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Photosynthesis in eukaryotes occurs in the plastid, an organelle that is derived from a
single cyanobacterial primary endosymbiosis in the common ancestor of the supergroup
Plantae (or Archaeplastida) that includes green, red, and glaucophyte algae and plants.
However a variety of other phytoplankton such as the chlorophyll c-containing diatoms,
dinoflagellates, and haptophytes contain a red alga-derived plastid that traces its origin
to secondary or tertiary (eukaryote engulfs eukaryote) endosymbiosis. The hypothesis of
Plantae monophyly has only recently been substantiated, however the extent and role
of endosymbiotic and horizontal gene transfer (EGT and HGT) in algal genome evolution
still remain to be fully understood. What is becoming clear from analysis of complete
genome data is that algal gene complements can no longer be considered essentially
eukaryotic in provenance; i.e., with the expected addition of several hundred cyanobacterial
genes derived from EGT and a similar number derived from the mitochondrial ancestor. For
example, we now know that foreign cells such as Chlamydiae and other prokaryotes have
made significant contributions to plastid functions in Plantae. Perhaps more surprising
is the recent finding of extensive bacterium-derived HGT in the nuclear genome of the
unicellular red alga Porphyridium purpureum that does not relate to plastid functions.These
non-endosymbiont gene transfers not only shaped the evolutionary history of Plantae but
also were propagated via secondary endosymbiosis to a multitude of other phytoplankton.
Here we discuss the idea that Plantae (in particular red algae) are one of the major
players in eukaryote genome evolution by virtue of their ability to act as “sinks” and
“sources” of foreign genes through HGT and endosymbiosis, respectively.This hypothesis
recognizes the often under-appreciated Rhodophyta as major sources of genetic novelty
among photosynthetic eukaryotes.
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INTRODUCTION
Photosynthetic eukaryotes (i.e., algae and plants) are a taxonom-
ically diverse group with a wide variety of cell morphologies
(e.g., diatoms, dinoflagellates, coccolithophores) and lifestyles
that are key primary producers (Field et al., 1998). All eukary-
otic photosynthesis relies on the intracellular organelle, the plastid
(chloroplast in plants and green algae) that was derived over one
billion years ago from a cyanobacterial primary endosymbiosis.
In this process, a once free-living cyanobacterium capable of oxy-
genic photosynthesis was engulfed and retained in a heterotrophic
protist, and over time evolved into the intracellular organelle
(Section I in Figure 1; Cavalier-Smith, 1999; Bhattacharya et al.,
2004). The resulting plastid-harboring protist ancestor gave rise
to three lineages of Plantae (or Archaeplastida); i.e., Glaucophyta,
Rhodophyta (red algae), and Viridiplantae (green algae and land
plants; Section II in Figure 1; Adl et al., 2005). The establishment of
Plantae plastid monophyly (e.g., Rodriguez-Ezpeleta et al., 2005)
and, only recently, the monophyly of Plantae hosts (Chan et al.,
2011; Price et al., 2012) provides strong support for the idea that
the Plantae primary endosymbiosis occurred once in evolution.
Despite its groundbreaking impact on eukaryote evolution and

overall, the trajectory of life on Earth, primary endosymbiosis
appears to be exceedingly rare. The only other known case of
plastid primary endosymbiosis is provided by a single lineage of
Rhizaria, Paulinella (Lauterborn, 1895; Yoon et al., 2006), which
acquired a Synechococcus-like alpha-cyanobacterium ∼65 million
years ago (Nowack et al., 2008). The rarity of primary endosym-
biosis is ascribed to difficulties in the initial “domestication” of
the wild-type cyanobacterium and its integration into host cell
metabolism. It is believed that primary endosymbiosis in the
Plantae ancestor was made possible by the concomitant infec-
tion by parasitic Chlamydiae (Huang and Gogarten, 2007). Recent
work suggests that effector proteins secreted by Chlamydiae might
have facilitated the integration of carbon metabolism between the
cyanobacterial endosymbiont and the host (Ball et al., 2013; Baum,
2013).

