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Transcriptional regulation in host cells plays a crucial role in the establishment of plant
defense and associated cell death in response to pathogen attack. Here, we review our
current knowledge of the transcriptional control of plant defenses with a focus on the
MYB family of transcription factors (TFs). Within this family, the Arabidopsis MYB protein
AtMYB30 is a key regulator of plant defenses and one of the best characterized MYB
regulators directing defense-related transcriptional responses. The crucial role played by
AtMYB30 in the regulation of plant disease resistance is underlined by the finding that
AtMYB30 is targeted by the Xanthomonas type III effector XopD resulting in suppression
of AtMYB30-mediated plant defenses. Moreover, the function of AtMYB30 is also
tightly controlled by plant cells through protein-protein interactions and post-translational
modifications (PTMs). AtMYB30 studies highlight the importance of cellular dynamics
for defense-associated gene regulation in plants. Finally, we discuss how AtMYB30
and other MYB TFs mediate the interplay between disease resistance and other stress
responses.
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INTRODUCTION
As sessile organisms, plants must face the diversity of pathogens
that they encounter in their habitat. Unlike mammals, plants
rely on cell autonomous innate immunity and on systemic sig-
nals originating from infection sites (Jones and Dangl, 2006).
Plant immunity is activated by multiple transcriptional regula-
tors that switch cell transcription programs from routine cellular
requirements to defense. The arsenal of transcriptional regulators
includes DNA-binding transcription factors (TFs) and proteins
that regulate these TFs. Plant transcriptional regulators function
cooperatively in complex networks to control the speed, intensity,
localization, and duration of the immune response (Moore et al.,
2011). The rapid and localized programmed death of infected
cells is part of a typical plant immune response designated as
the Hypersensitive Response (HR) (Mur et al., 2008; Coll et al.,
2011). Processes related to the sessile lifestyle of plants have been
associated with the expansion of TF families controlling plant-
specific functions (Dias et al., 2003; Shiu et al., 2005; Feller
et al., 2011). The MYB family of TFs underwent an extensive
amplification approximately 500 million years ago due to recent
whole-genome duplications and segmental tandem duplication
events (Shiu et al., 2005). As a result, the plant MYB family typ-
ically comprises hundreds of members, classified based on the
number of MYB repeats that they contain (Feller et al., 2011).
MYB R2R3 proteins contain two MYB repeats and form the
largest group of MYB TFs in plants. Members of the R2R3 MYB
family regulate mostly plant-specific functions, including immu-
nity against microbial pathogens (Stracke et al., 2001; Dubos
et al., 2010).

In Nicotiana tabacum, the expression of the Ntmyb1 gene is
induced during the response to Tobacco Mosaic Virus (TMV)
and Pseudomonas syringae pv. syringae avirulent bacteria. The
Ntmyb1 protein binds to the promoter of the defense-related gene
PR-1a suggesting a role in the regulation of immune responses
(Yang and Klessig, 1996). In an independent study, Ntmyb1 was
retrieved together with three other R2R3 MYBs as factors bind-
ing to the promoter of defense-related genes (Sugimoto et al.,
2000). Transgenic N. tabacum plants overexpressing the rubber
tree HbMyb1 MYB gene exhibited suppressed HR resulting in
enhanced resistance to the necrotrophic fungus Botrytis cinerea
(Peng et al., 2011). Conversely, overexpression of the wheat
TaPIMP1 MYB gene caused stronger HR and enhanced resis-
tance to the biotrophic bacterial pathogen Ralstonia solanacearum
in tobacco and to the hemibiotrophic fungal pathogen Bipolaris
sorokiniana in wheat (Liu et al., 2011; Zhang et al., 2012). In
rice, the OsJaMyb R2R3 MYB gene is induced during infection
by the blast fungus Magnaporthe oryzae and in mutants altered in
cell death programs suggesting a role in defense responses (Lee
et al., 2001). The Arabidopsis thaliana genome harbors 137 R2R3
MYB genes some of which have been shown to regulate immu-
nity to microbial pathogens. The BOTRYTIS-SUSCEPTIBLE1
BOS1/AtMYB108 gene was identified in a screen for mutants
altered in their response to the B. cinerea. The bos1 mutant
exhibits enhanced susceptibility to B. cinerea and Alternaria bras-
sicicola necrotrophic pathogens and reduced symptoms but unal-
tered resistance in response to biotrophic pathogens (Mengiste
et al., 2003). Conversely, AtMYB46 negatively regulates resis-
tance to B. cinerea likely via the regulation of a cell wall-bound
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peroxidase (Ramirez et al., 2011). Overexpression and silencing
of AtMYB44 demonstrated that it positively regulates resistance
to the virulent bacterium P. syringae pv. tomato (Pst) DC3000 but
down regulates resistance to A. brassicicola via the WRKY70 TF
(Shim et al., 2012; Zou et al., 2012). AtMYB96 was first reported
as induced upon Cauliflower Mosaic Virus infection (Geri et al.,
1999). Analysis of plants mis-expressing AtMYB96 demonstrated
that this TF positively controls resistance to Pst DC3000 in a sali-
cylic acid-dependent manner (Seo and Park, 2010). Among the
closest paralogs of AtMYB96 is AtMYB30, which was the first
R2R3 MYB gene to be associated with the regulation of defense
response in Arabidopsis and one of the best defense-related MYBs
characterized to date. Although the mechanisms by which MYB
TFs control defense responses are still enigmatic, recent advances
in our understanding of AtMYB30 function summarized in this
review shed new light on the regulation of plant immunity by this
family of TFs.

