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Stromules are dynamic thin protrusions of membrane envelope from plant cell plastids.
Despite considerable progress in understanding the importance of certain cytoskeleton
elements and motor proteins for stromule maintenance, their function within the cell
has yet to be unraveled. Several viruses cause a remodulation of plastid structures and
stromule biogenesis within their host plants. For RNA-viruses these interactions were
demonstrated to be relevant to the infection process. An involvement of plastids and stro-
mules is assumed in the DNA-virus life cycle as well, but their functional role needs to
be determined. Recent findings support a participation of heat shock cognate 70 kDa pro-
tein (cpHSC70-1)-containing stromules induced by a DNA-virus infection (Abutilon mosaic
virus, AbMV, Geminiviridae) in intra- and intercellular molecule exchange. The chaperone
cpHSC70-1 was shown to interact with the AbMV movement protein (MP). Bimolecular flu-
orescence complementation confirmed the interaction of cpHSC70-1 and MP, and showed
a homo-oligomerization of either protein in planta.The complexes were detected at the cel-
lular margin and co-localized with plastids. In healthy plant tissues cpHSC70-1-oligomers
occurred in distinct spots at chloroplasts and in small filaments extending from plastids
to the cell periphery. AbMV-infection induced a cpHSC70-1-containing stromule network
that exhibits elliptical dilations and transverses whole cells. Silencing of the cpHSC70 gene
revealed an impact of cpHSC70 on chloroplast stability and restricted AbMV movement,
but not viral DNA accumulation. Based on these data, a model is suggested in which
these stromules function in molecule exchange between plastids and other organelles and
perhaps other cells. AbMV may utilize cpHSC70-1 for trafficking along plastids and stro-
mules into a neighboring cell or from plastids into the nucleus. Experimental approaches
to investigate this hypothesis are discussed.
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INTRODUCTION
In plants, transport of endogenous macromolecules such as pro-
teins and nucleic acids over cellular boundaries occurs in a highly
selective and regulated manner (Oparka, 2004; Lee and Lu, 2011;
Maule et al., 2011; Niehl and Heinlein, 2011; Zavaliev et al., 2011).
These controlled intra- and intercellular pathways are exploited by
plant viruses for their systemic spread within their hosts; viruses
can thus be used as tools to study basic endogenous transport
processes within plants (Lee et al., 2003; Lucas, 2006; Benitez-
Alfonso et al., 2010; Harries and Ding, 2011; Harries et al., 2011;
Niehl and Heinlein, 2011; Schoelz et al., 2011; Ueki and Citovsky,
2011). There is evidence accumulating that interactions of viruses
with the cytoskeleton or the endomembrane system are involved
in the targeting of viral nucleoprotein complexes and transport-
mediating movement proteins (MPs) to plasmodesmata. However,
it is still not possible to generate a complete model of intra- and
intercellular movement for any known plant virus. Considering
the diverse and sometimes contrasting reports on the roles of var-
ious cellular components in viral spread, it is conceivable that

viruses use fundamentally different transport mechanisms within
their hosts. This seems to be the case for members within one
genus, as shown, for example by research into RNA-viruses of
the genus Tobamovirus [turnip vein-clearing virus (TVCV) and
tobacco mosaic virus (TMV); Harries et al., 2009] and the genus
Potexvirus [Alternanthera mosaic virus (AltMV) and potato virus
X (PVX); Lim et al., 2010].

TRANSPORT MODELS FOR THE PLANT DNA GEMINIVIRUSES
In contrast to RNA-viruses, plant-infecting DNA geminiviruses
(family Geminiviridae) replicate within the nucleus, and systemic
infection requires the crossing of two cellular barriers, the nuclear
envelope via pores and the cell wall via plasmodesmata (Waig-
mann et al., 2004; Krichevsky et al., 2006; Lucas, 2006; Jeske, 2009).
The geminiviruses have relatively small genomes (2.5–3.0 kb per
single-stranded DNA circle) and with this limited coding capacity
exhibit a strong dependency on host proteins to complete their
life cycle. As a consequence, viral-encoded transport-mediating
proteins have to interact with a variety of plant factors involved in
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macromolecular trafficking to overcome cellular boundaries and
transfer viral DNA (vDNA) from a nucleus through the cytoplasm
and via plasmodesmata into an adjacent cell and into the nucleus
of that cell. The genome of bipartite geminiviruses (genus Bego-
movirus) consists of two DNA molecules: DNA A and DNA B. The
two DNA B-encoded proteins, nuclear-shuttle protein (NSP) and
MP, mediate the viral transport processes (Gafni and Epel, 2002;
Rojas et al., 2005; Wege, 2007; Jeske, 2009) and both proteins have
an impact on viral pathogenicity (Rojas et al., 2005; Zhou et al.,
2007; Jeske, 2009). Previous work showed the C-terminal domain
of begomoviral MPs to be important for symptom development
and pathogenicity (von Arnim and Stanley, 1992; Ingham and
Lazarowitz, 1993; Pascal et al., 1993; Duan et al., 1997; Hou et al.,
2000; Saunders et al., 2001; Kleinow et al., 2009a). The DNA A-
encoded coat protein (CP) is not essential for systemic infection
of bipartite begomoviruses, suggesting that the transport complex
is distinct from virions (Rojas et al., 2005; Jeske, 2009). However,
CP was able to complement defective NSP mutants, and is there-
fore regarded as a redundant element in viral movement (Qin
et al., 1998). Several studies provide evidence that NSP facilitates
trafficking of vDNA into and out of the nucleus, and that MP
serves as a membrane adaptor and mediates cell-to-cell transfer
via plasmodesmata as well as long-distance spread through the
phloem (Rojas et al., 2005; Krichevsky et al., 2006; Wege, 2007;
Jeske, 2009).

