN 1 (SNX1) localizes to endoso-
mal compartments and is BFA-sensitive; however only SNX1 is
sensitive to the PI3K inhibitor wortmannin (Jaillais et al., 2006;
Kleine-Vehn et al., 2008). snx1 mutants resemble weak allele gnom
mutants, and snx1 gnom double mutants show enhanced abnormal
phenotypes compared to the single mutants (Jaillais et al., 2006).
This suggests that these genes function in different pathways but
contribute to some of the same developmental processes. Upon
wortmannin-treatment, PIN2 and SNX1 colocalize in compart-
ments, and PIN2 levels at the plasma membrane are reduced in
snx1 mutants (Jaillais et al., 2006; Kleine-Vehn et al., 2008). How-
ever, SNX1 does not appear to directly mediate the localization or
recycling of PIN2 (Kleine-Vehn et al., 2008). Instead, wortmannin
likely causes PIN protein mislocalization through its interference
with sorting between the PVC and the Golgi (Matsuoka et al.,
1995). Proper PIN2 localization depends on its targeting to the
vacuole where it is degraded, and wortmannin blocks this (Jaillais
et al., 2006; Kleine-Vehn et al., 2008). Accordingly, long-term wort-
mannin treatment results in phenotypes reminiscent of altered
auxin transport, including defective root and hypocotyl gravit-
ropism (Jaillais et al., 2006). SNX1 may therefore contribute to
a feedback mechanism involved in PIN2 retrieval for recycling
through its ability to mediate PIN2 translocation from the PVC to
the vacuole.

PIN protein localization also depends on its phosphorylation
state, which is mediated in part by the serine-threonine kinase
PINOID (PID) and type 2A protein phosphatase (PP2A), which
act antagonistically (Michniewicz et al., 2007 Figure 1A). PP2A
subunits are encoded by multiple genes including ROOTS CURL
IN NPA 1 (RCN1). Plants that overexpress PID, rcn1 mutants,
and wild-type plants treated with the phosphatase inhibitor can-
tharidin all show increased shootward auxin transport, delayed
auxin gradient formation upon gravistimulation, and randomized
root growth; these phenotypes are rescued by blocking polar auxin
transport (Christensen et al., 2000; Benjamins et al., 2001; Rashotte
et al., 2001). The elevated auxin transport in these plants probably
leads to auxin depletion in the root meristem, which prevents
auxin gradient formation (Benjamins et al., 2001; Rashotte et al.,
2001). This increased auxin transport is attributed to a rootward
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to shootward shift in the localization of some PIN proteins (Friml
et al., 2004). PINOID and RCN1 partially colocalize with PIN
proteins and mediate the phosphorylation states of their cen-
tral hydrophilic loops (Michniewicz et al., 2007). This means that
they can affect PIN2-mediated auxin fluxes upon gravistimula-
tion (Shin et al., 2005). More specifically, PP2A and a PINOID
kinase family member are known to mediate the polar target-
ing of PIN2 in meristematic cortical cells, which is necessary for
a full gravitropic response (Rahman et al., 2010). These exper-
iments show that the phosphorylation status of PIN proteins
affects their localizations and in turn their abilities to regulate
gravitropism.

In addition to intracellular trafficking, protein degradation,
and phosphorylation, a recent study suggests that small secre-
tory peptides can also regulate PIN protein localization and affect
gravitropism. GOLVEN (GLV ) genes encode these peptides, and
overexpression or knockdown of these genes generally results in
reduced root and hypocotyl gravitropism. Treatment with some of
these peptides, which act locally, also correlates with reduced auxin
gradient formation upon reorientation and results in gravitropic
defects. pin2 mutants are resistant to GLV peptide treatment, and
PIN2 levels increase in the membrane fractions of wild-type plants
treated with GLV peptides (Whitford et al., 2012). Therefore, it is
thought that the GLV peptides, along with auxin, mediate PIN2
trafficking in order to generate the auxin gradient necessary for
root curvature.

PIN proteins may promote growth in the organ curvature phase of
gravitropism
Auxin can inhibit the internalization of many PIN proteins and
prevent their constitutive cycling. This results in increased levels
of PIN proteins at the plasma membrane, and so auxin stimulates
its own efflux from cells. After gravistimulation, the inhibition of
endocytosis corresponds with the formation of the auxin gradient
(Paciorek et al., 2005). Therefore, the increased level of plasma
membrane-associated PIN2 on the lower flank of gravistimulated
roots may further enhance the auxin gradient.

