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Mitochondria are important organelles for providing the ATP and carbon skeletons required
to sustain cell growth. While these organelles also participate in other key metabolic
functions across species, they have a specialized role in plants of optimizing photosyn-
thesis through participating in photorespiration. It is therefore critical to map the protein
composition of mitochondria in plants to gain a better understanding of their regulation
and define the uniqueness of their metabolic networks. To date, <30% of the predicted
number of mitochondrial proteins has been verified experimentally by proteomics and/or
GFP localization studies. In this mini-review, we will provide an overview of the advances in
mitochondrial proteomics in the model plant Arabidopsis thaliana over the past 5 years.The
ultimate goal of mapping the mitochondrial proteome in Arabidopsis is to discover novel
mitochondrial components that are critical during development in plants as well as genes
involved in developmental abnormalities, such as those implicated in mitochondrial-linked
cytoplasmic male sterility.

Keywords: Arabidopsis thaliana, mitochondria, proteomics, heterogeneity, protein complex, post-translational
modifications, functional proteomics

INTRODUCTION
Mitochondria are semi-autonomous, double membrane bound
organelles with unique morphologies and highly specialized func-
tions. While these organelles are well-recognized for energy metab-
olism via coupling the oxidation of organic acids with oxidative
phosphorylation (OXPHOS), they also have diverse functional
roles such as metabolism of amino acids and biosynthesis of cofac-
tors and vitamins. Mitochondria in plants are set apart from their
mammalian counterparts by their mediation of photosynthesis
through providing alternative electron sinks for photosynthetic
products and their participating in photorespiration (Padmas-
ree et al., 2002). In order to fully understand the functional
roles of mitochondria in photosynthetic cells, it is essential to
establish their total protein make-up (proteome) and their post-
translational modifications (PTMs), as well as to generate a pro-
tein atlas that collects information about mitochondrial protein
expression patterns during stress and in different cells, tissues, and
organs.

Arabidopsis thaliana became the first model system for plants
after its genome was fully sequenced and made publicly available
in 2000 (The Arabidopsis Genome Initiative, 2000). In the last
decade, tremendous progress has been made, by both experimental
and bioinformatics approaches, to define the mitochondrial pro-
teome in this model plant species. Like its yeast and mammalian
counterparts, most of the mitochondrial proteins in Arabidop-
sis are encoded by the nuclear genome. Based on the analyses of
the N-terminal targeting peptide sequences in Arabidopsis, there
are about 2500 predicted nuclear-encoded mitochondrial pro-
teins (representing 7–10% of all encoded proteins) with broad

functional roles (Heazlewood et al., 2007; Cui et al., 2011). In
comparison, the mitochondrial genome encodes for only 57 gene
products (Unseld et al., 1997). The first extensive experimental
studies of the mitochondrial proteome in Arabidopsis identified
∼100–150 proteins (Kruft et al., 2001; Millar et al., 2001; Werhahn
and Braun, 2002; Millar and Heazlewood, 2003). Improvement
of organelle purification procedure, availability of different pro-
tein mapping strategies, enhanced sensitivity of peptide detection
by mass spectrometry (MS), and improved genomic resources and
peptide identification software have driven a significant increase in
the number of mitochondrial proteins identified across different
model species – from 843 in Arabidopsis (Table S1A in Supple-
mentary Material) and 851 in yeast (Reinders et al., 2006), to 1404
in mouse (Forner et al., 2009).

Given the number of proteins identified so far in Arabidop-
sis mitochondrion, it is clear that our understanding of its
composition and functions in plants is far from complete. In this
mini-review, we will provide an update on the status of Arabidop-
sis mitochondrial proteomics research based on published data in
the past 5 years (2007–2012). We would refer readers to previous
review articles for more comprehensive overviews on the progress
of plant mitochondrial proteomics in the preceding years (Millar
et al., 2005, 2011; Ito et al., 2007; Dudkina et al., 2010).