Two models are currently suggested for the role of NSP and
MP during cell-to-cell transport of bipartite geminiviruses: the
“couple-skating” and the “relay race” models (Rojas et al., 2005;
Jeske, 2009). The “couple-skating” model is based on the experi-
mental data of the phloem-limited begomoviruses squash leaf curl
virus (SLCV; Pascal et al., 1994; Sanderfoot and Lazarowitz, 1995;
Sanderfoot et al., 1996), cabbage leaf curl virus (CaLCuV; Car-
valho et al., 2008a,b), and Abutilon mosaic virus (AbMV; Zhang
et al., 2001; Aberle et al., 2002; Hehnle et al., 2004; Frischmuth
et al., 2007). This model suggests that MP binds the NSP/vDNA
complex at the cytoplasmic side of plasma membranes or micro-
somal vesicles, and transfers the nucleoprotein complex into the
next cell either along the plasma membrane or via the endoplas-
mic reticulum (ER) that spans the plasmodesmata. In contrast,
the “relay race” model predicts that after NSP-mediated nuclear
export the vDNA is taken over by MP, which then transports
the vDNA into the adjacent cell (Noueiry et al., 1994; Rojas
et al., 1998, 2005). This model is based on experimental data of
the mesophyll-invading begomovirus bean dwarf mosaic virus
(BDMV; Levy and Tzfira, 2011). Nevertheless, details of how
both proteins co-ordinate vDNA transfer from the nucleus to the
cell periphery and further throughout the plant body, are mostly
unknown.

For a controlled cycle of geminiviral replication, transcrip-
tion, encapsidation, and movement, NSP and MP are most likely
integrated into a regulatory network consisting of other viral pro-
teins and plant factors. Several studies have characterized a set
of interacting host proteins for NSP and MP. NSPs of CaLCuV,
tomato golden mosaic virus (TGMV), and tomato crinkle leaf
yellows virus (TCrLYV) were found to interact with two classes
of receptor-like kinases from Arabidopsis thaliana (Fontes et al.,
2004; Mariano et al., 2004; Florentino et al., 2006). The further

analysis of the NSP/kinase interactions indicated that they play
a role in infectivity and symptom development. NSP counters
activation of defense signaling mediated by one kinase class via
phosphorylation of an immediate downstream target, the ribo-
somal protein L10/QM (Fontes et al., 2004; Mariano et al., 2004;
Florentino et al., 2006; Carvalho et al., 2008c; Rocha et al., 2008;
Santos et al., 2010). Additionally, CaLCuV NSP was found to
interact with an acetyltransferase (AtNSI; McGarry et al., 2003;
Carvalho and Lazarowitz, 2004; Carvalho et al., 2006) and with
a small GTPase (Carvalho et al., 2008a,b). AtNSI is proposed
to regulate nuclear export of vDNA by acetylating histones and
CP. Carvalho et al. (2008a,b) suggest a function for the small
GTPase in nuclear export processes, probably as a co-factor
of NSP.

Independent of the transport model, the begomoviral MPs
have to mediate multiple functions during intra- and intercellu-
lar trafficking. The identification of three phosphorylation sites in
the AbMV MP, which have an impact on symptom development
and/or vDNA accumulation (Kleinow et al., 2009a), indicates a
regulation of diverse MP functions by yet unknown host kinases.
Currently, three interacting host factors of begomoviral MPs have
been identified: a histone H3 (Zhou et al., 2011), a synaptotagmin
(SYTA; Lewis and Lazarowitz, 2010), and a chaperone, the heat
shock cognate 70 kDa protein cpHSC70-1 (Krenz et al., 2010). Gel
overlay assays, and in vitro and in vivo co-immunoprecipitation
(Co-IP) experiments showed an interaction of H3 with NSP and
MP of BDMV as well as with CPs of different geminiviruses (Zhou
et al., 2011). In Nicotiana tabacum protoplasts and N. benthami-
ana leaves, transiently expressed H3 co-localized with NSP in the
nucleus and the presence of MP redirected H3 to the cell periphery
and plasmodesmata. A complex composed of H3, NSP, MP, and
vDNA was recovered by Co-IP from N. benthamiana leaves tran-
siently expressing epitope-tagged H3. The data support a model
in which histone H3 is a component of a geminiviral movement-
competent vDNA complex that assembles in the nucleus and is
transferred to the cell periphery and plasmodesmata. SYTA local-
ized to endosomes in Arabidopsis cells, and interacted with MPs of
the begomoviruses CaLCuV and SLCV as well as with the unre-
lated MP of the RNA-virus TMV (Lewis and Lazarowitz, 2010).
Transgenic Arabidopsis lines with either a reduced SYTA level or
expressing a dominant-negative SYTA mutant exhibited a delayed
systemic infection and an inhibition of cell-to-cell trafficking of
the different MPs. Consequently, Lewis and Lazarowitz (2010)
proposed that: (i) SYTA regulates endocytosis and (ii) distinct viral
MPs transport their cargo to plasmodesmata for cell-to-cell spread
via an endocytotic recycling pathway. The chaperone cpHSC70-1
of Arabidopsis was shown to specifically interact with the N-
terminal domain of AbMV MP in a yeast two-hybrid system (Krenz
et al., 2010). Bi-molecular fluorescence complementation (BiFC)
analysis provided further evidence for the chaperone/MP interac-
tion, and revealed an MP as well as a cpHSC70-1 self-interaction
in planta (Krenz et al., 2010). MP/cpHSC70-1 complexes and MP-
oligomers were observed at the cell periphery and co-localized with
chloroplasts. The detection of MP-homo-oligomers at the cellu-
lar margin is in agreement with other localization studies in plant
cells (Zhang et al., 2001; Kleinow et al., 2009b) and with earlier
yeast two-hybrid assays that showed an MP oligomerization via
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the C-terminal domain (Frischmuth et al., 2004). MP-oligomer
formation has also been detected at chloroplasts (Krenz et al.,
2010). It is unknown whether BiFC results from MP imported
into plastids or merely associated with the outer envelope of the
chloroplast. No BiFC signal was seen in peri-nuclear sites as was
previously found for AbMV MP transiently expressed as green flu-
orescent protein (GFP) fusion in plant cells (Zhang et al., 2001).
Thus, MP/MP interaction may be restricted to chloroplasts and
the cell periphery.