Auxin also triggers cell wall loosening that is necessary for cell
elongation during root curvature. In Arabidopsis, PIN1 mediates
local auxin accumulation, and its polar localization corresponds
to the direction of mechanical stress in shoot apices (Heisler et al.,
2010). Work done in tomatoes shows that as tissue becomes more
strained during growth, PIN1 shows an increase in overall abun-
dance and a preferential localization at the plasma membrane.
This contributes to auxin accumulation, which then promotes
growth in a feed-forward loop. One possible mechanism for this
is that local cell wall strain increases plasma membrane ten-
sion, which promotes exocytosis and blocks endocytosis. This
could increase the amount of membrane-localized PIN1 relative
to cytoplasmically-localized PIN1, although more complex models
are also possible (Nakayama et al., 2012). It is possible that a similar
process takes place upon gravistimulation, although this has not
yet been addressed experimentally. For example, tissue strain
during curvature could increase plasma membrane-localized PIN2
levels on the lower side of the root. This would increase the auxin
concentration in this region and further inhibit curvature in a
feed-forward manner.

THE ABC TRANSPORTER FAMILY OF AUXIN EFFLUX AND INFLUX
FACILITATORS
Members of the family of ATP-binding cassette (ABC) transporters
couple ATP hydrolysis with the import and export of molecules
such as xenobiotics, ions, sugars, lipids, peptides, and hormones
including auxin across cell membranes. There are several lines of
evidence that these proteins play critical roles in maintaining the
auxin gradient that results in gravitropism.

ABC transporters regulate auxin fluxes
Multiple pieces of evidence support a role for several ABC-
type transporters in auxin transport. First, the Arabidopsis
PGP19/MDR1/ABCB19 protein and its closest relative ABCB1
directly act as auxin transporters when expressed in mammalian
and yeast cells as well as in protoplast assays (Geisler et al., 2005;
Yang and Murphy, 2009). Furthermore, abcb19 single mutants and
to a greater extent abcb19 abcb1 double mutants show decreased
rootward auxin transport (Noh et al., 2001; Lewis et al., 2007).
Similarly, plants carrying mutations in ABCB4/PGP4/MDR4,
another ABC-type transporter with sequence similarity to ABCB1
and ABCB19, show decreased shootward auxin transport (Santelia
et al., 2005; Terasaka et al., 2005; Lewis et al., 2007).

Interestingly, ABCB1 shows a distinct polar localization in dif-
ferent cell types at the upper edge of the distal elongation zone. In
the endodermal cells its localization is always shootward, and in
the cortical cells it is most often shootward (Geisler et al., 2005).
A similar result was found for ABCB19 (Blakeslee et al., 2007). On
the other hand, ABCB4 shows rootward localization in the epi-
dermal cells at the upper edge of the distal elongation zone while
displaying apolar localization in S3 columella and adjacent root
cap cells (Terasaka et al., 2005). These distinct localization pat-
terns may help generate differential levels of auxin accumulation
in different cells.

A phenotypic analysis of these mutants is also compatible
with a role for these proteins in auxin transport. Indeed, abcb19
and abcb19 abcb1 mutants show epinastic, or downward-folding,
cotyledons and first true leaves as do wild-type plants when treated
with exogenous auxin (Noh et al., 2001). This is likely due to the
improper accumulation of auxin in the cotyledons. These mutants
also show increased sensitivity to 1-NAA, decreased sensitivity
to NPA, and decreased auxin-responsive DR5::GUS expression
(Geisler et al., 2005; Lin and Wang, 2005).