HOW FAR ARE WE FROM COMPILING THE COMPLETE SET OF
ARABIDOPSIS MITOCHONDRIAL PROTEINS?
A recent in-depth analysis of the proteome in Percoll-purified
mitochondria has identified a non-redundant set of 572 proteins
in Arabidopsis cell culture (Taylor et al., 2011). With a combined
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proteomics, localization experiment and literature confirmation
approach, a set of 38 mitochondrial proteins have been found in
or associated with the mitochondrial outer membrane (Duncan
et al., 2011). More recently, a total of 66 novel integral membrane
proteins have been identified in mitochondria using a MS-based
quantitative enrichment approach (Tan et al., 2012). A new set of
components with unknown functions have also been identified in
a number of recent studies, including the analysis of the mitochon-
drial fraction from: (i) separated protein complexes (Klodmann
et al., 2010, 2011; Klodmann and Braun, 2011; Schertl et al., 2012);
(ii) enriched phospho-proteome (Ito et al., 2009); (iii) different
tissue types (Lee et al., 2012); (iv) various time points of a diur-
nal cycle (Lee et al., 2010); and (v) cells subjected to biotic stress
(Livaja et al., 2008).

While various large-scale proteomics studies over the last
5 years have led to the identification of a non-redundant set of
843 putative mitochondrial proteins (Table S1A in Supplementary
Material), it remains difficult to discriminate true mitochondrial
proteins from contaminants, particularly for low abundant pro-
teins, in a sample. It has been estimated that about 11% of the total
spot intensity on a 2-D map of mitochondria from Arabidopsis cell
culture are proteins originated from other compartments (Taylor
et al., 2011). By querying previous evidence from literature and/or
consensus subcellular localization prediction score from publicly
available databases [SUBA3 (Heazlewood et al., 2007); ARAMEM-
NON7.0 (Schwacke et al., 2003)], we define a set of 504 proteins
which can be assigned to be mitochondrial-localized in Arabidop-
sis with high confidence (Table S1B in Supplementary Material).
This approach is biased toward proteins that are highly abun-
dant and does not explicitly imply that the remaining proteins are
in fact contaminants from other compartments. Some of these
proteins lack a predictable targeting presequence, may be dual-
targeted to multiple compartments and/or are present in relatively
low amount, thus their localization should be confirmed in the
future through multiple independent proteomic analyses and/or
by fluorescent protein localization.

According to the SUBA database, a number of GFP tagging
studies have revealed the mitochondrial localization of 222 pro-
teins that cannot be identified through proteomic approaches
(Table S1C in Supplementary Material), most of which are low
abundance proteins involved in the processing and maintenance
of the mitochondrial genome. Together with the proteomics
set, 726 proteins can be confidently assigned as mitochondr-
ial, <30% of the presumed number of predicted proteins. To
further expand the current Arabidopsis mitochondrial protein
compendium, it is essential to overcome the challenge of iden-
tifying low abundance proteins. To achieve this a number of
approaches could be employed including protein enrichment
tools, such as proteominer (Fröhlich et al., 2012) or protein frac-
tionation approaches including strong cation exchange (SCX)
or off-gel electrophoresis (OGE) prior to RP-LC-MS (Chenau
et al., 2008; Ito et al., 2011). Together with biological fraction-
ation approaches such as investigation of pre-fractionated sub-
mitochondrial compartments or enrichment by metal or co-factor
binding approaches and advances in LC-MS techniques and equip-
ment, it is likely that an increasing number of low abundance
proteins will be revealed.

