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Herbaceous perennial plants selected as potential biofuel feedstocks had been
understudied at the genomic and functional genomic levels. Recent investments,
primarily by the U.S. Department of Energy, have led to the development of a number
of molecular resources for bioenergy grasses, such as the partially annotated genome
for switchgrass (Panicum virgatum L.), and some related diploid species. In its current
version, the switchgrass genome contains 65,878 gene models arising from the A and
B genomes of this tetraploid grass. The availability of these gene sequences provides
a framework to exploit transcriptomic data obtained from next-generation sequencing
platforms to address questions of biological importance. One such question pertains to
discovery of genes and proteins important for biotic and abiotic stress responses, and how
these components might affect biomass quality and stress response in plants engineered
for a specific end purpose. It can be expected that production of switchgrass on marginal
lands will expose plants to diverse stresses, including herbivory by insects. Class III plant
peroxidases have been implicated in many developmental responses such as lignification
and in the adaptive responses of plants to insect feeding. Here, we have analyzed the
class III peroxidases encoded by the switchgrass genome, and have mined available
transcriptomic datasets to develop a first understanding of the expression profiles of
the class III peroxidases in different plant tissues. Lastly, we have identified switchgrass
peroxidases that appear to be orthologs of enzymes shown to play key roles in lignification
and plant defense responses to hemipterans.
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INTRODUCTION
Perennial warm-season grasses such as switchgrass (Panicum
virgatum L.), miscanthus (Miscanthus × giganteus) and giant reed
grass (Arundo donax L.) are expected to become major sources
of renewable biomass for the biofuel sector (Lewandowski et al.,
2003; Vogel et al., 2011; Kering et al., 2012). Switchgrass is a focus
bioenergy crop for the central regions of the US and elsewhere
based on its high yield potential and other useful characteristics
(Vogel et al., 2011). Switchgrass can be sustainably grown as a
biofuel crop on marginal croplands with limited inputs (Schmer
et al., 2006, 2008; Vogel et al., 2010). Biomass yields can be vari-
able, but high yields are possible. Switchgrass retains a high
level of genotypic and phenotypic plasticity that can be exploited
for agronomic improvements (Missaoui et al., 2006; Bouton,
2007; Martinez-Reyna and Vogel, 2008; Vogel and Mitchell, 2008;
Bhandari et al., 2010; Okada et al., 2010). In addition to high
above-ground yields, switchgrass can sequester carbon into its
extensive root systems, adding to the large positive carbon balance
when utilized as a biofuel crop (Liebig et al., 2008; Schmer et al.,
2008, 2011).

However, continued improvements in biomass yields, qual-
ity, and yield stability will be required to attain a national goal
of replacing a portion of petroleum gasoline with liquid fuels
derived from lignocellulosic crops by the year 2030 (Perlack et al.,
2005; U.S. Department of Energy., 2011). This goal will require
sustained high productivity from switchgrass fields. Two impor-
tant economic drivers for field-scale production of switchgrass
occur first during the establishment year (Schmer et al., 2006; Per-
rin et al., 2008), and later through biotic or abiotic stresses that
result in stand and/or yield losses in established fields (Vogel et al.,
2002, 2011). What is currently unknown is the extent to which
confirmed and as yet unforeseen insect pests can compromise sus-
tainable production of switchgrass and other perennial bioenergy
grasses.

Over the course of the last decade, significant investments have
been made, principally by the U.S. Department of Energy (DOE),
to develop genomic resources for switchgrass and related species.
Initial work using a limited number of Sanger-sequenced ESTs
(expressed sequence tag; Tobias et al., 2005) identified a number
of genes from complementary DNA (cDNA) libraries obtained
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from different tissues. Subsequently, work undertaken by the
DOE-Joint Genomes Institute (DOE-JGI) led to the public release
of over 400,000 switchgrass ESTs from a range of tissues. This
dataset provided deeper sequencing of transcripts and included
several protein families, including peroxidases, that were anno-
tated (Tobias et al., 2008). In 2011, a contig-based early version
of the switchgrass genome was released and is available at Phy-
ozome.org (Goodstein et al., 2012); it contains 65,878 gene models
arising from the A and B genomes. Based on the number of loci
observed in related diploid grasses such as Sorghum bicolor with
34,496 loci (Paterson et al., 2009) and Setaria italica with 35,471
(Bennetzen et al., 2012; Zhang et al., 2012), it can be anticipated
that over 93% of the protein-coding genes have been annotated in
the early release of the switchgrass genome. More recently, both
next-generation sequencing (NGS) and microarrays have been uti-
lized to probe the transcriptomes of different switchgrass tissues
(Palmer et al., 2011; Ersoz et al., 2012; Zhang et al., 2013). The
availability of the mostly annotated switchgrass genome along
with increasing numbers of NGS transcriptomic datasets presents
an opportunity to datamine for expression profiles of genes that
could participate in the various aspects of plant development and
responses to the environment.