The MYB oncogene homologue AtMYB30 was first iso-
lated in by differential screening of a cDNA library prepared
from Xanthomonas campestris pv. campestris (Xcc)-inoculated
Arabidopsis cells (Lacomme and Roby, 1999). Early, transient
and specific activation of AtMYB30, prior to the onset of the
hypersensitive cell death, was observed after treatment with dif-
ferent avirulent bacterial pathogens (Daniel et al., 1999). In
addition, overexpression of AtMYB30 in Arabidopsis and tobacco
led to acceleration and intensification of the HR, enhanced accu-
mulation of HR molecular markers and increased resistance
in response to avirulent pathogens. Conversely, the antisense-
mediated downregulation of AtMYB30 led to a strong decrease
or suppression of the HR (Vailleau et al., 2002). These data iden-
tify AtMYB30 as a positive regulator of the signaling pathway
controlling the establishment of cell death responses to pathogen
attack.

During the last few years, the study of AtMYB30 regula-
tory mechanisms has increased our knowledge about the mode
of action of this TF. These studies have uncovered a tight
control of the activity of AtMYB30 through protein-protein
interactions and post-translational modifications (PTMs). Here,
we summarize our current knowledge of the AtMYB30 inter-
action and regulatory network involved in the control of
plant defense responses. Additional roles of AtMYB30 dur-
ing the integration of other environmental cues are also
discussed.

AtMYB30 REGULATES GENES OF THE VLCFA PATHWAY
A transcriptomic analysis revealed that AtMYB30 putative tar-
get genes are involved in the lipid biosynthesis pathway that
leads to the production of very long chain fatty acids (VLCFAs)
(Raffaele et al., 2008). In good agreement, ectopic expression of
AtMYB30 activates genes encoding subunits of the acyl-coA elon-
gase complex and alters the VLCFA content of Arabidopsis leaves.
Furthermore, defense-related phenotypes of AtMYB30 transgenic
plants are dependent on the VLCFA biosynthesis pathway, sup-
porting the view that AtMYB30 modulates cell death-related lipid
signaling by enhancing the synthesis of VLCFAs or VLCFA deriva-
tives (Raffaele et al., 2008) (Figure 1A). Downstream products
of the VLCFA pathway include sphingolipids, wax and cutin.

Wax synthesis was altered by AtMYB30 over-expression but not
by AtMYB30 silencing, suggesting that sphingolipids could be
cell death signals regulated by AtMYB30, and that activators of
the wax synthesis pathway could compensate for the lack of
AtMYB30 in silenced plants. Interestingly, Seo et al. reported that
AtMYB96 activates genes of the wax biosynthesis pathway during
drought stress (Seo et al., 2011). AtMYB30 and AtMYB96 belong
to the sub-group S1 of Arabidopsis R2R3 MYB family (Figure 2A)
(Dubos et al., 2010). Their N-terminal domain is predicted to
mediate DNA-binding through a six alpha-helix domain typi-
cal of R2R3 MYBs (Figure 2B). AtMYB30 and AtMYB96 share
extensive similarity in their N-terminal domain (Figure 2C),
as expected considering the overlap in their respective lists of
target genes. Besides short conserved motifs, the C-termini of
sub-group S1 of MYB TFs are highly divergent. In AtMYB30,
this C-terminal region harbors numerous putative regulatory
sites, including phosphorylation, SUMOylation and ubiquitina-
tion sites (Figure 2C). As discussed below, modifications of this
kind are critical for the regulation of AtMYB30 activity. It is
therefore tempting to speculate that the differential activation
of the N-termini of MYB TFs of the sub-group S1 may inte-
grate signals arising from multiple stresses to regulate a partially
common set of genes. Whether and how the interplay between
AtMYB30 and AtMYB96 fine-tunes the activation of VLCFA-
mediated responses remains to be investigated. Whether other
MYBs of sub-group S1 are able to activate the VLCFA pathway
is also unknown. Shared and specific functions of related MYB
TFs may explain how expansion and diversification in this fam-
ily contributed to the emergence of an integrated stress-response
machinery in plants.