Together, these studies strongly suggest that these transporters
help maintain proper auxin flow patterns, and additional work has
shown that interactions between ABC transporters and other pro-
teins play important roles in this process. Genetic interactions have
been observed between ABCBs and PINs, and coimmunoprecip-
itation and yeast two-hybrid experiments have shown that both
ABCB1 and ABCB19 interact with PIN1 (Blakeslee et al., 2007).
Additionally, abcb19 and especially abcb19 abcb1 mutants show
diffuse, punctate, and discontinuous PIN1 localization, which
is likely to result in randomized directions of auxin efflux (Noh
et al., 2003). Heterologous coexpression studies have also shown
that the rate of auxin transport is increased when these proteins
colocalize compared to when only one of them is present. In con-
trast, when PIN2 and either ABCB1, ABCB4, or ABCB19 are
coexpressed in HeLa cells, IAA efflux decreases when compared
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to when only one protein is expressed (Blakeslee et al., 2007).
AGC kinases also mediate both PIN protein polarity and the auxin
efflux activity of ABCB1 and ABCB19, suggesting that they reg-
ulate crosstalk between these auxin transporters (Christie et al.,
2011; Henrichs et al., 2012). From these experiments, it appears
that the ABC transporters and PIN proteins function separately
but synergistically to provide both the specificity and the high rate
of long-distance auxin transport.

Additionally, the immunophilin-like integral membrane
protein required for brassinosteroid perception or signaling,
TWISTED DWARF 1, interacts with both ABCB1 and ABCB19
(Geisler et al., 2003). twd1 mutants exhibit epinastic cotyledons
and a strong reduction in polar auxin transport like abcb1 abcb19
double mutants, suggesting that ABCB1 and ABCB19 form a com-
plex with TWD1 (Geisler et al., 2003). It is possible that TWD1
regulates the transport activity of ABCB1 and ABCB19 or that it
mediates ABCB–PIN interactions.

ABC transporters are required for normal gravitropic responses
Several experiments show that ABC transporters function in
the auxin transport phase of gravitropism. Interestingly, abcb19
hypocotyls respond to gravistimulation twice as quickly as wild-
type plants, and they also exhibit an enhanced phototropic
response (Noh et al., 2003). Similarly, the abcb4 mutant shows
a faster root gravitropic response than wild-type plants (Lewis
et al., 2007). Experiments using the auxin-responsive DR5::GUS
construct showed that these mutants form a more robust asym-
metric auxin gradient across the root tip than wild-type plants
(Lin and Wang, 2005; Lewis et al., 2007). The altered auxin efflux
may therefore result in a steeper, although transient, auxin gra-
dient upon gravistimulation. One possible explanation for this
comes from studies showing that PIN2 mRNA levels decrease with
distance from the root tip, while ABCB4 mRNA levels increase
(Birnbaum et al., 2003). If this correlates with their contribu-
tions to auxin transport, the reduced shootward auxin transport
as a result of the loss of ABCB19 or ABCB4 may cause auxin
buildup in the elongation zone where it leads to an enhanced
curvature response (Lewis et al., 2007). Surprisingly, despite the
large reduction in rootward auxin transport, root gravitropic
responses of abcb19 mutants are normal (Lewis et al., 2007). This
could be due to compensation by other ABC transporters or PIN
proteins.

A screen for compounds that reduce hypocotyl gravitropic
responses identified a molecule called Gravacin that also causes
decreased auxin sensitivity, decreased auxin transport, and
endomembrane system defects (Surpin et al., 2005; Rojas-Pierce
et al., 2007). Subsequent work showed that abcb19 and twd1, but
not abcb1, are resistant to Gravacin (Rojas-Pierce et al., 2007).
Gravacin targets ABCB19 and disrupts the ABCB19–PIN1 com-
plexes, thereby interfering with their auxin transport activity
(Rojas-Pierce et al., 2007). Using Gravacin to perturb ABCB19
but not PIN proteins may be useful in further characterizing the
role of ABC transporters in auxin fluxes and gravitropism.

THE AUX AND LAX FAMILY OF AUXIN IMPORT CARRIER PROTEINS
In addition to auxin efflux, auxin flow into cells also contributes
to the auxin gradient. While auxin influx can occur by diffusion,

the auxin influx carriers AUX1 and LAX can also actively import
IAA (Marchant et al., 1999; Yang et al., 2006; Yang and Mur-
phy, 2009; Péret et al., 2012). Active auxin influx into particular
cells might maintain proper auxin fluxes by counteracting auxin
diffusion into other cells. aux1, but not lax, mutants are agravit-
ropic, suggesting functional specialization within this gene family
(Bennett et al., 1996; Péret et al., 2012). Because aux1 mutants
are defective in active auxin uptake, they are therefore resis-
tant to exogenous IAA and the auxin 2,4-dichlorophenoxyacetic
acid (2,4-D), but not 1-NAA, which can diffuse easily through
membranes (Maher and Martindale, 1980; Bennett et al., 1996).
Similarly, 1-NAA, but not 2,4-D, rescues the aux1 agravitropic
root phenotype (Marchant et al., 1999). It is likely that 1-NAA
is taken up by the root and redirected by an auxin efflux facil-
itator such as PIN2, which is expressed in the cortical and
epidermal root tip cells like AUX1 (Müller et al., 1998; Marchant
et al., 1999).