LIGNIN, ETHANOL, AND PLANT FITNESS
Cell wall composition impacts resistance to pests and pathogens
(Santiago and Malvar, 2010; Funnell-Harris et al., 2012), and is
a critical component determining biomass quality (Sarath et al.,
2008). Plant cell walls consist of three major polymers, namely
cellulose, hemicellulose, and lignin (Boerjan et al., 2003). The
polysaccharide polymers, cellulose and hemicellulose are the
dominant sources of sugars for conversion into liquid fuels in
biorefineries. Lignin is an aromatic polymer derived from cyto-
plasmically synthesized monolignols (Boerjan et al., 2003; Ralph
et al., 2006). Monolignols are products of the phenylpropanoid
pathway that is also the route for a range of other plant sec-
ondary metabolites associated with plant development and defense
(Shadle et al., 2003; Zhao and Dixon, 2011). Polymerization of
monolignols occurs in the cell wall apoplast after transport across
the plasma membrane, catalyzed principally by wall-bound per-
oxidases and laccases (El Mansouri et al., 1999; Boerjan et al.,
2003; Berthet et al., 2011; Cesarino et al., 2013). Lignin con-
tent and composition will be driven by the rate, amounts and
types of monolignols that are transported to the apoplast. This
transport process has not yet been fully elucidated, and pre-
vious hypothesis have suggested various mechanisms including
passive diffusion, vesicle-mediated transport, facilitated diffusion
through channels and active transport via transporters (Fager-
stedt et al., 2010). Labeling studies using [3H]phenylalanine in
lodgepole pine have indicated Golgi-vesicle-mediated transport is
unlikely based on the finding that inhibition of protein synthe-
sis decreased the Golgi label while inhibition of phenylpropanoid
metabolism did not (Kaneda et al., 2008). More recently, inves-
tigations using isolated vesicles from Arabidopsis demonstrated
that transport of monolignols was an ATP-dependent process
for both vacuolar and plasma membrane vesicles (Miao and
Liu, 2010). Also, using sodium orthovanadate and a variety of
other inhibitors to inhibit ATP-binding cassette (ABC) transporter

activity, it was shown that these inhibitors substantially reduced
monolignol transport activity, indicating that ABC transporters
were likely involved in the transport process. Disruptions to the
membrane pH gradient or membrane potential did not exhibit
the same degree of transport inhibition (Miao and Liu, 2010).
Additionally, the Arabidopsis ABC transporter AtABCG29 was
recently identified as a p-coumaryl alcohol transporter based on
several lines of evidence (Alejandro et al., 2012). In this study, yeast
strains-expressing AtABCG29 were highly sensitive to p-coumaryl
alcohol and isolated yeast vesicles from AtABCG29-expressing
yeast contained higher levels of p-coumaryl alcohol. Also, abcg29
knockout plant lines exhibited substantially reduced root length
in media containing p-coumaryl alcohol, and lowered H, G, and
S-lignin content based on thioacidolysis yields. RT-qPCR data
showed AtABCG29 was upregulated in WT plants in response
to p-coumaryl but not sinapyl or coniferyl alcohols (Alejandro
et al., 2012). Taken together, this emerging evidence favors the
active transport hypothesis and suggests that other monolignols
are likely transported to the apoplast via monolignol-specific ABC
(or possibly other) transporters that remain to be discovered.

Once transport to the apoplast is complete, monomers are
polymerized into developing or new polymers, primarily via
radical-coupling mechanisms initiated by multiple classes of
apoplastic enzymes including peroxidases, laccases, and oxidases
(Boerjan et al., 2003). The basic radical coupling mechanism has
long been postulated (Freudenberg, 1959). In general, the poly-
merization of lignin has appeared to proceed under chemical
control rather than the more confining and controlled nature of
biochemical control that governs most other plant processes. The
proposed mechanism involves dehydrogenation and subsequent
polymerization of the radicals; each coupling requires the gener-
ation of two radicals and polymerization may proceed through
a radical transfer or redox shuttle mechanism since the growing
lignin polymer and monolignols such as sinapyl alcohol are not
easily oxidized (Boerjan et al., 2003; Liu, 2012).

Within the plant cell walls, lignin forms a physical barrier
against the entry of pests and pathogens (Boerjan et al., 2003;
Sattler and Funnell-Harris, 2013), acts as an antifeedant for herbiv-
orous insects (Ralph et al., 2006; Deng et al., 2013) and is the major
factor impeding the conversion of herbaceous biomass to ethanol
(Dien et al., 2009; Fu et al., 2011; Saathoff et al., 2011; Sarath et al.,
2011). The negative impact of lignin in the biochemical conver-
sion of herbaceous feedstocks to liquid fuels has led to intense
efforts to develop a range of biofuel feedstocks with lowered lignin
content (Carroll and Somerville, 2009; Studer et al., 2011; Robbins
et al., 2012; Shen et al., 2012). Lowering lignin generally negatively
impacts plant fitness, especially in perennial grasses (Casler et al.,
2002; Pedersen et al., 2005), although many of molecular and cel-
lular aspects of the biotic interactions of these lower lignin plants
remain to be explored.

