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Sugars do not only act as source of energy, but they also act as signals in plants. This
mini review summarizes the emerging links between sucrose-mediated signaling and
the cellular networks involved in flowering time control and defense. Cross-talks with
gibberellin and jasmonate signaling pathways are highlighted. The circadian clock fulfills
a crucial role at the heart of cellular networks and the bilateral relation between sugar
signaling and the clock is discussed. It is proposed that important factors controlling plant
growth (DELLAs, PHYTOCHROME INTERACTING FACTORS, invertases, and trehalose-6-
phosphate) might fulfill central roles in the transition to flowering as well. The emerging
concept of “sweet immunity,” modulated by the clock, might at least partly rely on a
sucrose-specific signaling pathway that needs further exploration.
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INTRODUCTION
In addition to their role as providers of carbon and energy,
sugars fulfill a signaling role in coordination with hormonal sig-
naling pathways (Rolland et al., 2006) controlling various plant
physiological processes, probably also including innate immunity
(Bolouri Moghaddam and Van den Ende, 2012). Distinct glucose,
sucrose, and fructose signaling pathways can be discerned (Cho
and Yoo, 2011; Li et al., 2011). These signaling pathways may be
strongly influenced by the activities of sucrose splitting enzymes
(vacuolar, cell wall and neutral invertases, sucrose synthase or
SuSy; Koch, 2004) since they have strong impact on sucrose to
hexose ratios, which might be an important parameter in plant
responses, especially under stress (Xiang et al., 2011). It can be
speculated that cellular sucrose to hexose ratios translate into cer-
tain levels of trehalose-6-phosphate (T6P), an emerging regulatory
molecule in plant growth and stress responses (Lunn et al., 2006;
Vandesteene et al., 2012; Wingler et al., 2012). T6P levels are likely
controlled by the balance between its synthesis from UDPGlc and
glucose 6-phosphate (G6P) by trehalose-6-phosphate synthase
(TPS) and its breakdown by trehalose-6-phosphate phosphatase
(TPP; Lunn et al., 2006).

Next to growth and stress responses, it can be expected that
sugar signaling is of great importance in flowering time con-
trol. This major developmental transition directly affects yield
and its exact timing is essential for plant fitness (Amasino,
2010; Huang et al., 2012). In many plant species, floral tran-
sition is strongly controlled by the circadian clock. The clock
with a period close to 24 h serves to coordinate diurnal rhythms
with physiology and behavior. The clock consists of three auto-
regulatory interlocked transcriptional feedback loops (Harmer,
2009; Troncoso-Ponce and Mas, 2012). Briefly, the central feed-
back loop contains the CIRCADIAN CLOCK ASSOCIATED 1
(CCA1), LATE ELONGATED HYPOCOTYL (LHY), and TIM-
ING OF CAB EXPRESSION 1 (TOC1) as crucial players. Both

CCA1 and LHY contribute to the second loop as positive regula-
tors of PSEUDO RESPONSE REGULATORS 7 (PRR7) and PRR9,
which are negative regulators of CCA1 and LHY (Nakamichi et al.,
2009). TOC1 acts as a negative regulator of GIGANTEA (GI).

In this mini review, focus is on the possible contributions
of sugar signaling to flowering and immunity responses, under
control of the circadian clock.

CIRCADIAN REGULATION OF FLOWERING
In Arabidopsis, flowering can be autonomous or induced by
gibberellins (GAs), as internal signals, or by the photoperiod
and vernalization as external signals. FLOWERING LOCUS T
(FT), SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1
(SOC1), SQUAMOSA PROMOTER BINDING PROTEIN-LIKE
(SPL) and LEAFY (LFY) transcription factors are among the best
characterized floral pathway integrators, next to others (Mat-
soukas et al., 2012; Yamaguchi and Abe, 2012). Both FT and SOC1
are inhibited by FLOWERING LOCUS C (FLC) in the autonomous
and vernalization dependent pathways, while FT and SOC1 are
activated by the photoperiodic protein CONSTANS (CO; Lee and
Lee, 2010). During the day–night cycle, rhythmic expression of the
core circadian clock components, CCA1, LHY, and TOC1 control
the expression of GI, an activator of CO (Murphy et al., 2011).