Bi-molecular fluorescence complementation showed that
cpHSC70-1-oligomers were mainly associated with chloroplasts
where they accumulated in distinct spots, and occurred to a lower
extent in small filaments extending from plastids to the cell periph-
ery and distributed at the periphery (Krenz et al., 2010). The
localization of cpHSC70-1 was significantly influenced by AbMV-
infection, accumulating in fluorescent foci on long filamental
tubular structures reminiscent of plastid stromules, stroma-filled
plastid tubules (Natesan et al., 2005; Hanson and Sattarzadeh,
2008). It remains uncertain whether cpHSC70-1 was maintained
exclusively within the stroma or whether it was re-located to other
structures upon geminiviral infection such as envelope mem-
branes or the intermembrane space. Altogether, AbMV-infection
seems to induce a prominent formation of stromules. To our
knowledge the geminivirus AbMV is the only plant DNA-virus
so far for which stromule biogenesis was documented. Silenc-
ing of the cpHSC70 gene of N. benthamiana with the aid of an
AbMV DNA A-derived gene silencing vector caused tiny white
leaf sectors, which indicated an impact of cpHSC70 on chloro-
plast stability (Krenz et al., 2010). vDNA accumulated within
these small chlorotic areas that were spatially restricted to small
sectors adjacent to veins, suggesting a functional relevance of
the MP/chaperone interaction for AbMV transport to symptom
induction in planta.

CELLULAR FUNCTIONS OF HSP70 AND HSC70 AND THEIR
PUTATIVE ROLES IN VIRAL INFECTION
The expression of chaperones from the heat shock protein 70
kDa (HSP70) family is induced in response to developmental sig-
nals and various abiotic and biotic stress stimuli (Escaler et al.,
2000a,b; Maule et al., 2000; Sung et al., 2001; Aparicio et al., 2005;
Brizard et al., 2006; Swindell et al., 2007). Some family members
exhibit a low constitutive expression level and are therefore named
heat shock cognate proteins 70 kDa (HSC70s) (Sung et al., 2001;
Swindell et al., 2007). The cellular functions of this chaperone
family are quite diverse. They assist newly translated proteins to
obtain their active conformation, misfolded or aggregated proteins
to refold, assist in membrane translocation of proteins, in assembly
and disassembly of macromolecular complexes and in controlling
the activity of regulatory factors (Kanzaki et al., 2003; Mayer and
Bukau, 2005; Weibezahn et al., 2005; Bukau et al., 2006; Noel et al.,
2007; Kampinga and Craig, 2010; Mayer, 2010; Flores-Pérez and
Jarvis, 2012). In addition to their intracellular functions in differ-
ent subcellular compartments, HSP70s play a role in cell-to-cell
transport as indicated by two non-cell-autonomous cytoplas-
mic HSP70s from Cucurbita maxima (Aoki et al., 2002) and by
closterovirus-encoded homologs of HSP70s which are essential
for virus transport and plasmodesmata targeting (Alzhanova et al.,

2007; Avisar et al., 2008, and references therein). For HSP70s
and HSC70s, substrate binding and release is regulated by a
conformational change that is driven by their ATPase activity. Co-
chaperones (DNAJ-like/HSP40 type proteins) assist HSP70s and
HSC70s functions with their delivery and release of substrates and
by enhancing ATP hydrolysis activity.

HSP70s and HSC70s transcript and protein levels are up-
regulated in plants upon an infection with RNA- or DNA-viruses
(Escaler et al., 2000a,b; Maule et al., 2000; Aparicio et al., 2005;
Brizard et al., 2006). Accumulation of viral proteins within the
cell during the infection causes stress and might thereby induce
the expression of this chaperone family. Several classes of chap-
erones and co-chaperones including HSP70s/HSC70s and their
specific co-chaperones were identified to interact with viral pro-
teins to facilitate the regulation of viral replication, transcription,
encapsidation, and intra- and intercellular movement as well as
to suppress pathogen responses (Noel et al., 2007; Benitez-Alfonso
et al., 2010; Nagy et al., 2011). Recently, silencing of a cytosolic
HSC70-1 was found to impair infection by the monopartite gem-
inivirus tomato yellow leaf curl Sardinia virus (TYLCSV) in N.
benthamiana (Lozano-Duran et al., 2011). However, none of these
HSP70s and HSC70s involved in viral life cycles were located in
the chloroplast stroma where cpHSC70-1 was identified to inter-
act with the MP of the geminivirus AbMV (Krenz et al., 2010).
In addition to the localization of cpHSC70-1 in the chloroplast
stroma and stromules, it is also seen in mitochondria and as a
nuclear protein in response to cold stress (Sung et al., 2001; Peltier
et al., 2002, 2006; Bae et al., 2003; Ito et al., 2006; Su and Li, 2008,
2010; Krenz et al., 2010; Latijnhouwers et al., 2010). An analy-
sis of an Arabidopsis knock-out mutant of cpHSC70-1 revealed
that its deficiency caused severe developmental defects (Su and
Li, 2008, 2010; Latijnhouwers et al., 2010), but the functions of
cpHSC70-1 and other stroma-targeted HSP70s/HSC70s are not
completely understood. Recent genetic and biochemical analyses
indicated that cpHSC70-1 seems to play a role in protein translo-
cation into the plastid stroma in early developmental stages of
plants (Su and Li, 2010; Flores-Pérez and Jarvis, 2012). It is well
known that HSP70s/HSC70s fulfill multiple functions in chloro-
plasts (Flores-Pérez and Jarvis, 2012), therefore the participation
of cpHSC70-1 in protein transport across membranes might not
be the only function it provides. What function of cpHSC70-1 is
targeted by AbMV MP? It can be speculated that the virus exploits
the ATPase activity of the chaperone as a driving force to mediate
transport of the geminiviral nucleoprotein complexes.