CLASS III PEROXIDASES AND LIGNIN BIOGENESIS
Class III peroxidases are ubiquitous plant enzymes that are coded
by a large number of related genes within a plant genome (Passardi
et al., 2004, 2007; Tobias et al., 2008), and have been implicated
in a myriad of plant developmental processes and responses to
biotic and abiotic stress (Almagro et al., 2009; Cosio and Dunand,
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2009; Gulsen et al., 2010; Linkies et al., 2010; Mika et al., 2010; War
et al., 2012). Some peroxidases appear to have a specialized role in
lignification. In tobacco, overexpression of a chimeric anionic per-
oxidase resulted in plants containing higher basal levels of lignin
when compared to control plants (Lagrimini, 1991). Wounding of
these plants also appeared to result in higher polymerization of
phenolic acids, particularly in pith tissue which had much higher
levels of peroxidase activity than control plants, although the
transgenic plants expressed transgene throughout the plant due
to the use of the cauliflower mosaic virus 35S promoter (Lagri-
mini, 1991). Additional work in tobacco demonstrated that other
peroxidases may also be involved in lignification. Antisense gene
silencing of the cationic peroxidase TP60 (NtPrx60) in tobacco
resulted in several plant lines that exhibited lower lignin con-
tent based on thioacidolysis, acetyl bromide and nitrobenzene
determinations (Blee et al., 2003). Later work showed some of the
generated T1 plants had abnormal phenotypes including discol-
oration, altered leaf morphologies, and poorly developed xylem
in one of the lines (Kavousi et al., 2010). In poplar, a cationic
cell wall-bound peroxidase, dubbed CWPO-C, was found to pref-
erentially oxidize sinapyl alcohol monomers as well as sinapyl
alcohol polymers (Sasaki et al., 2004). This finding indicated that
the suggested radical transfer or redox shuttle mechanisms for
lignin polymerization may be unnecessary in at least some circum-
stances. Other work in tomato demonstrated that overexpression
of a tomato basic peroxidase, tpx1, resulted in higher cell wall
peroxidase activity and higher leaf lignin levels (El Mansouri
et al., 1999). A basic peroxidase from Zinnia elegans was found
to be composed of two isoforms, ZePrx34.70 and ZePrx33.44
that were studied in detail (Gabaldón et al., 2005). Here, the
peroxidases were shown to have high affinity for sinapyl alco-
hol and carried out polymerization of this substrate, suggesting a
likely role in polymerization of S-lignin during growth (Gabaldón
et al., 2005). Similar results were found for the anionic perox-
idases Pxp3, Pxp4, and Pxp5 that were isolated from poplar
xylem (Christensen et al., 1998), and several peroxidases from sil-
ver birch (Betula pendula) and Norway spruce (Picea abies) were
shown to have activity on monolignol substrates (Marjamaa et al.,
2006). In aspen, GUS staining revealed that the anionic peroxi-
dase prxA3a was predominately expressed in lignifying stem tissue,
particularly xylem (Li et al., 2003). Furthermore, down regula-
tion of this gene using an antisense construct resulted in plants
with lower total peroxidase activity and a lowered lignin content
that, depending on the transgenic line, approached 20% (Li et al.,
2003).

Several peroxidases have been identified in Arabidopsis that
appear to have roles in lignification. Arabidopsis ATP A2 (AtPrx53),
a cationic peroxidase, was found to localize to lignified tissues
and transgenic plants exhibited differential phloroglucinol stain-
ing compared to WT plants; unfortunately, lignin levels were not
reported (Østergaard et al., 2000). Modeling based on the ATP A2
crystal structure indicated monolignol substrates could dock in the
active site (Østergaard et al., 2000), although class III peroxidases
are known to be capable of oxidizing a wide variety of phenolic
compounds (Marjamaa et al., 2009). Recently, Arabidopsis AtPrx37
was found to be highly expressed in roots as well as flower stems
and mature leaves (Pedreira et al., 2011). Overexpression of this