MANIPULATION OF AtMYB30 ACTIVITY BY BACTERIA
XopD from strain B100 of Xanthomonas campestris pv. campestris
(XccB100) is a modular type III effector protein of 801 amino
acids that presents a modular structure and contains differ-
ent domains with varied biochemical activities (Canonne et al.,
2012). XopDXccB100 is targeted to plant cell nuclei (Canonne et al.,
2011; Kim et al., 2011) and may interact with chromatin and/or
transcriptional units, leading to modulation of host transcription
by affecting chromatin remodeling and/or TF activity (Kay and
Bonas, 2009).

In agreement with the idea that plant TFs and/or regulators
might be direct targets of XopD, XopDXccB100 was shown to tar-
get AtMYB30. XopDXccB100 expression leads to accumulation of
AtMYB30 in XopDXccB100-containing nuclear foci but the phys-
ical interaction between XopDXccB100 and AtMYB30 is indepen-
dent of AtMYB30 relocalization to nuclear foci, as both proteins
are also able to interact in the nucleoplasm (Canonne et al.,
2011). XopDXccB100 targeting of AtMYB30 leads to reduced acti-
vation of AtMYB30 VLCFA-related target genes and, therefore, to
suppression of plant defense responses during XccB100 infection
(Canonne et al., 2011) (Figure 1A). A helix-loop-helix (HLH)
domain in XopDXccB100 is necessary and sufficient to mediate
the interaction with AtMYB30 and repression of AtMYB30 tran-
scriptional activation and plant resistance responses. Consistently,
XopD from the 8004 strain of Xcc (XopDXcc8004), that does not
present the HLH domain and localizes homogenously within
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FIGURE 1 | Simplified model for the simultaneous regulation of

AtMYB30-mediated HR cell death through interaction with AtsPLA2-α

and MIEL1. The action of with AtsPLA2-α and MIEL1 on AtMYB30-mediated

HR development is presented in cells challenged with bacterial inoculation
(A) and peripheral cells (B). Activity of the bacterial XopD effector is shown in
red. See the text for details.

plant cell nuclei, is not able to interact with AtMYB30 and has
no effect on AtMYB30 transcriptional activation. Considering
the modular structure of XopD, it is likely that this type III
effector mediates multiple molecular (protein-DNA and protein-
protein) associations and that, depending on the Xanthomonas
strain/host plant interaction, XopD is able to target different host
components to subvert plant defense. For example, XopD from
Xanthomonas euvesicatoria (Xcv) desumoylates the SlERF4 TF to
suppress ethylene responses and promote pathogen growth in
tomato (Kim et al., 2013).

REGULATION OF AtMYB30 ACTIVITY THROUGH
PROTEIN–PROTEIN INTERACTIONS AND
POST-TRANSLATIONAL MODIFICATIONS
Plant resistance to disease involves costly defense responses,
closely connected to plant physiological and developmental pro-
cesses. A typical example is the HR, which includes the develop-
ment of a form of programmed cell death and needs to be tightly
regulated to be not only efficient but also beneficial to the plant.
As a result, mutants with constitutively active defense responses
often present stunted growth and low fertility (Lorrain et al.,
2003). Negative regulatory mechanisms of defense responses are

used by the plant to attenuate the activation of defense-related
functions and allow a balanced allocation of resources upon
pathogen challenge (Journot-Catalino et al., 2006; Mukhtar et al.,
2008). AtMYB30 being a positive regulator of plant defense and
associated cell death responses, several mechanisms of negative
regulation of its activity have been described.