PLASTIDS AND STROMULES IN VIRAL INFECTION
Several interactions of RNA-viruses with chloroplasts have been
described which were important for the viral infection pro-
cess (Reinero and Beachy, 1986; Schoelz and Zaitlin, 1989;
Prod’homme et al., 2003; Jimenez et al., 2006; Torrance et al.,
2006; Xiang et al., 2006; Lin et al., 2007; Lim et al., 2010). Virus–
chloroplast interactions most likely facilitate viral replication or
movement. The role of chloroplasts in the life cycle of plant
DNA-viruses needs to be examined. In studies of cellular alter-
ations induced by various geminiviruses in systemically infected
plants, dramatic morphological changes in the ultrastructure of
chloroplasts were identified, such as vesiculated entities, reduced
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starch and chlorophyll content, accumulation of fibrillar inclu-
sions, virus-like particles, and vDNA within plastids (Esau, 1933;
Jeske and Werz, 1978, 1980a,b; Schuchalter-Eicke and Jeske, 1983;
Jeske and Schuchalter-Eicke,1984; Jeske,1986; Gröning et al., 1987,
1990; Rushing et al., 1987; Channarayappa et al., 1992). For AbMV
it was shown that the severity of chloroplast structure remodel-
ing was dependent on light intensity, and diurnal and seasonal
conditions. Geminivirus-induced plastid alterations have thus far
been interpreted to be an indirect result of the interference of viral
infection with carbohydrate metabolism, mainly through a dis-
ruption in translocation via the phloem (Jeske and Werz, 1978).
Nevertheless, the detection of vDNA, fibrillar inclusions, or virus-
like particles within chloroplasts, suggests other functions of this
interplay. Until now, only AbMV vDNA was detected in puri-
fied plastids from infected plants (Gröning et al., 1987, 1990).
An artificial co-purification was excluded by thermolysin and
DNase I treatment. In situ hybridization detected high amounts
of AbMV vDNA in a low number of purified plastids, which
would not be expected for a non-specific co-purification. How-
ever, so far, in situ hybridization of infected Abutilon sellovianum
tissue only revealed AbMV vDNA-specific signals on plastids in
rare cases (Horns and Jeske, 1991). Furthermore, the finding that
an outer envelope membrane protein (Crumpled leaf) is impli-
cated in the CaLCuV infection process also supports an involve-
ment of chloroplasts in the geminiviral life cycle (Trejo-Saavedra
et al., 2009). An interesting plastid modification detected upon
AbMV-infection, was the induction of stromule biogenesis (Krenz
et al., 2010).

Stromules emanate from the main body of the plastid and are
confined by the outer and inner envelope membranes (Natesan
et al., 2005; Hanson and Sattarzadeh, 2008, 2011). They repre-
sent a highly dynamic structure which extends, retracts, branches,
bends, and sometimes releases vesicles from their tip (Gunning,
2005; Natesan et al., 2005; Hanson and Sattarzadeh, 2008). The
typical diameter is <1 μm and the length is extremely vari-
able due to their dynamic properties (Gray et al., 2001; Kwok
and Hanson, 2004b; Waters et al., 2004). Stromules are distin-
guished from other irregular shaped plastid protrusions by their
specific shape index (Holzinger et al., 2007). The movement of
stromules relies on the actin cytoskeleton and the motor pro-
tein myosin XI (Kwok and Hanson, 2003; Natesan et al., 2009;
Sattarzadeh et al., 2009). Differentially shaped stromules have
been identified by using expression of various stroma-targeted
fluorescent proteins; these include straight or branched tubules
which can exhibit either randomly localized elliptical dilations
that transverse the tubule length or triangular areas of expan-
sion (Köhler et al., 2000; Hanson and Sattarzadeh, 2008; Schattat
et al., 2011, 2012). For the latter type, branch formation occurs
in tandem with dynamic remodeling of contiguous ER tubules
(Schattat et al., 2011). Schattat and colleagues suppose that this
co-alignment might originate from membrane contact points or
by an exploitation of the same cytoskeletal elements for develop-
ment. Single or multiple stromules may arise in all plastid types
present in higher plant tissues, but their frequency varies; for
example their abundance is significantly higher for achlorophylic
plastids in sink tissues than for chlorophyll-containing plastids
in green tissues (Köhler et al., 1997; Köhler and Hanson, 2000;