gene fused to a GUS reporter gene showed localization in vascular
tissue; mutant lines exhibited shorter roots, delayed development
and dwarfism, which led to the hypothesis that overexpression
of AtPrx37 led to higher cell wall cross-linking (Pedreira et al.,
2011). A microarray study in Arabidopsis identified eight perox-
idases and several laccases with expression profiles that clustered
with monolignol synthesis; AtPrx2, AtPrx17, AtPrx37, AtPrx9, and
AtPrx30 were peroxidases that were noted to show the strongest
co-expression patterns (Ehlting et al., 2005). Gravistimulation was
used in one study to alter the mechanical forces acting on stem
region of the inflorescence, which was then excised into apical,
middle, and basal parts (Yokoyama and Nishitani, 2006). Expres-
sion profiling using a microarray showed upregulation of AtPrx42,
AtPrx64, and AtPrx71 in basal stem regions compared to mid-
dle and apical regions; however, the statistical significance of the
expression change was not reported (Yokoyama and Nishitani,
2006). More recently, AtPrx 4, 52, 49, and 72 were suggested to
have roles in lignification based on homology to ZePrx and in sil-
ico characterization of other properties including surface charge,
mRNA stability, and amino acid positions (Herrero et al., 2013).
Identification of peroxidases that have a primary, or even sec-
ondary, role in lignification will likely remain challenging. Despite
the fact that a pectate binding site has been identified in an anionic
peroxidase from zucchini which suggested possible involvement
in lignification (Carpin et al., 2001), further research indicated
that the physiological role of the protein involved auxin oxida-
tion in termination of hypocotyl elongation (Cosio and Dunand,
2009). Some characteristic features of syringyl peroxidases have
been found. These have included a VSCAD motif compared to a
VSCSD motif in G peroxidases as well as the finding that S per-
oxidases lack helix D’ (Gómez Ros et al., 2007). These changes
were postulated to result in conformational changes in the perox-
idase active site that allowed sinapyl alcohol to more successfully
dock, and thus undergo oxidation (Gómez Ros et al., 2007). In
general, basic and neutral peroxidases do not efficiently oxidize
sinapyl alcohol owing to steric hindrance of the substrate with
the active site (Østergaard et al., 2000). In contrast, acidic perox-
idases can oxidize sinapyl alcohol (Sasaki et al., 2004; Gabaldón
et al., 2005), indicating that both basic and acidic peroxidases have
complementary roles in lignification.

BIOTIC STRESS, ROS, AND PEROXIDASES
An essential function for class III peroxidases is to protect the
cellular membranes against oxidative damage. More specifically,
class III secreted peroxidases are players in both reactive oxygen
species (ROS) removal and ROS generation (Passardi et al., 2005).
Although high levels of ROS are deadly, sub-lethal levels of ROS
can serve as signals, prompting cells to prepare for sustained oxida-
tive stress (Miller et al., 2009; Torres, 2010). Due to the potential
exposures of deadly ROS, higher plants have evolved enzymes to
detoxify these molecules (Mittler et al., 1999). Catalases, peroxi-
dases and superoxide dismutase have all been documented as ROS
scavengers in plants stressed by insects and pathogens (Felton et al.,
1994b; Heng-Moss et al., 2004; Franzen et al., 2007; Kusnierczyk
et al., 2008).

Plants have also evolved complex signaling networks intended
to detect specific pathogens in order to trigger the appropriate

www.frontiersin.org June 2013 | Volume 4 | Article 202 | 3

http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Biotechnology/archive


“fpls-04-00202” — 2013/6/18 — 19:06 — page 4 — #4

Saathoff et al. Switchgrass peroxidases

defense responses. A growing body of evidence suggests that plants
have evolved intricate mechanisms to exert control over pathogen
induced defense pathways. The hypersensitive response (HR) is
a complex early defense response that causes necrosis and cell
death that can restrict the growth and spread of a pathogen.
This interaction leads to a change in the membrane potential
and ion permeability of the host cell plasma membrane resulting
in localized cell death (Heath, 2000). One of the first biolog-
ical responses of the HR is an oxidative burst which includes
the generation of ROS including hydroxyl radicals (-OH), nitric
oxide (NO), hydrogen peroxide (H2O2), and superoxide (Apos-
tol et al., 1989). Left unchecked, these ROS may cause protein,
lipid, and nucleic acid damage (Roldán-Arjona and Ariza, 2009;
Sharma et al., 2012).

Peroxidase activity and/or peroxidase gene expression has been
shown to be induced by many types of pathogens including
fungi (Sasaki et al., 2004; Wang et al., 2013), bacteria (Young
et al., 1995; Lavania et al., 2006), viruses (Lagrimini and Roth-
stein, 1987; Hiraga et al., 2000; Díaz-Vivancos et al., 2006; Babu
et al., 2008) and viroids (Vera et al., 1993). These studies reinforce
the hypothesis that class III peroxidases have important roles in
plant defense and can serve as markers of plant responses to biotic
stressors.