Whereas eukaryotic photosynthesis commenced with primary
endosymbiosis, its greatest impact was achieved through addi-
tional rounds of secondary and tertiary endosymbiosis, whereby
the cyanobacterium-derived organelle was transferred to a myriad
of other protist hosts (e.g., red algal endosymbiosis; Section III
in Figure 1; Keeling, 2010; Dorrell and Smith, 2011). Green algae
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FIGURE 1 | Schematic illustration of cyanobacterial primary

endosymbiosis and red algal secondary endosymbiosis that gave rise

to the plastid in the vast majority of photosynthetic eukaryotes. Gene
movement via endosymbiotic gene transfer (EGT) and horizontal gene

transfer (HGT) is indicated with the arrows. Important intracellular
organelles (i.e., nucleus, mitochondrion, and plastid) are shown. Genetic
material of non-lineal evolutionary origin in the nucleus is presented as
stripes of different colors with the color indicating the source of the gene.

were taken up at least three times by the ancestors of chlorarach-
niophytes, euglenids, and some “green” dinoflagellates (Archibald
and Keeling, 2002; Rogers et al., 2007; Dorrell and Smith, 2011).
The red algal plastid is found in diverse taxa such as cryptomon-
ads, haptophytes, heterokonts, dinoflagellates, and apicomplexans,
which collectively are often referred to as “chromalveolates” due to
the presence of chlorophyll c in many of their plastids (Cavalier-
Smith, 1999). Whether chromalveolates constitute a monophyletic
group (Lane and Archibald, 2008; Keeling, 2009), however, clearly
not under the scheme envisioned by (Cavalier-Smith, 1999), and
whether the red alga-derived plastid found in many of its con-
stituent taxa are derived from a single red algal endosymbiosis
event (Section IV in Figure 1; Keeling, 2010) remain subjects of
active debate. Even more complicated is tertiary endosymbiosis,
in which secondary plastid-containing algae were engulfed and
reduced to endosymbionts. This process has occurred multiple
times in dinoflagellate lineages (Keeling, 2010) as evidenced by
the haptophyte-derived plastid in Karenia and Karlodinium spp.
(Hansen et al., 2000), the diatom-derived plastid in taxa such
as Kryptoperidinium foliaceum (Chesnick et al., 1997), and the
cryptophyte-derived plastid in Dinophysis spp. (Chesnick et al.,
1996; Park et al., 2010; Kim et al., 2012).

In addition to the clear instances of plastid endosymbiosis
described above in which the organelle is retained in the cell and
identifies the donor, are the other more intriguing cases of plastid
replacement. When these events are recent and the ancestral plastid
source is unambiguous, then the inference is trivial even when both
plastid sources are ultimately of the same origin (e.g., dinoflagel-
late peridinin-containing “red” plastid is replaced by a haptophyte

“red” plastid; Ishida and Green, 2002). Apart from phylogenetic
signal embedded in the organelle genome, “footprints” of the two
endosymbionts can also be found in the nuclear genome in the
form of transferred genes associated with each event (Nosenko
et al., 2006). However if the cryptic endosymbiosis occurred in
deep time (e.g., hundreds of millions of years ago), then such
a hypothesis is exceedingly difficult to test if the plastid donors
derive from the same ancestral lineage; i.e., making it intractable
to discriminate between genes associated with each event. How-
ever if the plastid donors are phylogenetically distantly related then
it may be possible to identify cases of cryptic endosymbiosis. We
proposed such a case involving a cryptic green algal endosymbio-
sis, initially described in diatom genomes, and then more broadly
applied to chromalveolates (Section V in Figure 1; Moustafa et al.,
2009). Under this scenario, the cryptic green alga-derived plastid
was presumably replaced by the canonical red algal endosymbiont
in these taxa. An opposite case is found in the chlorarachnio-
phyte Bigelowiella natans, which contains a green alga-derived
secondary plastid but encodes a large number of nuclear-encoded
genes of red algal origin (Curtis et al., 2012), potentially derived
from the ancient red algal endosymbiont shared by the common
ancestor of rhizarians and chromalveolates. Regardless of their
mechanism of origin, it is now clear that chromalveolates and
rhizarians share a large number of genes of both red and green
algal origin. Compared to primary endosymbiosis, once “eukary-
otization” of a plastid endosymbiont has occurred then its transfer
is more likely. This sort of eukaryote-to-eukaryote plastid transfer
resulted in a great deal of plastid diversity and to a large assem-
blage of taxa with significant ecological, economic, and health
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significance than the Plantae lineages alone (Simon et al., 2009;
Keeling, 2010).