The secretory phospholipase PLA2 protein AtsPLA2-α con-
trols auxin transport protein trafficking to the plasma membrane
(Lee et al., 2010). AtsPLA2-α localizes to Golgi-associated vesi-
cles and is later secreted to the extracellular space (Froidure et al.,
2010; Lee et al., 2010). Translocation of AtsPLA2-α to the apoplast
is enhanced after plant inoculation with avirulent bacteria, sug-
gesting that AtsPLA2-α may participate to the plant defense
response in the apoplast (Jung et al., 2012). Interestingly, intra-
cellular AtsPLA2-α has also been involved in the non-enzymatic
control of plant defense. Indeed, AtsPLA2-α was identified as
interacting with AtMYB30 in yeast (Froidure et al., 2010). In the
presence of AtMYB30, AtsPLA2-α was partially relocalized to the
plant cell nucleus where these two proteins interact, leading to
repression of the AtMYB30-mediated transcriptional activity. As
a result, Arabidopsis HR and defense responses are suppressed,
supporting the view that AtMYB30 transcriptional activity is
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FIGURE 2 | AtMYB30 sequence analysis: relationship with other

MYBs, protein motifs and predicted structure. (A) Relationship
between MYB TFs of the subgroup S1 (from Dubos et al., 2010).
(B) Predicted structure of AtMYB30 DNA binding domain bound to
DNA (gray). The model was predicted using the I-TASSER server and
rendered with UCSF Chimera. (C) Sequence analysis of AtMYB30

protein. The conservation between members of subgroup S1 was
inferred from a MUSCLE alignment and colored using JALVIEW. Alpha
helices and DNA binding sites were predicted using the I-TASSER server.
MYB domains were identified using INTERPROSCAN. Phosphorylation,
sumoylation and ubiquitation sites were predicted using PhosphAt,
Sumoplot and Ubpred respectively.

required to mount an efficient defense response during bacte-
rial infection (Raffaele et al., 2008; Froidure et al., 2010). Notably,
AtsPLA2-α nuclear targeting, interaction with AtMYB30, repres-
sion of AtMYB30 transcriptional activity and HR development

appeared to be independent of AtsPLA2-α enzymatic activity
(Froidure et al., 2010). Therefore, AtsPLA2-α was proposed to
control AtMYB30-mediated response through interaction with
AtMYB30, preventing the activation of its targets, rather than
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through a lipid signal produced by AtsPLA2-α. Together, these
data highlight the importance of dynamic nucleocytoplasmic pro-
tein trafficking for the regulation of the transcriptional activation
related to defense (Rivas, 2012). Interestingly, AtMYB30 expres-
sion is induced 4 h post-inoculation (hpi) in challenged cells but
not in peripheral cells, whereas AtsPLA2-α expression peaks 6 hpi
in peripheral but not in challenged cells (Froidure et al., 2010).
This suggests that AtsPLA2-α may contribute to restrict the devel-
opment of the HR to the inoculated zone, thereby preventing
spreading of cell death throughout the leaf (Froidure et al., 2010)
(Figure 1B).

An additional regulatory mechanism of AtMYB30 action
was uncovered by the identification of the Arabidopsis RING-
type E3-ubiquitin-ligase MIEL1 (AtMYB30-INTERACTING E3
LIGASE1) as an AtMYB30 interactor in yeast (Marino et al.,
2013). MIEL1 is able to ubiquitinate AtMYB30 in vitro. In
Arabidopsis, MIEL1 leads to AtMYB30 proteasomal degradation,
downregulation of its transcriptional activity and suppression of
plant defense responses (Marino et al., 2013). Indeed, Arabidopsis
miel1 mutant plants displayed enhanced HR and resistance
after inoculation with avirulent bacteria. These phenotypes are
AtMYB30-dependent and correlate with down-regulation of
AtMYB30 target genes related to VLCFA metabolism (Marino
et al., 2013). MIEL1 expression is rapidly repressed in chal-
lenged cells, indicating that MIEL1 may negatively regulate plant
HR and defense activation through degradation of the MYB30
protein in the absence of the pathogen (Marino et al., 2013;
Figure 2B). Repression of MIEL1 in challenged cells may release
AtMYB30 negative regulation, increasing the intensity of the HR
and limiting pathogen growth (Marino et al., 2013; Figure 2A). In
addition, MIEL1-mediated degradation of AtMYB30 could con-
tribute to the spatial restriction of the HR to inoculated cells since
MIEL1 expression remains constant in peripheral cells (Marino
et al., 2013; Figure 2B). Work by Marino and co-workers shows
the important role played by ubiquitination during the transcrip-
tional control of the HR (Marino et al., 2012) and underlines the
sophisticated fine-tuning of plant responses to pathogen attack.

PTM of AtMYB30 by SUMOylation has also been reported.
AtMYB30 SUMOylation was first demonstrated after reconsti-
tution of the SUMOylation cascade in E. coli, the lysine residue
K283 being the major SUMOylation site (Okada et al., 2009;
Figure 2C). SUMOylation of AtMYB30 K283 by the Arabidopsis
SUMO E3 ligase SIZ1 was later confirmed in Arabidopsis proto-
plasts and demonstrated to be required for AtMYB30 function
during abscisic acid (ABA) signaling (Zheng et al., 2012) (see
below). However, whether and how SUMOylation of AtMYB30
affects AtMYB30-mediated defense responses remains to be
determined.