The induction of flowering through the transport of phloem-
mobile signals (FT and GA) to the apex is well-documented
(Corbesier et al., 2007; Tamaki et al., 2007; Turnbull, 2011; Mat-
soukas et al., 2012; Yu et al., 2012). It is known since long that
phloem-mobile sucrose may represent an additional critical fac-
tor in controlling the transition to flowering (Corbesier et al.,
1998; Roldan et al., 1999; Ohto et al., 2001). This would rep-
resent another function for sucrose next to its known roles
in many other plant regulatory and signaling mechanisms in-
cluding growth, development, and stress-related responses (Wind
et al., 2010).
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PLACING FLOWERING INTO THE BIGGER PICTURE: CENTRAL
ROLES FOR DELLAS AND miRNAs
DELLA proteins are crucial players in GA signaling pathways
involved in plant growth control (Harberd et al., 2009; Figure 1).
GA inhibits DELLA protein levels, which are inhibitors of PHY-
TOCHROME INTERACTING FACTORS (PIFs), acting as growth
enhancers (Nozue et al., 2011; Stewart et al., 2011; Figure 1).
Recently, miR156 and miR172 were found as important factors
controlling plant developmental transitions (Yamaguchi and Abe,
2012). It was found that miR156 acts as a negative regulator of SPL
gene expression. SPLs stimulate LFY and MADS box genes (Borner
et al., 2000; Vekemans et al., 2012) and the production of miR172,
which in turn stimulates reproductive competency and flowering
through its inhibitory action on APETALA2 (AP2), TARGET OF
EAT1 (TOE), SCHLAFMÜTZE (SMZ), and SCHNARCHZAPEN
(SNZ), inhibitors of FT (Zhu and Helliwell, 2010; Yamaguchi and
Abe, 2012; Figure 1). miR172 is also under control of the clock
by GI (Jung et al., 2007; Figure 1). The missing mechanistic link
between GA signaling and flowering was recently established, by
defining a role for DELLA as a general flowering inhibitor. DELLA
inhibits SPL gene expression and miR172 production (Galvao
et al., 2012; Yu et al., 2012; Figure 1). Therefore, DELLA pro-
teins are now considered both as growth and flowering inhibitors.
Accordingly, transgenic plants overexpressing DELLA proteins or
plants expressing mutant DELLA repressors show dwarfism and
delayed flowering (Dill et al., 2004; Hamama et al., 2012). What is
more, at lower GA levels, some DELLA proteins were found to act
as strong activators of the jasmonate (JA) signaling pathway (Wild
et al., 2012), a major pathway controlling plant defense responses
(Yang et al., 2012; Figure 1). It can be concluded that DELLAs
occupy a central and crucial position in plant growth, development
and flowering as well as in stress responses (Figure 1).

HOW DO SUGAR SIGNALS INTERACT WITH FLOWERING
NETWORKS?
The relation between sugar metabolism/signaling and floral tran-
sition received extensive attention lately (Turnbull, 2011; King,
2012). The work of Heyer et al. (2004) already provided clear
evidence that flowering time control is strongly influenced by
modifying sugar balances in the apex. They placed yeast invertase
under the control of a meristem-specific promoter and compared
apoplastic and cytosolic localized invertase versions. Intriguingly,
transition to flowering was hastened by the expression of the inver-
tase in the cell wall, while a flowering delay was observed when the
invertase was expressed in the cytosol. This indicated that inver-
tases with a different localization might fulfill a crucial role in
transition to flowering. It was recently proposed that high sucrose
levels are associated with high T6P levels (Wingler et al., 2012),
but it should be noted that this correlation depends on the activ-
ity of sucrose splitting enzymes, such as invertases (Figure 1).
Although the molecular mechanism for the control of transition
to flowering by sugars remains to be further investigated, a pos-
sible scenario is that T6P rather than sucrose acts as a signal in
such processes (Figure 1). Indeed, transgenic plants with altered
T6P levels are also affected in their flowering time (Avonce et al.,
2004; van Dijken et al., 2004; Gomez et al., 2010; Ponnu et al.,
2011). It can be speculated that the T6P signal is integrated into

the miR156/SPL node of the floral induction pathway (Matsoukas
et al., 2012). Although the exact molecular mechanisms remain
to be further explored, a possible scenario is that T6P acts as
a positive mediator of some PIF isoforms (Figure 1). Indeed,
it was reported that PIF5 overexpression leads to early flower-
ing, both under long day and short day conditions (Nozue et al.,
2011), strongly suggesting that PIFs might be linked to floral tran-
sition. Moreover, in hypocotyl elongation studies it was found
that sucrose stimulates several PIF isoforms, even in the dark
(Liu et al., 2011; Stewart et al., 2011; Lilley et al., 2012; Sairanen
et al., 2012). Therefore, similar to DELLA proteins which were only
recently recognized as important players in flowering time control,
it can be expected that some PIF isoforms may be involved as well.
However, it remains to be demonstrated whether such underlying
PIF-mediated mechanisms account for the stimulation of FT gene
expression by sucrose (King et al., 2008; Figure 1). Also, it would be
interesting to investigate the mechanisms involved in the sucrose-
mediated upregulation of the LFY gene (Matsoukas et al., 2012;
Figure 1). Another emerging link between flowering and sucrose
metabolism/transport was reported by Seo et al. (2011). These
authors demonstrated that the INDETERMINATE DOMAIN 8
(IDD8) transcription factor plays a role in FT-dependent flow-
ering induction, via modulation of the SuSy4 activity. Further,
Coneva et al. (2012) reported that the starch to sucrose transition
is important during autonomous flowering. In conclusion, sucrose
seems to interact in many ways with the flowering network, and
further studies are needed to fully understand these connections
at the molecular level.