FUNCTIONS OF THE MITOCHONDRIAL PROTEOME IN
ARABIDOPSIS
MITOCHONDRIAL PROTEIN FUNCTIONS AND ABUNDANCE
Of the confirmed set of mitochondrial proteins (Table S1B in Sup-
plementary Material),∼22% are components of pyruvate metabo-
lism/TCA cycle and OXPHOS, while a similar number (∼20%) are
identified as subunits of machinery for mitochondrial gene expres-
sion and maintenance (Figure 1A). In the yeast mitochondrial
proteome, a similar proportion (∼15%) of identified proteins are
involved in energy metabolism (Schmidt et al., 2010). When com-
paring the abundance of proteins in these functional categories
using the recently published LC-MS/MS data (Taylor et al., 2011),
energy metabolism comprises over 50% of the total protein abun-
dance in mitochondria, whereas <2% is associated with processing
mitochondrial DNA/RNA (Figure 1B). The observed abundance
of proteins in energy metabolism is consistent with the main role
of mitochondria in the cell and bulk of the chemical reactions per-
formed in the organelle; in contrast, the low abundance of proteins
for mitochondrial DNA/RNA processing can probably be attrib-
uted to their relatively less stable nature so that they can respond
rapidly to external stimuli or to changes in energy cost (Schwan-
hausser et al., 2011), the transient need for their functions during
the life of cells and presumably the high specific activity of their
functions. At the whole cellular level, components in this func-
tional category have recently been shown to have a high turnover
rate in Arabidopsis (Li et al., 2012). Mitochondrial proteins involv-
ing nucleic acid processing appear to perform highly specialized
functions and do not seem to have overlapping specificity. Only
∼12% of the proteins in the yeast mitochondrial proteome are
dedicated to genome maintenance and processing (Schmidt et al.,
2010). The proportion is higher in Arabidopsis due to the presence
of multiple plant-specific pentatricopeptide repeat (PPR) proteins
and/or its larger genome size which may require more proteins to
maintain and process. Each PPR protein recognizes and acts on a
single site in a specific transcript sequence (Delannoy et al., 2007).

Several of the unknown proteins identified by our earlier study
(Heazlewood et al., 2004) have since been re-assigned as plant-
specific components of OXPHOS (Klodmann et al., 2011). The
most nebulous subset of the known proteome is the more than
18% of the identified proteins that remain without any func-
tional class. However, while this subset are great in number they
contribute to <2% of mitochondrial protein abundance. Inter-
estingly, these include a number of plant-specific proteins. It is
therefore clear that many more studies are required to elucidate
the functions of this subset of proteins which can potentially lead
to the discovery of novel plant-specific mitochondrial metabolic
pathways/functions.

PROTEIN COMPLEXES AND INTERACTOME
Multiple proteins/isoforms often assembled into large complexes
which serve vital metabolic and regulatory roles. While earlier
reports have extensively analyzed the structure and function of
individual enzyme complexes of interest, such as glycine decar-
boxylase complex (Douce et al., 2001), it is uncertain whether
other mitochondrial proteins could also organize into macromol-
ecular structures. Using 2-D blue-native/SDS-PAGE, Klodmann
et al. (2011) found 35 different protein complexes in mitochondria
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FIGURE 1 | Overview of the number and abundance of mitochondrial
proteins across functional categories. (A) Pie chart showing of functional
categories of the confirmed set of 726 mitochondrial proteins (see Table
S1B,C in Supplementary Material). A comparison with the more complete
yeast mitochondrial proteome shows that similar proportion of proteins
involving energy metabolism as well as proteins with unknown functions has

been found (Schmidt et al., 2010). In addition, more proteins are involved in
mitochondrial genome maintenance (white) in plants (∼20%) than in yeast
(∼12%), due to the presence of numerous plant-specific pentatricopeptide
repeat (PPR) proteins and a larger genome size. (B) Distribution of the
abundance of proteins that can be identified by gel-free MS (Taylor et al., 2011)
across seven functional categories.

from Arabidopsis cell culture. OXPHOS complexes are amongst the
largest and the most abundant protein complexes in mitochondria.
Mitochondrial complex assemblies are also dominated by compo-
nents in the TCA cycle, amino acid metabolism, PPR proteins,
and pre-protein import apparatus. While the preliminary compo-
sitions of these proteins complexes have been proposed based on
the number of subunits identified and their migration on the first
and second dimension, they must be verified through independent
biochemical analysis.

A number of mitochondrial proteins of diverse function have
been identified to interact with metal ions (Tan et al., 2010) and/or
have binding affinity with ATP (Ito et al., 2006) in Arabidopsis. In
contrast, studies on the more transient direct interactions (func-
tional and physical) between multiple mitochondrial proteins in
plants are lacking. Such detailed studies in the future will lead
to the construction of plant mitochondrial interactome, to sit
alongside side the complexome, and help to define unique meta-
bolic regulations in plants that differentiate them from yeast and
mammals.