All photosynthetic eukaryotes have undergone extensive for-
eign gene transfer (Keeling and Palmer, 2008), particularly
from the plastid donor via endosymbiotic gene transfer (EGT;
Figure 1; Timmis et al., 2004). In addition to receiving genes from
the endosymbiont, algae and plants also acquire foreign genes
from non-cyanobacterial prokaryotes via horizontal gene trans-
fer (HGT; Figure 1). In contrast to vertical genetic inheritance
from parent to offspring, HGT is the genetic movement across
species without the involvement of reproduction (Doolittle, 1999).
Whereas HGT has long been known as a major force in prokaryote
evolution (Gogarten et al., 2002; Boucher et al., 2003), its signif-
icance to eukaryote evolution has only recently been appreciated
(Keeling and Palmer, 2008; Andersson, 2009; Dunning Hotopp,
2011; Bhattacharya et al., 2013; Wijayawardena et al., 2013). At
the broadest level, endosymbiotic (E)/HGT can be thought of
as a pipeline that allows the flow of genetic information across
branches in the tree of life. Below we summarize recent studies
of E/HGT in algae and plants. In particular we focus on complete
genome data that was recently generated from the mesophilic,
unicellular red alga Porphyridium purpureum (Bhattacharya et al.,
2013). We determine the significance of E/HGT in this species
from prokaryote sources, and elucidate the role of red algae as
mediators of prokaryotic gene spread among taxa that contain a
red alga-derived plastid.

ENDOSYMBIOTIC/HORIZONTAL GENE TRANSFER OF
PROKARYOTIC GENES IN PLANTAE
In the process of plastid origin, the endosymbiont undergoes dra-
matic genome reduction leading to highly reduced modern-day
plastid genomes encoding <250 genes. This genome reduc-
tion is explained in part by the movement of hundreds of
cyanobacterium-derived genes to the host nuclear genome via
EGT (Figure 1). Many of the protein products of the EGT-derived
genes are subsequently synthesized in the cytosol and retargeted
to the plastid (Martin et al., 2002; Reyes-Prieto et al., 2006) via
a sophisticated trafficking system (Li and Chiu, 2010). Some
of the cyanobacterial genes also take on functions unrelated to
the plastid (Timmis et al., 2004; Kleine et al., 2009). This mas-
sive gene relocation process has resulted in mosaic algal nuclear
genomes with the cyanobacterium-derived EGT set accounting
for 6–20% of the total gene repertoire in Plantae; e.g., glauco-
phyte Cyanophora paradoxa (Reyes-Prieto et al., 2006; Price et al.,
2012), extremophilic red alga Cyanidioschyzon merolae (Sato et al.,
2005; Deusch et al., 2008; Dagan et al., 2013), unicellular green alga
Chlamydomonas reinhardtii (Deusch et al., 2008; Moustafa and
Bhattacharya, 2008), picoplanktonic green alga Ostreococcus tauri
(Dagan et al., 2013), Oryza sativa (Deusch et al., 2008), Arabidopsis
thaliana, and other land plants (Martin et al., 2002; Deusch et al.,
2008; Dagan et al., 2013).

Another source of evolutionary novelty in Plantae is non-
cyanobacterial (i.e., Archaea and other bacteria) prokaryote-
derived HGT that occurred throughout the history of this super-
group (Figure 1). HGT appears to be widespread and is found in all
three Plantae phyla; e.g., Cyanophora paradoxa (Price et al., 2012),
the extremophilic red alga Galdieria sulphuraria (Schoenknecht

et al., 2013), the mesophilic red alga Porphyridium purpureum
(Bhattacharya et al., 2013), the red seaweed Chondrus crispus
(Collen et al., 2013), the green picoprasinophytes Ostreococcus
tauri (Derelle et al., 2006) and Micromonas spp. (Worden et al.,
2009), the green algae Chlorella variabilis NC64A (Blanc et al.,
2010), Coccomyxa subellipsoidea (Blanc et al., 2012), Bathycoc-
cus prasinos (Moreau et al., 2012), and land plants [e.g., the
moss Physcomitrella patens (Yue et al., 2012)]. HGT-derived genes
have enabled adaptation of red algae to extreme environments
(Schoenknecht et al., 2013). A recent genome-wide analysis of Por-
phyridium purpureum showed that ∼5% of the gene repertoire in
this mesophile was derived from non-cyanobacterial prokaryotes,
which is comparable to the number of cyanobacterium-derived
EGTs in this genome (Bhattacharya et al., 2013).