PEROXIDASES AND DEFENSE AGAINST INSECTS
Insect infestation and herbivory has often been linked to changes
in cellular ROS and peroxidase activity (Hiraga et al., 2001; Ni
et al., 2001; Kawano, 2003; Heng-Moss et al., 2004; Passardi
et al., 2005; Torres, 2010; O’Brien et al., 2012; War et al., 2012).
Plant peroxidase levels in response to hemipterans have been
particularly well-studied (Hildebrand et al., 1986; Felton et al.,
1994a,b; Stout et al., 1999; Ni et al., 2001; Heng-Moss et al.,
2004). It has been observed that peroxidase levels increase fol-
lowing chinch bug and aphid feeding in tolerant buffalograsses,
sorghum, and barley (Heng-Moss et al., 2004; Franzen et al., 2007;
Gulsen et al., 2007, 2010). Recently, studies have shown that in
wheat, rice, switchgrass and tomato class III peroxidases tran-
scripts were upregulated in response to insect herbivory (Dowd
and Johnson, 2009; Liu et al., 2010; Suzuki et al., 2012; War et al.,
2012).

It is likely that the abundance of several class III peroxidases
identified in switchgrass (see below) will also play significant roles
in tolerances against insects. Previous global analysis in rice and
wheat challenged with Hessian fly attack identified 34 class III
peroxidases that were upregulated in resistant plants versus 22 per-
oxidases in susceptible plants (Liu et al., 2010). In Arabidopsis, two
peroxidases, At5g64120 (AtPrx71) and At5g05340 (AtPrx52), were
found to be induced by Pieris brassicae eggs were also induced by
Pieris rapae herbivory (Little et al., 2007). For a better understand-
ing of the roles of individual peroxidases in switchgrass against
hemipterans, experiments using both resistant and susceptible
cultivars challenged with a variety of these potential pests should
be conducted. It is likely that class III peroxidases will display
similar roles in switchgrass when challenged with hemipterans as
well. Currently, roles of most of these proteins in plant defense
or resistance in switchgrass are not known, but appear to be
important areas of future research.

ENERGY CROP–INSECT INTERACTIONS
One of our long-term research goals is to develop a molecular
understanding of switchgrass responses to hemipterans, utiliz-
ing a selection of tetraploid switchgrasses. The incidence of
arthropod pests is likely to increase in switchgrass systems due
to an anticipated shift to monoculture-based biomass production
systems (Vogel et al., 2011). Additionally, due to plant-breeding
efforts to reduce traits that interfere with biofuel processing, some
plant defense mechanisms may be negatively impacted (Nabity
et al., 2012). While switchgrass may be one of the better studied
warm-season native grasses, most research has focused on agro-
nomic qualities and disease issues. Few studies have examined
the arthropod communities associated with switchgrass (Boerner
and Harris, 1991; Gottwald and Adam, 1998; Kindler and Dal-
rymple, 1999; McIntyre and Thompson, 2003; Schaeffer et al.,
2011). This basic information is required to identify and define
the organisms that may cause reduced yields. Although much
uncertainty exists in predicting which insects will be the key
pests of this new market-use of switchgrass, recent research has
provided clear evidence that biomass crops are susceptible to a
number of key pests of other important crop plants (Prasifka and
Gray, 2012). In switchgrass, potential pests have included stem-
boring insects (Prasifka et al., 2010, 2011b), defoliators (Prasifka
et al., 2009, 2011a) and piercing-sucking insects (Schaeffer et al.,
2011; Burd et al., 2012). Some of these insects have broad host
ranges with multiple biotypes (Prasifka et al., 2009), while others
are apparently very specific to switchgrass (Adamski et al., 2010;
Prasifka et al., 2010).

Importantly, our development of switchgrass as a biofuel feed-
stock is, in part, a response to global climate change (Energy
Independence and Security Act of 2007, 42 U.S.C. §17001), to
which some desirable insect species (Pelini et al., 2010) will not
adapt and some important pest species will overcome (Davis et al.,
2006). Aphids (winged aphids in particular) transmit viruses with
their mouthparts and are the most predominant vector for plant
viruses (Hull, 2001). Depending on the virus, they can remain
on the aphid’s mouthparts (specifically, their stylets) or circulate
throughout the vector (some viruses replicate within the aphid)
prior to transmission. Aphids are well-known to sample plant tis-
sues (i.e., probing behavior) with their stylets to determine host
acceptability. Additionally, some aphid species alternate between
plant species as a function of their seasonal life cycle. This prob-
ing and host-alternation behavior of aphids is highly conducive to
the introduction of new plant–virus relationships. For the above
reasons, we have begun to explore the potential for targeting
peroxidases in switchgrass genotypes for focused plant-breeding
efforts.