POST-TRANSLATIONAL MODIFICATIONS
The complexity of Arabidopsis mitochondrial proteome is further
implicated by the dynamic regulation of PTMs which can control
activity, stability, and structural characteristics of proteins. Pro-
teins with PTMs often appear as multiple spots with different pI
and/or molecular mass on a 2-D gel, and the region of a peptide
with modified residues can be detected as an altered m/z ion species
by MS. Recent large-scale proteomic studies have reported a num-
ber of PTMs in Arabidopsis mitochondrial proteome (Table 1),
including oxidation (Tan et al., 2010; Solheim et al., 2012), phos-
phorylation (Ito et al., 2009; Taylor et al., 2011), S-nitrosylation
(Palmieri et al., 2010), N-terminal acetylation (Huang et al., 2009),

and lysine acetylation (Finkemeier et al., 2011). However, there
appears to be no evidence for specific preference of PTMs to
particular functional categories of identified proteins (Table 1),
suggesting that PTMs have a wide variety of functional targets in
the mitochondrion.

The total number of identified proteins with PTMs is very likely
a gross underestimation due to a number of technical challenges,
such as the loss of PTMs during mitochondrial purification pro-
cedures and the relatively low abundance of the modified peptides
compared to their unmodified counterparts. Also, it is not clear
how many proteins, including those listed in Table 1, are function-
ally modified through enzyme-catalyzed mitochondrial processes
in vivo. For example, degradation products observed on a 2-D
gel often perceive as artificial post-purification events. These con-
cerns can be at least partially overcome by enrichment of modified
peptides/proteins and/or repeat analysis of multiple replicates to
ensure that similar changes can be observed in all samples. Alterna-
tively, the incorporation of radioactive tracers into proteins in vivo
(cells) or in vitro (isolated mitochondria) can be used to identify
proteins with reversible PTMs. For instance, 18 phosphoproteins
have recently been identified by [γ32P]-ATP labeling and affinity
enrichment of isolated mitochondria (Ito et al., 2009).

CHANGES IN THE MITOCHONDRIAL PROTEOME IN
DIFFERENT TISSUES AND IN RESPONSE TO OXIDATIVE
STRESS
The mitochondrial proteome is not static, but has many com-
ponents that are dynamically regulated in order to meet energy
and metabolic needs required by the cell in response to develop-
mental and/or environmental changes. There are many different
cell/tissue/organ types which have functions that are unique to
plants. Thus, mitochondrial composition, metabolism, and stress
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Table 1 |The set of mitochondrial proteins in Arabidopsis with known post-translational modifications.

AGI accession Protein ID PTM Reference

OXIDATIVE PHOSPHORYLATION

AT1G15120 Complex III QCR6-1, Hinge protein N-acetylation Huang et al. (2009)

AT1G22840 Cytochrome Lys acetylation Finkemeier et al. (2011)

N-acetylation Huang et al. (2009)

AT1G47420 SDH5 succinate dehydrogenase subunit 5 Phosphorylation Ito et al. (2009)

AT1G51980 MPP alpha-1 mitochondrial processing peptidase alpha subunit Oxidation Solheim et al. (2012)

AT3G12260 NADH dehydrogenase B14 subunit N-acetylation Huang et al. (2009)

AT3G62810 Complex 1 family protein/LVR family protein N-acetylation Huang et al. (2009)

AT4G21105 COX X4 Oxidation Solheim et al. (2012)

AT5G08670 ATP synthase beta subunit Oxidation Solheim et al. (2012)

AT5G52840 NADH dehydrogenase B13 subunit Phosphorylation Taylor et al. (2011)

AT5G66760 SDH1-1 succinate dehydrogenase flavoprotein subunit Phosphorylation Ito et al. (2009)

ATMG01190 ATP synthase alpha-1 subunit S-Nitrosylation Palmieri et al. (2010)

Oxidation Solheim et al. (2012)