A significant source of non-cyanobacterial genes in algal
genomes is from the intracellular parasitic bacteria, Chlamydiae
(Huang and Gogarten, 2007; Becker et al., 2008; Moustafa et al.,
2008; Ball et al., 2013). Many Chlamydiae-derived genes encode
proteins with putative plastid functions (Horn, 2008; Moustafa
et al., 2008). The results of a recent study suggest that Chlamydiae
may once have existed as symbionts in the Plantae ancestor and
aided in the harnessing of the cyanobacterial primary endosym-
biont (Ball et al., 2013; Baum, 2013). If this hypothesis is true, then
many Chlamydiae-derived algal genes could also be considered as
examples of EGT from a long-term (now absent) symbiont.

ENDOSYMBIOTIC GENE TRANSFER OF PLANTAE GENES
INTO CHROMALVEOLATES
As described above, like primary endosymbiosis, secondary and
tertiary endosymbiosis also led to large-scale gene transfer to the
host nuclear genome via EGT (Figure 1; Lane and Archibald,
2008). This process allows the retention of genes critical for plastid
functions because the nucleus of the endosymbiont (e.g., engulfed
alga) either shrinks dramatically in size to a nucleomorph (i.e.,
500–700 Kbp in cryptophytes; Douglas et al., 2001; Lane et al.,
2007; Tanifuji et al., 2011; Moore et al., 2012) and 400 Kbp in
Bigelowiella natans; Gilson et al., 2006) or is lost outright (Moore
and Archibald, 2009; Keeling, 2010). Alga-derived EGT genes
have been described in detail from a variety of photosynthetic
taxa, including “chromists” (Frommolt et al., 2008), dinoflagel-
lates (Chan et al., 2012b) and Bigelowiella natans (Archibald et al.,
2003), as well as from ciliates that may once have contained a
plastid (Reyes-Prieto et al., 2008).

Whole-genome sequences of photosynthetic chromalveolates
and rhizarians provide a global picture of the footprints of algal
endosymbiosis. For example, 171 genes with red or/and green
algal provenance were identified in the genome of the diatoms
Phaeodactylum tricornutum (Bowler et al., 2008) and Thalassiosira
pseudonana (Armbrust et al., 2004). Using more comprehen-
sive methods, thousands of green algal-derived genes were later
found in the genomes of these diatoms, which outnumber the
contribution from red algae. As described above, this was inter-
preted as potentially deriving from a cryptic green algal secondary
endosymbiosis (added to by independent HGTs) in chromalve-
olates (Moustafa et al., 2009). Analysis of the genome from the
brown, filamentous seaweed Ectocarpus siliculosus also revealed
a substantial number of green algal-derived (>2000) and red
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algal-derived (∼500) genes (Cock et al., 2010). More than 800
genes with a red algal or cyanobacterial provenance were identi-
fied in the genomes of the non-photosynthetic plant pathogens
Phytophthora sojae and Phytophthora ramorum (Tyler et al., 2006),
suggesting a photosynthetic past for these taxa [but see (Stiller
et al., 2009)]. Recent analyses of complete genome data from
the nucleomorph-containing taxa Guillardia theta (cryptophyte)
and Bigelowiella natans (rhizarian), turned up 508 and 353 algal-
derived genes, respectively, which account for 7 and 6% of all genes
analyzed in these two taxa (Curtis et al., 2012).

From the perspective of algal endosymbiosis, analysis of Por-
phyridium purpureum complete genome data shows that ∼40%

of its genes are shared with at least one chromalveolate taxon
(Bhattacharya et al., 2013). This passage of red algal genes into
chromalveolates appears to be very broad in terms of gene func-
tion (Bhattacharya et al., 2013). Due to the possible mixotrophic
lifestyle of photosynthetic lineages such as Bigelowiella natans
(Moestrup and Sengco, 2001), the relationship between algal-
derived EGT and prey-derived HGT is hard to disentangle.
Regardless of the underlying mechanism, Plantae contribution to
host genomes of secondary or tertiary endosymbiont-containing
algae is significant. These numbers are expected to increase
as more Plantae and chromalveolate complete genomes are
analyzed.