PHYLOGENETIC RELATIONSHIPS OF SWITCHGRASS
PEROXIDASES
Peroxidases are grouped into one of two superfamilies. One
superfamily, the peroxidase–cyclooxygenase superfamily, gener-
ally consists of animal peroxidases that are structurally unre-
lated and important in the innate immune system (Söderhäll,
1999). The other superfamily, the peroxidase–catalase super-
family, includes plant, fungal, and bacterial peroxidases. The
catalase–peroxidase superfamily is further divided into three
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distantly related structural classes (Welinder, 1992). Plant peroxi-
dases fall into the first and third classes and are heme-containing
enzymes that play key roles in important biological process such
as biosynthesis of lignin, degradation pathways and host-defense
mechanisms. Class I peroxidases are intracellular peroxidases
without signal peptides, calcium ions, or disulfide bridges. They
show moderate substrate specificity of ascorbic acid and are
located in the chloroplasts, mitochondria, peroxisomes, and the
cytosol (Almagro et al., 2009). Extracellular secretory fungal per-
oxidases comprise class II peroxidases (Reddy, 1993) that include
lignin-modifying peroxidases and manganese peroxidases. Class
III peroxidases are glycoproteins that are located in vacuoles and
cell walls and further divided into eight distinct groups based on
sequence (Passardi et al., 2004). These peroxidases are involved in
cell elongation, cell wall construction, and responses to various
abiotic stresses and biotic plant pathogens (Intapruk et al., 1994;
Klotz et al., 1998; González-Rábade et al., 2012).

In the PeroxiBase database (http://peroxibase.toulouse.inra.fr/),
a total of 8,695 peroxidases have been collected. Of those, 5,430
(approximately 61%) are class III peroxidases which have been
identified (March, 2013) from multiple plants species. For exam-
ple, the genomes of Brachypodium distachyon, Arabidopsis thaliana,
and Oryza sativa appear to code for 143, 73, and 155 class III per-
oxidases, respectively (Welinder et al., 1996; Passardi et al., 2004;
Vogel et al., 2010). Comparisons of the peroxidase families between
rice and Arabidopsis led to a better understanding of the evolution
of monocots and dicots that diverged from a common ancestor
150 million years ago (Wikström et al., 2001). Monocotyledon
peroxidases differ slightly in intron/exon size and structure from
Eudicotyledons, but the majority of class III peroxidases are highly
conserved.

In switchgrass, the preliminary classification of sequences
obtained from a cDNA library showed class III peroxidases were
extremely well-represented, with approximately 400 EST’s identi-
fied (Tobias et al., 2008). Using representative proteins belonging
to different peroxidase groups in rice, all putative matches were
identified in the switchgrass genome using the Blastp algo-
rithm (Altschul et al., 1990, 1997) and an e-value threshold of
1 × 10−15. Putative matches and representative rice protein
sequences were aligned using FastTree (Price et al., 2009) and visu-
alized using Dendroscope version 2 (Huson et al., 2007). Two
major peroxidase subfamilies, the heme and thiol peroxidases
were separated. The thiol peroxidases were further subdivided
into glutaredoxins, peroxiredoxins and glutathione peroxidases.
The heme-containing switchgrass peroxidases were separated into
class III and ascorbate (Class I) peroxidases (Figure 1). The class
III peroxidases were further analyzed by reclustering and seeded
with rice proteins belonging to different evolutionary groups
of class III peroxidases (Passardi et al., 2004). Based on these
analyses, the ancestral switchgrass peroxidase genes were identi-
fied as Pavirv00010935m, Pavirv00050429m, Pavirv00055443m,
and Pavirv00060522m. The monocot-specific clade Group V.1
contained 33 members (Figure 2).

A comparison of switchgrass peroxidases with two rice class
III peroxidases induced during gall midge attack (Liu et al., 2010)
found the most similar switchgrass gene for Os07g0677200 was
Pavirv00031572m and for Os06g0547400 was Pavirv00059991m.

FIGURE 1 | Phylogenetic clustering of heme- and thiol peroxidases

(Prx) present in the switchgrass genome. Heme peroxidases (oval)
consist of the class I ascorbate peroxidases (green), and class III
peroxidases (red). Thiol peroxidases (circle) consist of the glutathione
peroxidases (purple), peroxiredoxin (blue) and glutaredoxin (cyan).

In rice, these two genes were significantly elevated in expres-
sion at 12 h post attack and eventually decreased in expression
after 72 h post. It is possible that these two class III peroxi-
dases in switchgrass may be potential sources for ROS production
and defense during an insect attack as well. Two other class
III peroxidases associated with insect defense from Arabidopsis
(Cosio and Dunand, 2009) share similarity with switchgrass per-
oxidases. The Arabidopsis protein PRX52 (AT5G05340) shares
similarities with Parvirv00018711m and PRX71 (At5g64120)
is homologous to Pavirv00006707m. These findings shed
light on possible peroxidase targets to evaluate during insect
attack.