HOW DOES SUGAR SIGNALING INTERACT WITH THE CLOCK?
On the one hand, it was recently reported that the clock’s core cen-
tral oscillator genes GI, TOC1, and CCA1 are stimulated by sucrose
(Knight et al., 2008; Dalchau et al., 2011), suggesting that the clock
is entrained by metabolic signals such as sugars, possibly inde-
pendent from phytochrome-mediated light perception. On the
other hand, it has been demonstrated that the enzymatic activity
and expression of a vacuolar invertase gene in petioles of sugar
beet follows a circadian rhythm (González et al., 2005). Further-
more, it is well-known that vacuolar invertases are stimulated by
GA (González and Cejudo, 2007; Choubane et al., 2012). A func-
tion of vacuolar invertases as stimulators of stomatal opening has
recently been suggested (Antunes et al., 2012; Ni, 2012), in addition
to their well-described role in cellular elongation processes (Wang
et al., 2010). These observations fit well with the overall idea that
invertases fulfill a central (Figure 1) and crucial role coordinating
carbon dioxide uptake, photosynthesis, and plant growth through
GA- and sugar-mediated signaling pathways, with a clear connec-
tion to the flowering time control network (Figure 1), as explained
above. Intriguingly, expression of FT in guard cells also promoted
stomatal opening (Kinoshita et al., 2011). This suggests a role for
FT in stimulating carbon dioxide uptake and fixation, to produce
the necessary carbon skeletons that are required for the flowering
process.

Noteworthy, the cell wall invertase LIN6 of tomato, induced
by JA signaling and considered as a pivotal enzyme for the inte-
gration of various signals, is also regulated by a diurnal rhythm
(Proels and Roitsch, 2009). Intriguingly, the rhythms of the
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FIGURE 1 | Emerging sugar signaling connections to cellular networks

involved in plant growth, defense, and floral transition. Simplified
schematic presentation of a selection of crucial players in plant growth,
flowering transition, and defense responses, and their interactions.
Metabolites are not boxed, proteins are in colored boxes. Arrows (→) signify
stimulation, while an inhibitory interaction is presented by the � symbol. Red
arrows refer to the putative effect of the Suc/INV/T6P module. Full arrows
indicate established relationships. Dotted arrows indicate established
relationships that are in need for further exploration (unraveling of
mechanistic details). Dashed arrows represent rather speculative connections

that remain to be confirmed. Straightforward symbols are used for light and
the clock. Stomatal opening is also schematically presented. APA2,
APETALA2; CO, CONSTANS; DELLA, DELLA protein; FT, Flowering locus T;
GA, gibberellin; INV, invertase (or any other sucrose splitting enzyme); JA,
jasmonate; LFY, LEAFY; miR156, micro RNA 156; miR172, micro RNA 172;
NO, nitric oxide; PIF, Phytochrome Interacting factor; SPL, Squamosa
Promoter Binding Protein-like; Suc, sucrose; TOE, TARGET OF EAT1; SMZ,
SCHLAFMÜTZE; SNZ, SCHNARCHZAPEN. For more details on floral
transition networks, readers are referred to Matsoukas et al. (2012) and Yu
et al. (2012), where apex- and leaf-located processes are discerned.

two above-mentioned vacuolar and cell wall invertases were not
synchronized, perhaps reflecting differential diurnal patterns in
growth dynamics.

These and other observations strongly suggest that there is
an intimate interplay and reciprocal relationship between sugar

metabolism/signaling and the plant circadian clock. So, besides
light as the most important stimulus influencing the clock’s com-
ponents through phytochromes and cryptochromes, endogenous
sugar signals, hormones, and stresses also entrain the clock
(Arana et al., 2011; Facella et al., 2012; Goodspeed et al., 2012;
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Seung et al., 2012). Vice-versa, the clock is involved in regulat-
ing the biosynthesis of GA (Blázquez et al., 2002) and JA (Shin
et al., 2012), suggesting that the clock shows putative bilateral
relationships with these hormones as well (Figure 1).