FIGURE 2 |The fate of cyanobacterium derived EGTs in the red alga

Porphyridium purpureum. (A) Proportion of Porphyridium purpureum
genes shared with chromalveolates. The red color indicates red algal
secondary endosymbiotic gene transfer (EGT) reflected by Porphyridium
purpureum-chromalveolate monophyly. The number in the parenthesis
indicates Porphyridium purpureum-chromalveolate monophyly with ≥ 60%
bootstrap value (e.g., Figure 2B). The orange color indicates other scenarios
of red/green algal EGT into chromalveolates (e.g., Figure 2C). The white color

indicates red algal EGT that have no apparent homologs in chromalveolates
(e.g., Figure 2D). Ancient EGTs refer to genes shared by red algae and
glaucophytes or green alga/plants and excludes red algal-specific EGTs.
(B) Maximum likelihood phylogeny of an ABC transporter. (C) Maximum
likelihood phylogeny of an acetyl ornithine aminotransferase. (D) Maximum
likelihood phylogeny of a prenyltransferase. All RAxML bootstrap values were
determined using 100 replicates and only bootstrap values ≥50% are
shown.
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RED ALGAE MEDIATE CYANOBACTERIAL GENE TRANSFER
INTO CHROMALVEOLATES
Given the evidence for massive prokaryote-to-eukaryote gene
transfer via primary endosymbiosis and eukaryote-to-eukaryote
gene transfer via secondary and tertiary endosymbiosis, we
hypothesize that primary plastid-containing algae (red or green
algae) have played a central role as mediators of the spread of
prokaryotic genes into eukaryotes. We used the phylogenomic
results from the recently generated Porphyridium purpureum
genome (Bhattacharya et al., 2013) to test this idea. Using a
cutoff of ≥60% bootstrap support for Porphyridium purpureum-
cyanobacterium gene monophyly (followed by manual inspec-
tion), we identified 295 cyanobacterium-derived (i.e., via EGT)
genes in the red alga. Of these, 78% (230/295) were shared
with chromalveolates (Figure 2A) and among these proteins,
74% (171/230) likely owe their origin to red algal secondary
endosymbiosis. The latter value was determined by counting

all cases of Porphyridium purpureum-chromalveolate monophyly,
regardless of bootstrap value. When the bootstrap cutoff ≥60%
was applied to Porphyridium purpureum-chromalveolate mono-
phyly, the number was 45% (104/230). A typical example of this
class is an ABC transporter that is shared exclusively by cyanobacte-
ria, red/green algae, and chromalveolates (100% bootstrap value).
Among this group, the red alga (including Porphyridium pur-
pureum) sequences are monophyletic with chromalveolates (99%
bootstrap value, Figure 2B). The remaining 59 cases of EGT
shared with chromalveolates represent putative outcomes of a
cryptic green algal endosymbiosis or have ambiguous evolution-
ary histories (Figures 2A,C, which is a tree of an acetyl ornithine
aminotransferase). A total of 22% (65/295) of the 295 EGT-
derived genes have no identifiable homologs in chromalveolates
(e.g., a prenyltransferase gene tree shown in Figure 2D). Because
much of EGT presumably took place early in Plantae evolution,
similar results are obtained when the analysis is limited to ancient

FIGURE 3 | Fate of non-cyanobacterium derived HGTs in the red alga

Porphyridium purpureum. (A) The proportion of Porphyridium purpureum
HGTs shared with chromalveolates. The red color indicates secondary EGT
of HGT-derived genes in red algae based on Porphyridium purpureum-
chromalveolate monophyly. The number in parenthesis indicates Porphyridium
purpureum-chromalveolate monophyly with ≥ 60% bootstrap value (e.g.,
Figure 3B). The orange color indicates other scenarios of red/green algal
HGTs into chromalveolates (e.g., Figure 3C). The white color indicates red

algal HGTs that have no homologs in chromalveolates (e.g., Figure 3D).
Ancient HGTs refer to genes shared by red algae and glaucophytes or green
algae/plants, with exclusion of red algal-specific HGTs. (B) Maximum
likelihood phylogeny of an ABC transporter. (C) Maximum likelihood
phylogeny of a transmembrane transport protein. (D) Maximum likelihood
phylogeny of a serine acetyltransferase. All RAxML bootstrap values were
determined using 100 replicates and only bootstrap values ≥50% are
shown.
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cases of EGT; i.e., genes are counted when shared by Porphyrid-
ium purpureum, glaucophytes, and/or green algae and land plants
(Figure 2A).