Natesan et al., 2005; Hanson and Sattarzadeh, 2008; Schattat et al.,
2012). Analyses of the fruit ripening in tomato showed that the
formation of stromules is influenced by the plastid differentia-
tion status and is inversely correlated with the density and size
of plastids within a cell (Waters et al., 2004). Consequently, a
role of stromules in sensing the number of plastids in a cell is
supposed. Various abiotic and biotic stress conditions includ-
ing heat (Holzinger et al., 2007), subcellular redox stress (Itoh
et al., 2010), application of extracellular sucrose or glucose (Schat-
tat and Klösgen, 2011), treatment with abscisic acid (Gray et al.,
2012), colonization by an arbuscular mycorrhizal fungus (Fester
et al., 2001; Hans et al., 2004; Lohse et al., 2005), and infiltration
of agrobacteria (Schattat et al., 2012) were described as inducers
of stromules. The formation of a dense plastid network in cells
close to the main symbiotic structure during mycorrhizae for-
mation supports a putative correlation between plastid metabolic
activity and stromule biogenesis. An induction of stromules was
detected as well upon viral infections (Esau, 1944; Shalla, 1964;
Caplan et al., 2008; Krenz et al., 2010). RNA-virus infected sugar
beets exhibit mosaic disease symptoms including mottling and
yellow-green sectoring of leaves. Plastids within these yellow areas
showed vesiculation and an amoeboid shape resembling stromules
(Esau, 1944). Shalla (1964) described the appearance of “long
appendages which extend and contracted within a few seconds”
from the plastid body and vesicle formation inside chloroplasts
of TMV-infected tomato leaflets. TMV-infected tobacco plants
exhibited a strong induction of stromule formation (Caplan et al.,
2008) just as for N. benthamiana plants locally infected with the
DNA-virus AbMV (Krenz et al., 2010).

Although several inducers of stromules have been identified,
their functional role remains to be determined. They were pro-
posed to participate in plastid motility and in facilitating transport
of various molecules, e.g., proteins, metabolites and signaling
components, into and out of a plastid, among plastids and even
between plastids and other organelles (Köhler et al., 1997, 2000;
Kwok and Hanson, 2004a; Natesan et al., 2005; Hanson and Sat-
tarzadeh, 2008, 2011). Chlorophyll, thylakoid membranes, plastid
DNA, and ribosomes have not been detected within stromules
(Hanson and Sattarzadeh, 2008, 2011; Newell et al., 2012). Nev-
ertheless, the possibility of a rare movement of plastid DNA and
ribosomes or the transfer of much smaller DNA molecules, e.g.,
plastid transformation vectors, via stromules cannot be completely
excluded. Exchange of stroma-targeted GFP between two plas-
tids interconnected by stromules was observed using fluorescence
recovery after photobleaching (FRAP) experiments in tobacco
and Arabidopsis (Köhler et al., 1997; Tirlapur et al., 1999). More-
over, two-photon excitation fluorescence correlation spectroscopy
revealed two different transport modes through stromules in
tobacco suspension cells (Köhler et al., 2000). A simple diffu-
sion of single stroma-targeted GFP molecules was observed in
addition to an active ATP-dependent batch movement of GFP
“packets.” Köhler and colleagues supposed that these GFP bodies
represent an accumulation of GFP in small vesicles. Stromules
may carry several of these GFP “packets” leading to a beaded
appearance (Köhler and Hanson, 2000; Pyke and Howells, 2002;
Hanson and Sattarzadeh, 2008, 2011). The stromules induced by
AbMV-infection and containing the MP-interacting chaperone
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cpHSC70-1 exhibited a related appearance like pearls on a string
(Krenz et al., 2010; Figures 1 and 2). It is hypothesized that
cpHSC70-1 is present in the same type of “packet”structure as GFP
in the preceding experiments, probably associated with vesicles
and actively transported.

The data obtained by Kwok and Hanson (2004a) suggested
that stromules may serve as pathways between nuclei and more
distant regions of the cell and possibly even other cells. They
observed that clusters of plastids around nuclei are capable of
extending stromules both outward, to the cell membrane, as
well as inward, through nuclear grooves. Close contact between
plastids and the nuclei and the plasma membrane of plant cells
suggests that physical interactions may enhance functional inter-
actions between these organelles. Furthermore, Kwok and Hanson
(2004a) found that stromules from two adjacent cells appeared
to meet at either side of an adjoining cell wall. Consequently,
the stromule’s structure seems to be suitable for the exchange
of molecules between plastids and other organelles or the traf-
ficking of plastidal proteins and metabolites to diverse regions
of the plant cell. Remarkably, the cpHSC70-1-containing stro-
mules detected upon an AbMV-infection arose not only on plastids
clustered around and in close association with the nucleus, but
also appeared to interconnect plastids and extend from plas-
tids outward to the cell periphery (Krenz et al., 2010; Figures 1
and 2).

By contrast, in non-infected tissues only short cpHSC70-1-
containing filaments were found which extended solely from
cortex positioned plastids to the cell periphery. However, molec-
ular transfer from the plastids to the nucleus or vice versa with
the aid of stromules remains to be confirmed. That a retrograde
protein exchange between plastids and the nucleus can occur was
demonstrated recently. Plastid-encoded HA-tagged Whirly1 pro-
tein was translocated to the nucleus in transplastomic tobacco
plants, where it stimulated pathogen-related gene expression
(Isemer et al., 2012). The chloroplast-localized NRIP1 (N receptor-
interacting protein 1) was redirected to the cytoplasm and to the
nucleus in presence of the p50 effector, a 50 kDa helicase domain
encoded by TMV (Caplan et al., 2008). Upon this recruitment
to the nucleus and the cytoplasm NRIP1 binds to the N innate
immunity receptor to initiate effector recognition and pathogen
defense mechanisms. TMV-infection causes a strong increase in
stromule formation, and a localization of fluorescent protein-
tagged NRIP1 within stromules was observed (Caplan et al., 2008).
Thus, the authors speculated about an involvement of stromules
in the nuclear re-localization of NRIP1.