PYRUVATE METABOLISM ANDTCA CYCLE

AT1G24180 E1 alpha-2 (pyruvate dehydrogenase) Phosphorylation Ito et al. (2009)

AT1G48030 mtLPD-1 (mtlipoamide dehydrogenase-1) S-Nitrosylation Palmieri et al. (2010)

Oxidation Solheim et al. (2012)

AT1G53240 Malate dehydrogenase-1 Oxidation Solheim et al. (2012)

At1G59900 E1 alpha-1 (pyruvate dehydrogenase) Phosphorylation Ito et al. (2009)

AT2G05710 Aconitate hydratase-2 Phosphorylation Taylor et al., 2011; ref therein

Oxidation Tan et al. (2010)

AT2G20420 Succinyl-CoA ligase (GDP-forming) beta-chain Oxidation Solheim et al. (2012)

AT3G13930 E3-1 (dihydrolipoamide dehydrogenase) Phosphorylation Taylor et al., 2011; ref therein

AT3G15020 Malate dehydrogenase-2 Oxidation Solheim et al. (2012)

AT3G17240 mtLPD-2 (mtlipoamide dehydrogenase-2) S-Nitrosylation Palmieri et al. (2010)

AT4G26970 Aconitate hydratase-1 Oxidation Tan et al. (2010)

AT5G03290 Isocitrate dehydrogenase-5 Oxidation Solheim et al. (2012)

TRANSPORT

AT2G29530 Translocase inner membrane subunit 10, TIM10 N-acetylation Huang et al. (2009)

AT3G08580 AAC1 (ADP/ATP carrier 1) Oxidation Solheim et al. (2012)

AT3G46560 Translocase inner membrane subunit 9, TIM9 N-acetylation Huang et al. (2009)

AT5G13490 AAC2 (ADP/ATP carrier 2) Oxidation Solheim et al. (2012)

AT5G14040 mt phosphate transporter Oxidation Solheim et al. (2012)

AT5G50810 Translocase inner membrane subunit 8, TIM8 N-acetylation Huang et al. (2009)

NUCLEIC ACID PROCESSING AND PROTEIN FOLDING AND STABILITY

AT1G74230 GR-RBP5 (glycine-rich RNA-binding protein 5) Phosphorylation Ito et al. (2009)

AT3G13160 PPR8-2 Oxidation Solheim et al. (2012)

AT3G23990 HSP60-3B Oxidation Solheim et al. (2012)

AT4G02930 Elongation factor Tu Oxidation Solheim et al. (2012)

AT4G26780 Co-chaperone grpE Phosphorylation Ito et al. (2009)

AT4G37910 Heat shock protein HSP70-1 Phosphorylation Taylor et al., 2011; ref therein

AT5G26860 LON1 (LON protease 1) Phosphorylation Ito et al. (2009)

AT5G40770 Prohibitin-3 N-acetylation Huang et al. (2009)

AT5G61030 GR-RBP3 (glycine-rich RNA-binding protein 3) Phosphorylation Ito et al. (2009)

PHOTORESPIRATION

AT1G11860 GDT1 aminomethyltransferase S-Nitrosylation Palmieri et al. (2010)

Phosphorylation Taylor et al. (2011)

AT1G32470 GDH Glycine decarboxylase H subunit S-Nitrosylation Palmieri et al. (2010)

Oxidation Solheim et al. (2012)

AT2G35370 GDH Glycine decarboxylase H subunit S-Nitrosylation Palmieri et al. (2010)

Oxidation Solheim et al. (2012)

(Continued)
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Table 1 | Continued

AGI accession Protein ID PTM Reference

AT4G33010 Glycine decarboxylase P-protein 1 S-Nitrosylation Palmieri et al. (2010)

Oxidation Solheim et al. (2012)

AT4G37930 SHM1 (serine transhydroxymethyltransferase 1) S-Nitrosylation Palmieri et al. (2010)

Oxidation Solheim et al. (2012)

AT5G26780 SHM2 (serine hydroxymethyltransferase 2) Oxidation Solheim et al. (2012)