RED ALGAE MEDIATE NON-CYANOBACTERIAL GENE
TRANSFER INTO CHROMALVEOLATES
We identified the instances of non-cyanobacterium-derived HGT
in Porphyridium purpureum. This number (following manual
inspection) was 430 genes at a bootstrap cutoff ≥60%. Of these,
53% (229/430) is shared with chromalveolates, of which 65%
(149/229) is likely derived from red algal secondary endosymbiosis,
reflecting Porphyridium purpureum-chromalveolate monophyly
regardless of bootstrap support (Figure 3A). This proportion
reduces to 40% (92/229) when the bootstrap cutoff ≥60% is
applied to Porphyridium purpureum-chromalveolate monophyly
(Figure 3A). One example is an ABC transporter phylogeny
(Figure 3B) that includes only bacterial and algal sequences. In this
tree, Porphyridium purpureum forms a monophyletic group with
the brown alga E. siliculosus (98% bootstrap value) and is sister to
a group of green algae and land plant sequences. The Bigelowiella
natans sequence is nested within green algae, consistent with a
secondary endosymbiotic origin of this gene (Figure 3B). The
remaining 80 HGT-derived genes shared with chromalveolates
represent either cryptic green algal endosymbiosis or ambiguous
evolutionary histories (Figure 3A). An example is a transmem-
brane transport protein phylogeny that includes only bacterial
and algal sequences. In this tree, green algae and land plants
form a monophyletic group with chromalveolates (98% bootstrap
value) with the exclusion of Porphyridium purpureum (Figure 3C).
The remainder of non-cyanobacterial HGTs (47%, 201/430) is
not shared with chromalveolates (e.g., serine acetyltransferase
phylogeny, Figure 3D).

Among the 430 cases of non-cyanobacterium HGTs in Por-
phyridium purpureum, 234 are shared with glaucophytes or green
algae/land plants and likely represent ancient HGT events, consis-
tent with the prevalence of ancient HGT in Plantae (Huang and
Yue,2013). This is comparable to the number of ancient EGTs (246,
Figure 2A) derived from the cyanobacterial endosymbiont that are

shared by the three Plantae lineages. Because independent HGTs
are less likely to result in a large number of shared genes among
taxa, the extensive shared footprint of ancient non-cyanobacterial
HGT provides additional support for the monophyly of Plantae
(Price et al., 2012; Spiegel, 2012). Finally, if we limit our analysis
to the 234 cases of ancient HGT (Figure 3A), then the proportion
of Porphyridium purpureum genes shared with chromalveolates
increases to 75% (176/234; Figure 3A). This approaches the
number (83%, 204/246) of ancient EGTs that we identified in
our study. These results underline the significance of ancient
non-cyanobacterial HGT in enriching red algal genomes and the
subsequent movement of these genes via secondary endosymbiosis
to chromalveolates.

CONCLUSION
Ancient red algae (e.g., the ancestor of taxa such as Porphyridium
purpureum) appear to have mediated transfers of ∼300 prokary-
otic genes into chromalveolates. In addition to the expected
transfer of cyanobacterium-derived genes via EGT, a comparable
number of non-cyanobacterium-derived genes, particularly those
acquired early in Plantae evolution, appear to have undergone
inter-phylum gene transfer. This role of red algae as media-
tors of gene transfer (exemplified by Porphyridium purpureum)
is applicable to endosymbionts of other secondary and tertiary
endosymbiosis (e.g., green algae). These data suggest a previously
under-appreciated source of reticulate gene ancestry among pho-
tosynthetic eukaryotes that has great implications for the origin of
novel gene functions in algae and for inference of ancient phylo-
genetic relationships in the tree of life (Lane and Archibald, 2008;
Chan et al., 2012a).
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