Schattat et al. (2012) do not support a function of stromules
in trafficking of macromolecules between plastids. In this thor-
oughly performed work, interconnectivity of independent plastids
was tested with the aid of a photoconvertible stroma-targeted
fluorescent protein. Despite the strong microscopic impression
of interplastid connectivity via stromules, an exchange of the
stroma marker protein could not be visualized by high quality
confocal imaging. Various plant materials (e.g., N. benthamiana
and Arabidopsis) were comprehensively analyzed for plastid mor-
phology and marker protein transfer. Although the differently
colored plastids and stromules were in very close proximity, the
labeled organelles remained separate as indicated by the absence

FIGURE 1 | Abutilon mosaic virus-induced cpHSC70-1-containing

stromules extending from plastids to the cell periphery. Transient
co-expression of test constructs in leaf tissues of locally AbMV-infected

(Continued)
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FIGURE 1 | Continued

N. benthamiana and epi-fluorescence microscopy were carried out
according to Krenz et al. (2010, 2011). AbMV infection was established by
simultaneous agro-infiltration of infectious DNA A and DNA B clones with
the fluorescent protein expression constructs. (A) Merged image of cells
expressing NSP:cyan fluorescent protein (CFP), the two split yellow
fluorescent protein (YFP)/BiFC constructs of cpHSC70-1 and the
plasmodesmata marker PDCB1:mCherry (callose binding protein 1,
Simpson et al., 2009) for 4 days post agro-infiltration (dpai). The square in (A)

highlights cpHSC70-1-oligomers at chloroplasts and stromules (yellow,
arrows) anchoring at the cell periphery (red: PDCB1:mCherry), and is
magnified in (B). The separate fluorescence signals superimposed in (A) are
shown in (C) YFP, (D) CFP, and (E) mCherry. Note: The plasmodesmata
marker PDCB1:mCherry lost its extracellular localization at the neck region
of plasmodesmata upon AbMV-infection (compare Figure 3) and is probably
distributed throughout the apoplast. NSP:CFP is redirected from the nucleus
to the cell periphery, probably the plasma membrane, by presence of MP or
AbMV-infection (Zhang et al., 2001; Frischmuth et al., 2007). Bar: 10 μm.

of color mixing. That the method applied in these studies is
suitable to detect an exchange of material between organelles
upon a fusion was confirmed by analogous experiments using
a mitochondria-targeted version of the fluorescent protein. In
contrast to our observations from geminivirus-infected plants,
the results of Schattat et al. (2012) were obtained working with
uninfected plants. Whether these conflicting results are caused
by the different experimental set-up, plastid types, and plant
material used, or whether indeed a macromolecular trafficking
of stroma-proteins through interconnecting stromules is not fea-
sible under any conditions, needs to be elucidated by further
experimentation.

In addition to the induction of stromule biogenesis, AbMV-
infection influences the localization of a plasmodesmata-
associated protein. The plasmodesmata callose binding protein
1 (PDCB1) fused to mCherry was investigated as a marker for
plasmodesmata by Simpson et al. (2009). PDCB1 is a glyco-
sylphosphatidylinositol (GPI)-linked protein that exhibits callose
binding activity and localizes to the neck region of plasmod-
esmata in the apoplast. Here it possibly acts as a structural
anchor between the plasma membrane component spanning the
plasmodesmata and the cell wall. The available data support a
function for PDCB1 in plasmodesmata flux control by influenc-
ing the callose deposition in the cell wall and as a consequence
the aperture of plasmodesmata. Due to its extracellular local-
ization PDCB1 was not expected to interfere with viral proteins
like AbMV MP, which is likely to accumulate in the central sym-
plastic cavity region of complex plasmodesmata (Kleinow et al.,
2009b; Lee and Lu, 2011). The fluorescence microscopic analyses
showed punctate structures in the cell periphery after transient
expression of PDCB1:mCherry in epidermal leaf tissues, which
are in agreement with the expected plasmodesmata localization
(Figure 3).

Surprisingly, upon AbMV-infection PDCB1:mCherry signals
were still distributed at the cell periphery, most likely the cell wall
(Figures 1–3), but no punctate structures were detected anymore.
Thus, the protein seems to have lost the plasmodesmata local-
ization. We hypothesize this as an AbMV-induced remodeling
of the plasmodesmata aperture by callose depletion in the neck
region.