OTHER METABOLISM

AT3G61440 Cyanoalanine synthase Phosphorylation Taylor et al., 2011; ref therein

AT3G22200 4-Aminobutyrate aminotransferase Oxidation Solheim et al. (2012)

AT4G15940 Fumarylacetoacetate hydrolase family protein N-acetylation Huang et al. (2009)

AT5G07440 GDH2 (glutamate dehydrogenase-2) Phosphorylation Ito et al. (2009)

N-acetylation Huang et al. (2009)

Oxidation Solheim et al. (2012)

AT5G14780 FDH Formate dehydrogenase Phosphorylation Ito et al. (2009)

Oxidation Solheim et al. (2012)

AT5G18170 GDH1 (glutamate dehydrogenase-1) Phosphorylation Ito et al. (2009)

N-acetylation Huang et al. (2009)

AT5G50370 Adenylate kinase family Phosphorylation Taylor et al. (2011)

N-acetylation Huang et al. (2009)

AT5G63400 ADK1 Adenylate kinase 1 N-acetylation Huang et al. (2009)

PROTEINS WITH UNKNOWN FUNCTIONS

AT2G39795 mt glycoprotein family protein Phosphorylation Ito et al. (2009)

AT3G18240 Unknown protein Phosphorylation Ito et al. (2009)

AT3G55605 Mitochondrial glycoprotein family protein Phosphorylation Ito et al. (2009)

AT4G21460 Unknown protein Phosphorylation Ito et al. (2009)

AT4G27585 Stomatin-like protein Phosphorylation Ito et al. (2009)

AT4G23885 Unknown protein N-acetylation Huang et al. (2009)

PTM, post-translational modification(s).

response in these cells/tissues/organs from Arabidopsis will be
different from what has been observed in yeast and animals.

Analysis of the mitochondria proteome from photosynthetic
shoots, non-photosynthetic cell culture, and roots identified major
differences in the abundance of enzymes of the TCA cycle and
photorespiration (Lee et al., 2008, 2011). Quantitative compari-
son of the mitochondrial proteome across 10 different time points
covering 24-h of the life of Arabidopsis shoots also uncovers day
(photosynthetic)- and night (non-photosynthetic)-enhanced pro-
teins in central carbon metabolism (Lee et al., 2010). In these
studies, the abundances of OXPHOS complexes in purified mito-
chondria generally remain unaltered but their respiratory capacity
differs depending on the choice and/or availability of substrates
(Lee et al., 2008, 2011). However, on a whole tissue basis differences
in mitochondrial electron transport chain complex ratios between
tissues has been reported (Peters et al., 2012). Lee et al. (2012) have
reported changes in the isolated Arabidopsis mitochondrial pro-
teome beyond differences in the cellular photosynthetic capacity.
Changes in the abundance of a wide variety of mitochondrial pro-
teins can be observed from cells/tissues from various vegetative
and reproductive phases of development. Differences in protein
accumulation and metabolic specializations of these mitochondria
generally coincide with the main physiological role of each corre-
sponding tissue type, such as glycine cleavage via photorespiration
in shoot and maintenance of mitochondrial redox environment

in flowers. In mouse, it has been reported that just over half of
all proteins identified by gel-free MS approach can be found in
all the investigated organs (Pagliarini et al., 2008). However, the
number of mitochondrial proteins that are highly tissue-specific
(i.e., totally absent in at least one tissue) in Arabidopsis remains to
be defined. Such analysis will assist in identifying mitochondrial
components that causes plant-specific developmental phenotypes,
e.g., cytoplasm male sterility.

Using a gel-free quantitative MS approach, Tan et al. (2012)
recently identify a number of integral membrane proteins in mito-
chondria that are altered in abundance in response to cold and/or
various chemical stresses. These proteins include the components
of the alternative NADH dehydrogenases, alternative oxidase, and
uncoupling proteins, but also several stress-sensitive subunits
within the OXPHOS complexes. Together with a similar study
by Sweetlove et al. (2002), it is concluded that the reduction in
respiration in response to chemical-induced oxidative stress is a
consequence of coordinated changes in the mitochondrial pro-
teome, particularly OXPHOS complex subunits and stress-related
components.