GLOBAL ANALYSIS OF PEROXIDASE TRANSCRIPTS IN
SWITCHGRASS TISSUES
To probe the profiles of class III peroxidase expression in different
switchgrass populations and plant organs, we queried transcrip-
tomic datasets obtained using NGS platforms (Roche 454 Life
Sciences instrument; Table A1 in Appendix). Publically available
NGS datasets from two contrasting ecotypes of switchgrass (low-
land cv. Alamo and upland cv. Summer) were mined to obtain class
III peroxidase expression profiles in different tissues (Figure 3).
There appears to be significant differences in the profiles of class III
peroxidase genes expressed in the different tissues based on plant
developmental stage and ecotypes. Clusters of class III peroxi-
dases were strongly represented in roots and shoots harvested from
plants at early vegetative (EV), stem elongation (SE), and repro-
ductive (RP). At each of these stages in Summer, there appeared
to be strong transcriptional control of the expression of specific
sets of class III peroxidase genes. As an example, many perox-
idases were upregulated in roots during the SE stage of harvest
(Figure 3), possibly related to greater root growth at this stage of
plant development. Transcripts for many of these genes were less
abundant at the RP stage, although expression of a different clus-
ter of genes in the roots of Summer plants was apparent. In the
shoots of Summer plants, greatest abundance in peroxidase tran-
scripts apparently occurred during stages of active tiller elongation
(EV and SE; Figure 3), suggestive of roles in cell wall formation
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FIGURE 2 | Phylogenetic relationships and numbers within each

evolutionary clade, as defined for rice, for switchgrass class III

peroxidases. The distribution of peroxidases relative to the out-group
sequences (blue lines) are shown in the circular phylogram. The rice and
ancient peroxidase protein sequences used as representatives for these
analyses, and the numbers of switchgrass members in each clade are
indicated. The peroxidase sequences include loci from both the A and B
genomes.

and active tiller growth processes. There was enrichment in tran-
scripts for a small number of potentially organ-specific peroxidases
in flowers. In the lowland cultivar Alamo, there appeared to be
notable differences in class III peroxidase gene expression patterns
relative to Summer plants. Maximal transcript abundances for
roots were observed at the EV stage of growth, and a majority
of these transcripts were found in lower abundances at later har-
vest dates. However, the physiological significance of these initial
observations is unclear. For Alamo shoots, a similar pattern to
those described for roots were seen, except that highest apparent
transcript abundance was seen at the SE stage of growth (Figure 3).
A small cluster of peroxidases were upregulated in Alamo flow-
ers, similar to what was observed from these NGS datasets
for Summer flowers (Figure 3). Flower-specific peroxidases

have been reported in the literature (Cosio and Dunand, 2009;
Beltramo et al., 2012).

An analysis of crown and rhizome transcriptomes for expres-
sion profiles of class III peroxidases obtained from field-grown
plants is shown in Figure 4. Tissues were harvested from plants
over the course of a growing season as described earlier (Palmer
et al., 2011). Since these tissues are critical for perenniality of the
plants, knowledge of the molecular mechanisms that might impact
perenniality will be useful both from a biological and breeding per-
spective. Below ground herbivory and attack from other pathogens
can result in reduced shoot biomass, negatively impact plant sur-
vival and overall system sustainability (for example corn root
worm, nematodes, etc.). Peroxidases can serve as effective markers
for plant stress (reviewed above) and understanding expres-
sion profiles will provide insights into the cellular state of these
tissues.

As observed for other switchgrass tissues (see Figure 3), there
were clusters of peroxidases overexpressed at specific harvest dates
(Figure 4). These field harvest dates coincided approximately to
spring emergence (green-up; May), late vegetative (June), flower-
ing (July), late seed set (August), and senescence of aerial tissues
after a killing frost (October). The largest number of strongly
upregulated peroxidases appeared to occur in May and June, coin-
ciding with a time of rapid vegetative growth, somewhat similar
to the patterns seen in the Alamo datasets. The total numbers
of peroxidase transcripts exhibiting greater expression declined
at the last three harvest dates, with relatively few genes overex-
pressed at the August and October harvests (Figure 4). Some
of these genes appear to be specific for a given harvest date,
and are probably reflective of the developmental stage of the
plants. These highly expressed genes were separable into six clus-
ters (C1–C6, Figure 4). Peroxidase distribution in these clusters
based on their phylogenetic classification (Figure 2) suggested
members of different groups became active at various times
throughout the growing season. In May, highly expressed per-
oxidases clustered mainly into C4, with some upregulation in
C3 and C2 apparent. In C4, the highest numbers of peroxi-
dases came from Group I and Group IV, with lower amounts
in other groups. In June, most peroxidase upregulation clus-
tered into C3, with some upregulation in C1. In the larger C3
cluster, upregulated peroxidases were found again in Groups I
and IV, with the latter containing double the number of upreg-
ulated members when compared to May. In July, upregulated
peroxidases clustered into two groups (C1 and C2); cluster C1
had highly expressed members at approximately equal levels from
Groups III, IV, V, and VI while cluster C2 contained a slightly
different breakdown: Group I, IV, and VI contained most of the
apparently upregulated peroxidases. August and October perox-
idase expression mainly clustered into C5 and C6, respectively,
which showed upregulation primarily in Groups I and IV in both
cases. Based on these data, it is apparent that different peroxi-
dases become active in switchgrass crown and rhizome tissue as
the plant transitions from active growth through flowering and
into dormancy, and that the study of class III peroxidases is likely
to yield significant insights into switchgrass developmental pro-
cesses and the interactions of the plant with biotic and abiotic
stress.
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FIGURE 3 | One-way clustering color map for class III peroxidase