SUGAR SIGNALING IN RHYTHMIC IMMUNITY
Sugars as signaling molecules are well-known activators of vari-
ous pattern-recognition receptor genes (Johnson and Ryan, 1990;
Herbers et al., 1996a,b). There is mounting evidence that, in
addition to plant cell wall or fungal-derived oligosaccharides,
also sugars such as sucrose could be involved in plant prim-
ing and innate immunity responses (Gomez-Ariza et al., 2007;
Birch et al., 2009; Bolouri Moghaddam and Van den Ende, 2012;
Sonnewald et al., 2012). One of the best studied pathways in
plant defense responses is the sucrose-specific signaling pathway
that leads to the production of anthocyanins (Teng et al., 2005;
Solfanelli et al., 2006). Despite huge research efforts, a num-
ber of (transcription) factors involved in this pathway remain
to be identified. Possibly T6P is involved (Wingler et al., 2012),
but the underlying mechanisms need further investigation. Dur-
ing sucrose-mediated signaling, Ca2+ seems to be involved as
well, probably by stimulating sucrose uptake into the cell (Shin
et al., 2013). Both light and most plant hormones influence this
pathway (reviewed in Das et al., 2012). Nitric oxide (NO) and
pathogen-derived elicitors are also able to trigger the production
of anthocyanins (Tossi et al., 2011; Cai et al., 2012; Figure 1).
Strikingly, transgenic plants expressing a mammalian NO syn-
thase become disease resistant to a broad array of plant pathogens
(Chun et al., 2013) highlighting the importance of NO signaling.
Perhaps NO is an integral part of the sucrose-specific pathway
leading to anthocyanin production, and this is an interesting area
of further investigation. Furthermore, NO was found to regu-
late DELLA contents and PIF expression (Lozano-Juste and Leon,
2011). The effect of sugar signaling on plant immunity may, at
least partly, depend on the expression and activation of kinases
such as the mitogen-activated protein kinases (MAPKs). It has
been recently demonstrated that sucrose can rapidly activate CfS-
APK, a unique sucrose-specific MAPK from Cephalostachyum
fuchsianum (Li et al., 2012), but it is unknown whether other
plants (such as Arabidopsis) also have such sucrose-specific
MAPKs.

It has been shown that many plant factors involved in plant
immune responses are regulated by the clock (Faris et al., 2010;
Bhardwaj et al., 2011; Wang et al., 2011). Plants probably evolved
this type of regulation to maximize levels of defense compounds
(toxins, defense hormones) and/or sweet immunostimulators
at those moments of the day when the encounter with the

pathogen/herbivore is more likely to occur. For instance, JA lev-
els show a diurnal oscillation that is synchronized with insect
feeding behavior (Goodspeed et al., 2012). Similarly, a clock-
controlled variation in resistance to the virulent bacterial pathogen
Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) was
discovered in Arabidopsis (Bhardwaj et al., 2011).

Interestingly, flowering time control and defense signaling
pathways in plants seem to have points of convergence too (Liu
et al., 2012). The rice spotted leaf 11 mutant shows an enhanced
resistance to Magnaporthe grisea and Xanthomonas oryzae pv
oryzae (Yin et al., 2000; Liu et al., 2012; Marino et al., 2012) and
the spotted leaf 11 gene expression is induced by both incom-
patible and compatible rice-blast interactions (Zeng et al., 2004).
Moreover, the spotted leaf 11 protein is involved in flowering time
regulation in rice (Liu et al., 2012). This dual role in control of
flowering time and defense has also been demonstrated for the
Arabidopsis ortholog Plant U-box 13, but the molecular mecha-
nisms involved and the possible links with sugar signaling events
remain unclear.

CONCLUSION
Many aspects of plant growth, development, floral transition, and
defense responses are regulated by circadian rhythms as well as by
sugar signaling events. This mini review focused on the emerg-
ing links between sugar signaling, the clock, floral transition, and
immune responses. Overall, GA and JA signaling pathways greatly
determine plant growth versus defense responses, with DELLA
and PIF proteins as central players. The recent finding that some
DELLA proteins are also key players in floral transition urges
further research on the possible involvement of PIFs in floral tran-
sition processes, since some data suggest that PIF expression may
be under direct control by sugar signals, perhaps mediated by T6P.
Invertases may be important to control T6P levels, taking a central
position in these networks. Furthermore, putative new roles are
emerging for invertases (e.g., stomatal opening).

It is also proposed that efficient defense responses might not
only rely on hormones and on cell wall or pathogen-derived sac-
charides, but perhaps also on sucrose, through a sucrose-specific
signaling pathway, perhaps (partly) resembling (or overlap-
ping) with the sucrose-mediated pathway controlling anthocyanin
biosynthesis in Arabidopsis. However, the putative sucrose sensor
acting in this pathway remains to be identified, as well as the (tran-
scription) factors involved in the upper part of the pathway, and
this remains a challenging task.
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