FIGURE 2 | Abutilon mosaic virus-induced cpHSC70-1-containing

stromules grabbing a nucleus. The experimental set-up is the same as
stated in Figure 1. (A) Merged image of cells expressing the three test
proteins for 4 dpai and (B) magnification of the square in (A) which marks
cpHSC70-1-oligomers at chloroplasts and stromules (yellow, arrows) which
closely associate to a nucleus (blue: NSP:CFP) near to the cell periphery
(blue: NSP:CFP, likely plasma membrane and red: PDCB1:mCherry,
apoplast), magnified in (B). The separate emissions merged in (A) are
shown in (C) YFP, (D) CFP, and (E) mCherry. N, nucleus; bar: 10 μm.
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FIGURE 3 | Influence of AbMV-infection on localization of the

plasmodesmata marker PDCB1. PDCB1:mCherry (Simpson et al., 2009)
was expressed in epidermal tissues of N. benthamiana plants either (A)

healthy or (B) locally infected with AbMV for 4 days. The experiment was
performed as described in Figure 1. (A) Punctate mCherry signals indicate
the targeting of PDCB1 to the apoplastic part of the neck region from

plasmodesmata according to Simpson et al. (2009). (B) Upon
AbMV-infection these plasmodesmata-specific signals disappeared
and PDCB1 emerged homogenously in the apoplast. These results
showed a virus-induced alteration of the subcellular localization of
PDCB1, probably by modifying callose deposition at plasmodesmata.
Bar: 10 μm.

AbMV MOVEMENT ALONG STROMULES WITH THE HELP OF
A CHAPERONE
A cellular function in plant endogenous macromolecular traffick-
ing is suspected for stromules and chaperones like HSC70s and in
addition an involvement for chaperones in viral movement. How-
ever, their combined participation in these processes has thus far
not been examined. The accumulated data for the geminivirus
AbMV indicate that for both factors there is a joint involvement in
the viral life cycle, very likely the movement process (Krenz et al.,
2010). In the studies of Krenz et al. (2010) stromules were visual-
ized on chlorophyll-containing plastids by BiFC experiments using
the chaperone cpHSC70-1. Here, two different types of cpHSC70-
1-containing stromules were monitored. Only short stromules
extending from plastids to the cell periphery have been found
in healthy epidermal tissues, whereas upon AbMV-infection long
stromules forming a network between plastids, nucleus, and the
cell periphery were detected. For the latter ones, the BiFC signals of
cpHSC70-oligomers highlighted mainly stromule structures with
elliptical dilations giving them a beaded appearance. This signifi-
cant difference created by the geminivirus infection might indicate
additional functions of cpHSC70 in association with the two stro-
mule types observed. The cpHSC70-containing stromules may
function in macromolecule transfer, perhaps just under certain
cellular conditions, e.g., a virus infection. This transport may hap-
pen intracellulary among plastids and between plastids and other
organelles, or even intercellularly through plasmodesmata.

A prerequisite for the traveling of stromal proteins via stro-
mules from an individual plastid to another plastid or organelle
(e.g., nucleus) might be the fusion of the outer and inner enve-
lope membrane with the target membrane. AbMV-infection might
create a cellular environment that allows such a fusion event
of stromules and the consequent transposition of quantities of
stromal components. Alternatively, a transfer process might be
initiated, which does not comprise a fusion of the inner envelope
membrane or the envelope at all. This might consist of transport
along the cytoplasmic leaflet of the outer envelope membrane,

through the intermembrane space after fusion of the outer enve-
lope with the target membrane or via envelope-coated vesicles
released from stromules (Gunning, 2005; Krause and Krupinska,
2009). Irrespective of the underlying mechanism, a movement of
a geminiviral nucleoprotein complex in association with interact-
ing plastid stromules and cpHSC70, even with a low efficiency,
might be sufficient for intra- and intercellular viral spread. A
transport event in close association with membranes or vesicles
would be consistent with the geminiviral MP being a membrane-
associated protein. AbMV MP was localized to the protoplasmic
face of plasma membranes and vesicles, where its C- and N-
terminal domains most likely protrude into the cytoplasm (Aberle
et al., 2002; Frischmuth et al., 2004, 2007). The central part of
MP probably forms an amphipathic helix structure which inserts
into one leaflet of the target membrane (Zhang et al., 2002). It
has been observed that insertion of amphipathic helices into a
monolayer induces bending and generates local curvature (Kozlov
et al., 2010; McMahon et al., 2010). Such protein-mediated mem-
brane stresses were found to trigger fusion, fission, and budding
events of membranes. Presumably, AbMV MP may be capable of
inducing and/or enhancing such membrane remodeling. How-
ever, it cannot be excluded that the close association of AbMV
MP with plastid structures represents a targeting of the cytoskele-
tal elements, to which chloroplasts and stromules are usually
attached, for cellular transit of viral nucleoprotein complexes. The
result of cpHSC70 silencing in N. benthamiana revealed that the
chaperone/MP interaction is not essential for the systemic spread
of AbMV (Krenz et al., 2010), suggesting it plays a role via an
alternative path.

In summary, a model (Figure 4) can be proposed in which
MP/cpHSC70 interaction and stromule induction facilitate intra-
and intercellular macromolecular trafficking along plastids and
stromules into the neighboring cell or in the other direction from
plastids into the nucleus. Whether this represents an accidental
event or is of major significance for AbMV propagation and/or
symptom development remains to be investigated.
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FIGURE 4 | Hypothetical model of AbMV intra- and intercellular

trafficking via a plastid network. (A) In healthy plant cells oligomers of the
chaperone cpHSC70 locate mainly in small spots at chloroplasts (1), to a
lesser amount in small filaments extending from cortical chloroplasts toward
the cell periphery (2) and distributed at the cellular margin (3). (B) In
AbMV-infected cells homo-oligomers of cpHSC70-1 were found similar to
non-infected cells at chloroplasts (1) and to a low extent at the cellular margin
(3). However, AbMV-infection establishes the formation of a stromule
network interconnecting different chloroplasts (4), but also extending from

plastids inward to the nucleus, where they closely attach (5) and outward
to the cell periphery/cell wall, assumedly to plasmodesmata (Pd) that
transverse the cell wall (6). These stromules exhibit structures where
cpHSC70-oligomers appeared mainly in elliptical dilations giving them a
“pearls on a string”-appearance. The stromule network might function in
intra- and intercellular trafficking of viral nucleoprotein complexes by the
interaction of AbMV MP with the chaperone cpHSC70 within stromules (7).
The potential underlying transport mechanism is yet unknown, but probably
involves membrane fusions or a vesicle formation.