expression profiles (z-scores) for publically available NGS datasets for

cultivars Summer and Alamo. Stages of plant development are early
vegetative (EV), stem elongation (SE), and reproductive (RP) are as described

in these datasets. Roots = Rt; Shoot = Sh; Flowers = Fwr. Red indicates high
abundance, yellow is intermediate and green and blue are low or negligible
abundance. The appropriate SRA identification numbers for these individual
NGS files are shown inTable A1 in Appendix.

FIGURE 4 | One-way clustering color map for class III peroxidase

expression profiles (z-scores) for NGS datasets for crowns and

rhizomes obtained from field-grown Summer plants at the Agricultural

Research and Development Center fields of the University of

Nebraska. Harvest months are shown and coincided approximately with
green-up (May), late vegetative stage (June), flowering (July), hard-seed
stage (Aug), and aerial senescence after a killing frost (Oct). Red indicates
high abundance, yellow is intermediate and green and blue are low or
negligible abundance. The appropriate SRA identification numbers for these
individual NGS files are shown inTable A1 in Appendix. The six clusters of
the most abundant transcripts from each harvest date are shown (C1–C6)
along with the numbers of individual peroxidases as assigned to an
evolutionary group.

CONCLUSION
Sustainable production of switchgrass and other bioenergy grasses
will require effective management against biotic stressors. The
need to raise these crops on marginal land with lowered inputs
will necessitate developing cultivars with enhanced tolerance to a
range of biotic and abiotic stresses. We are only now beginning to
probe the genotypic diversity that exists in switchgrass populations
to potential insect pests. Identification of potential insect pests and
detailed characterization of the plant–insect interaction will better
enable us to address emergent insect pests in switchgrass produc-
tion fields. Additionally, it is unclear how manipulation of plants
for quality traits (for example lower/higher lignin) will affect plant
resistance to insect herbivory and other endogenous mechanisms
that confer resistance. However, based on extensive scientific lit-
erature, it can be safely predicted that the class III peroxidases are
going to play a key role in the defensive mechanisms of switch-
grass plants to insect herbivory, specifically to insects contain-
ing piercing-sucking mouthparts. The combination of genomic
resources and improved phenotyping methods are likely to help
decipher these molecular circuits, and provide guidance for the
continued improvements of switchgrass as a bioenergy feedstock.
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APPENDIX

Table A1 | Switchgrass NGS datasets.

Cultivar Time Tissue # Reads SRA

Summer May Crown 445,432 SRX257007

Summer June Crown 379,264 SRX257030

Summer July Crown 317,557 SRX257031

Summer August Crown 930,114 SRX102934

Summer October Crown 389,555 SRX257032

Summer Early vegetative stage Root 265,190 SRX026147

Summer Early vegetative stage Shoot 211,124 SRX026148

Summer Stem elongation stage Root 187,893 SRX026150

Summer Stem elongation stage Shoot 210,071 SRX026149

Summer Reproductive stage Root 240,166 SRX026153c

Summer Reproductive stage Shoot 228,101 SRX026151c

Summer Reproductive stage Flower 240,696 SRX026155c

Alamo Early vegetative stage Root 1,317,713 SRX057831

Alamo Early vegetative stage Shoot 1,298,485 SRX057830

Alamo Stem elongation stage Root 1,113,868 SRX057829

Alamo Stem elongation stage Shoot 1,407,916 SRX057828

Alamo Reproductive stage Root 1,037,727 SRX057826

Alamo Reproductive stage Shoot 557,570 SRX057827

Alamo Reproductive stage Flower 1,143,746 SRX057834

Frontiers in Plant Science | Plant Biotechnology June 2013 | Volume 4 | Article 202 | 12

http://www.frontiersin.org/Plant_Biotechnology/
http://www.frontiersin.org/Plant_Biotechnology/archive

	Towards uncovering the roles of switchgrass peroxidases in plant processes
	Introduction
	Lignin, ethanol, and plant fitness
	Class iii peroxidases and lignin biogenesis
	Biotic stress, ROS, and peroxidases
	Peroxidases and defense against insects
	Energy crop–insect interactions
	Phylogenetic relationships of switchgrass peroxidases
	Global analysis of peroxidase transcripts in switchgrass tissues
	Conclusion
	Acknowledgments
	References
	Appendix