APPLICATION OF PROTEOMICS TO ANALYZE
MITOCHONDRIAL PROTEIN FUNCTIONS
Over the last decade, advances in the understanding of mitochon-
drial composition and protein complex assembly have led to the
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identification of many genes associated with genetic diseases in
humans (Calvo and Mootha, 2010). In contrast, plant proteomics
still needs to discover novel mitochondrial components that are
associated with known developmental defects in plants. Never-
theless, by combining proteomics and reverse-genetics strategies,
a number of recent studies have highlighted the unique role of
a mitochondrial component of interest in Arabidopsis that had
not been unraveled by other biochemical and molecular tech-
niques. Metabolite analyses of malate dehydrogenase (MDH) anti-
sense and knockout lines in tomato and Arabidopsis respectively
show an elevated foliar ascorbate level (Nunes-Nesi et al., 2005;
Tomaz et al., 2010). Such accumulation coincides with the reduc-
tion of Complex I-associated galacton-1,4-lactone dehydrogenase
(GLDH) abundance in the mitochondrial proteome of a MDH
double mutant (mmdh1mmdh2; Tomaz et al., 2010), indicating
that there might be a complex metabolic regulation/interaction
between OXPHOS, TCA cycle, and cellular ascorbate biosynthe-
sis. A mutation in mitochondrial Lon protease leads to a retarded
growth phenotype (Rigas et al., 2009), which can be explained by
an altered abundance of enzymes in the TCA cycle and OXPHOS,
a decrease in the abundance of breakdown products and a small
increase in the number of proteins with oxidized peptides, but
not by heightened oxidative stress (Solheim et al., 2012). In con-
trast, knockout of the protease AtFtsH4 does not significantly
affect Arabidopsis growth under long day conditions, but changes
rosette development under short-day conditions (Gibala et al.,
2009). The phenotypes correlate with elevated levels of oxida-
tive stress, increased abundance of Hsp70 and prohibitins, and
decreased abundance of ATP synthase subunits.

CONCLUSION AND PERSPECTIVES
The availability of the full genome sequence of Arabidopsis for
more than a decade, advances in various proteomic technologies,
as well as their wider adoption, have provided an opportunity
to understand the protein make-up of mitochondria and their
underlying metabolism in this plant more than in any other.
Significant progress in extracting information on PTMs and pro-
tein abundances has also improved our insight into the dynamic

regulation of the mitochondrial proteome in a cellular/organismal
context. However, further work is needed to characterize mito-
chondrial proteins according to their sub-organellar localization.
In-depth identification of components in the intermembrane
space has not been reported since the improvements in MS analy-
sis in recent years. Recent discoveries of a pyruvate transporter
(Herzig et al., 2012) and a calcium uniporter (Baughman et al.,
2011) in mouse mitochondria have been conducted through an
integrated proteomics, bioinformatics, and genetics strategy. Thus,
identification of low abundance proteins should allow us to com-
plete the catalog of mitochondrial proteins in Arabidopsis, which
will provide us several candidates for identifying plant-specific
transporters or metabolic pathways by a similar approach.
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The Supplementary Material for this article can be found
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Table S1 | Mitochondrial proteins identified by mass spectrometry or
fluorescent protein localization studies. (A) All proteins identified from
isolated mitochondria from Arabidopsis using proteomics in the last 5 years. (B)
A set of proteins which has a high probably being located in the mitochondrion.
For the inclusion of a protein in the list, it should meet the following criteria: (i) A
protein is automatically considered mitochondrial if at least two studies have
identified it in isolated mitochondrial fraction. However, a protein is considered
to be non-mitochondrial if it is identified in equal number of or more
non-mitochondrial proteomics studies than the mitochondrial ones. (ii) If the
location of a protein is verified independently by fluorescent protein localization
analysis, then (ii) is ignored and it is included in the list. (iii) If a protein is
identified by one study, the localization based on SUBAcon score and/or
ARAMEMNON localization consensus score is also considered. (C)
Mitochondrial protein confirmed through fluorescent protein localization studies
(according to SUBA) only and not by proteomics.
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