AUX1 functions in the signal transmission and curvature
response phases, not the perception phase, of gravitropism. This is
suggested by its expression in the regions of the root that respond
to gravity (Marchant et al., 1999). Consistent with this result,
AUX1 expression in only the lateral root cap and epidermal cells
is sufficient to rescue the aux1 agravitropic phenotype (Swarup
et al., 2005). This suggests that AUX1 contributes to gravitropism
by facilitating shootward auxin transport from the root cap to the
elongation zone (Swarup et al., 2005).

AUX1 also affects pH changes upon gravistimulation, suggest-
ing a relationship between pH and auxin in gravitropism. Shortly
after reorientation, wild-type roots show a decrease in pH on
the upper side of the extracellular root surface and an increase
on the lower side; this gradient occurs in the root cap as well
as throughout the elongation zone (Monshausen et al., 2011). It
might contribute to cell wall loosening to allow for cell expan-
sion or even to signal transmission itself. aux1 mutants, however,
do not show this pH change. In fact, even when growing verti-
cally, aux1 mutant extracellular root surfaces are uniformly acidic
instead of showing dynamic pH fluctuations like wild-type roots.
Both the pH gradient and the pH dynamics are rescued by intro-
ducing AUX1 into only the lateral root cap and epidermal cells
(Monshausen et al., 2011). It is possible that the pH gradient con-
tributes to feedback mechanisms that regulate the gravity response
by affecting AUX1-mediated auxin uptake.

CONCLUSION
Upon gravistimulation, amyloplasts sediment to the lower sides
of the statocytes. In endodermal cells, SGR proteins play a key
role in this process by maintaining vacuolar membrane integrity.
The amyloplasts then trigger a signal transduction cascade that
may involve protons, calcium, and phosphatidylinositol signaling,
which begins at the plasma membrane. Phosphatidylinositol sig-
naling affects the cycling of auxin transporters, and changes in
their localization at the plasma membrane cause auxin to accu-
mulate in the lower side of the root and shoot. Here it affects cell
elongation and causes the plant to realign itself with the gravity
vector (Figure 2).

Therefore, through their roles in amyloplast sedimentation,
phosphatidylinositol signaling, and auxin carrier localization,
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FIGURE 2 | Gravitropism overview. The steps of gravitropism are shown
down the center core of the diagram. During plant reorientation, a plant
is rotated relative to the gravity vector. This results in the sedimentation
of dense amyloplasts within the statocytes. In roots the statocytes are
the columella cells, whereas in stems they are the endodermal cells.
Each endodermal cell contains a large vacuole, and the amyloplasts
must traverse it by tunneling through transvacuolar strands in order to
reach the new lower side of the cell. This requires proper vacuole structure,
which the SGR proteins mediate. Amyloplast sedimentation is then thought

to activate signal transduction through second messengers, possibly
calcium ions or protons. Another second messenger is InsP3, which is
produced by cleavage of the phospholipid, PIP2. In a process that is not
completely understood, the second messengers activate the
relocalization of auxin transporters, such as PIN3 and PIN7 in the
columella cells. The new polarized distribution of these auxin efflux carriers
changes the flow of auxin throughout the plant. This differential auxin
transport affects cell elongation rates, thereby resulting in organ curvature as
the plant grows.

membranes contribute in multiple ways to all phases of gravit-
ropism. The evolution of these complex processes allows plants to
adapt to changing environments and to integrate their responses
to gravity with those to a wide variety of other stimuli includ-
ing touch and moisture gradients. Future work in this area will
continue to clarify how membrane-associated signaling and traf-
ficking contribute to gravitropism and other areas of plant growth
and development.
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