Finally, the AtMYB30 C-terminal region is particularly rich
in potential phosphorylation sites for several protein kinases
(Figure 2C). The contribution of these phosphorylation sites to
the plant defense response is still unknown but it is tempting to
speculate that different combinations of PTMs on AtMYB30 may
act as a molecular barcode, which would be important for the
regulation of TFs controlling multiple processes (Benayoun and
Veitia, 2009). Along these lines, the animal TFs p53 and c-Myc
represent excellent paradigms that illustrate the sophistication

of transcription regulation with different PTMs providing effi-
cient regulation of TF stability, subcellular localization and activ-
ity (Meek and Anderson, 2009; Hammond-Martel et al., 2012;
Luscher and Vervoorts, 2012).

AtMYB30, A REGULATOR OF MULTIPLE SIGNALS BEYOND
THE RESPONSE TO MICROBES
In addition to its role as a positive regulator of defense responses,
AtMYB30 is recruited for the regulation of other signaling pro-
cesses. The phytohormone ABA plays an essential role dur-
ing development and in response to abiotic and biotic stress.
AtMYB30 SUMOylation by SIZ1 leads to AtMYB30 protein stabi-
lization and affects AtMYB30-mediated transcriptional activation
of several ABA-responsive genes (Zheng et al., 2012), underlining
the importance of AtMYB30 SUMOylation during the regulation
of ABA signaling. As a result, an atmyb30 mutant is hypersensitive
to ABA whereas AtMYB30-overexpressing plants are insensitive to
ABA (Zheng et al., 2012). Conversely, AtMYB96 overexpressing
plants were found to be hypersensitive to ABA, but an atmyb96
knockout mutant was still responsive to ABA, possibly due to
functional redundancy within the MYB family (Seo et al., 2009).
AtMYB96 expression is induced by ABA and drought and the
activation of some ABA-inducible genes is AtMYB96-dependent.
Similar to AtMYB30, enhanced disease resistance conferred by
AtMYB96 involves salicylic acid synthesis, suggesting that these
two MYB TFs regulate cross-talks between hormone signaling
pathways and contribute to the integration of signals originat-
ing from various stresses (Raffaele et al., 2006; Seo and Park,
2010).

An additional example of the diversity of AtMYB30 func-
tions is the regulation of brassinosteroid (BR) signaling. BRs
play important roles in several plant growth and developmental
processes as well as during stress/disease resistance. BRs sig-
nal through the BES1 (bri1-ethylmethane sulphonate suppres-
sor1)/BZR1 (brassinazole-resistant1) family of TFs. BR treatment
induces AtMYB30 gene expression in Arabidopsis seedlings and
in bes1-D plants, that overexpress BES1, AtMYB30 expression is
upregulated, indicating that AtMYB30 may function in the BR
signaling pathway (Li et al., 2009). Indeed, chromatin immuno-
precipitation (ChIP) experiments showed that BES1 activates
AtMYB30 expression by directly binding to the AtMYB30 pro-
moter (Li et al., 2009). In agreement with this finding, atmyb30
knockout mutant plants exhibit reduced BR-related gene expres-
sion and phenotypes, indicating that AtMYB30 promotes the
expression of a subset of BR target genes (Li et al., 2009).
Moreover, the promoters of AtMYB30 and BES1 common tar-
get genes harbor boxes bound by each TF. Finally, AtMYB30 and
BES1 interact with each other. Together, this data shows that
AtMYB30 functions to amplify BR signaling through cooperation
with BES1 to promote BR target gene expression.

CONCLUSIONS AND PERSPECTIVES
Cellular responses to environmental or physiological cues rely
on transduction pathways that must discriminate between dif-
ferent signals and ensure a combinatorial regulation. Thus,
combinations of different PTMs and protein-protein interac-
tions provide different layers of information that may allow the
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integration of several transduction pathways and warrant highly
specific cellular outputs. Accumulating evidence shows that the
Arabidopsis MYB regulator AtMYB30 is a multi-regulated pro-
tein that is involved in the integration of various environmental
stimuli, including attack by microbes, abiotic stress and hormone
signaling, likely through the activation of shared and specific sets
of target genes. How simultaneous and diverse stress signals are
integrated into a unified cellular response is a major unknown
in cell signaling. The acceleration of large data set acquisition

and the development of systems biology approaches promise to
offer new insights into the functioning of such complex regula-
tory networks. The wealth of knowledge gained in recent years
on Arabidopsis R2R3 MYB TFs provides an excellent framework
toward this end.
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