So far geminivirus replication and virion assembly were only
detected within the nucleus of infected cells (Rojas et al., 2005;
Jeske, 2007, 2009). Thus, it seems to be very unlikely that the
observed interaction of AbMV with plastids and stromules plays
a role in replication or virion assembly processes. Nevertheless,
AbMV-induced stromule formation and/or cpHSC70-1 interac-
tion might be also related to other cellular processes. Plastids were
involved in the biosynthesis pathways of many essential com-
pounds (e.g., carbohydrates, fatty acids, purines) and stromules
might be important in facilitating metabolic exchanges within
the cells (Fester et al., 2001; Hans et al., 2004; Kwok and Han-
son, 2004b; Waters et al., 2004; Lohse et al., 2005; Schattat and
Klösgen, 2011). Plant cells respond to various abiotic and biotic
stress stimuli, causing disturbance in the cellular energy status,
by complex changes, which include the carbohydrate metabolism
and therefore also plastid activity. It is known that stromules
occur more frequently and are longer in plant cells with disturbed
metabolism (Hanson and Sattarzadeh, 2008), e.g., cells cultured
in liquid medium, callus or suspension culture that shed chloro-
phyll in their chloroplast. That stromule emergence is triggered
by an increased plastid metabolic capacity resulting from biotic
stress, is supported by the findings of their strong induction upon
symbiotic interaction of root cells with mycorrhiza (Fester et al.,

2001; Hans et al., 2004; Lohse et al., 2005). Interestingly, gemi-
niviral proteins other than MP have an impact on a regulatory
key component of the stress and glucose signal transduction, the
sucrose non-fermenting 1-related (SnRK1) protein kinase (Kong
and Hanley-Bowdoin, 2002; Hao et al., 2003; Shen and Hanley-
Bowdoin, 2006). Plastids and HSP70s were previously concluded
to be involved in the onset of a virus-pathogen response (Noel
et al., 2007; Caplan et al., 2008; Nagy et al., 2011); therefore, the
interaction of AbMV with the plastidal cpHSC70-1 might depict
a counteraction of an antiviral defense mechanism.

Recently, a mutant screen identified a plastid- and a
mitochondria-localized RNA helicase to be necessary for plas-
tid development, embryogenesis and unexpectedly for cell-to-cell
trafficking (Burch-Smith et al., 2011; Burch-Smith and Zambryski,
2012). For both knock-out plants profound changes in the tran-
scriptome were observed, e.g., a dramatic down-regulation of
nucleus-encoded plastid-related genes. Although the proteins are
located exclusively in plastids and mitochondria, respectively,
loss of one of the RNA helicase functions causes formation of
twinned and branched plasmodesmata in Arabidopsis. Thus, dis-
ruption of the plastid function seems to induce an increased
molecule exchange, possibly metabolites or signaling factors,
among neighboring cells. The data supports a pathway linking
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intra- to intercellular communication and therefore a signaling
from organelles to the nucleus and plasmodesmata. It can be spec-
ulated that viral interactions with plastids also targets this novel
regulatory pathway to enhance plasmodesmata trafficking.

CONCLUSION AND FUTURE PERSPECTIVES
The AbMV data on movement is consistent with cell-to-cell trans-
port according to the“couple-skating”model. However, the results
of Krenz et al. (2010) may demand to widen this concept of gemi-
niviral cellular transfer for AbMV: it may opportunistically hijack
different pathways for intracellular transport and plasmodesmata
targeting including an alternative route via chloroplasts and stro-
mules with the aid of a plastidal chaperone. It is clear, in any case,
that further research is needed to elucidate this hypothesis.

A functional characterization of AbMV MP and the host factor
cpHSC70-1 in the assumed transport processes could start with
comprehensive analyses of their localization in subcellular com-
partments and membrane structures. The following points should
be considered: (i) To resolve the geometric relation of the different
cellular structures high resolution confocal imaging and time lapse
imaging is required. (ii) Test protein expression should be done
in combination with a set of fluorescent marker proteins, proba-
bly photoconvertible, for different compartments to monitor the
subcellular distribution, temporal activities, and macromolecu-
lar trafficking events. A cytoplasmic marker would be needed to
investigate if AbMV-induced stromules actively associate with the
nucleus or are just pressed by other organelles, like a large vacuole,
toward the nucleus. (iii) Careful controls should be included to

account for stresses (including agro-infiltration) that are known
to influence stromule formation. (iv) To minimize the influence
of agro-infiltration, transgenic plants expressing required fluo-
rescent test proteins and alternate methods to introduce AbMV
(biolistic bombardment of vDNA) should be applied. To inves-
tigate the precise molecular function of cpHSC70-1 on AbMV
infection and presumably macromolecular trafficking, the impact
of the following scenarios on AbMV spread could be investi-
gated: (i) transgenic plants overexpressing wild-type cpHSC70-1
or a non-MP-interacting, dominant-negative cpHSC70-1 variant
and (ii) infection with AbMV DNA encoding a non-cpHSC70-
1-interacting MP mutant. Finally, the relevance of the findings
should be tested for additional geminiviruses other than AbMV.
This knowledge gained will contribute significantly to the elu-
cidation of the geminiviral intra- and intercellular movement
process.
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