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The success of sexual reproduction in plants involves (i) the proper formation of the plant
gametophytes (pollen and embryo sac) containing the gametes, (ii) the accomplishment
of specific interactions between pollen grains and the stigma, which subsequently
lead to (iii) the fusion of the gametes and eventually to (iv) the seed setting. Owing
to the lack of mobility, plants have developed specific regulatory mechanisms to
control all developmental events underlying the sexual plant reproduction according to
environmental challenges. Over the last decade, redox regulation and signaling have
come into sight as crucial mechanisms able to manage critical stages during sexual plant
reproduction. This regulation involves a complex redox network which includes reactive
oxygen species (ROS), reactive nitrogen species (RNS), glutathione and other classic
buffer molecules or antioxidant proteins, and some thiol/disulphide-containing proteins
belonging to the thioredoxin superfamily, like glutaredoxins (GRXs) or thioredoxins (TRXs).
These proteins participate as critical elements not only in the switch between the mitotic
to the meiotic cycle but also at further developmental stages of microsporogenesis. They
are also implicated in the regulation of pollen rejection as the result of self-incompatibility.
In addition, they display precise space-temporal patterns of expression and are present
in specific localizations like the stigmatic papillae or the mature pollen, although their
functions and subcellular localizations are not clear yet. In this review we summarize
insights and perspectives about the presence of thiol/disulphide-containing proteins in
plant reproduction, taking into account the general context of the cell redox network.
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INTRODUCTION
Sexual Plant Reproduction involves complex biochemical path-
ways under a tight genetic control, which lead to drastic architec-
tural changes at developmental and cellular levels (Franklin-Tong,
1999). These changes begin with the generation of the haploid
gametes in specialized structures know as the mega- and microga-
metophytes: the embryo sac in the pistils and the pollen grain
in the anthers. Afterwards, mature pollen grains land over a
receptive stigma, hydrate and germinate, emerging a pollen tube,
which enlarges at its apical region at exceptionally high growing
rates. This pollen tube penetrates throughout the style toward the
embryo sac in order to deliver the male gametes, which fertilize
the egg cell and the polar nuclei generating an embryo and the
endosperm, respectively, and ultimately the offspring (Sprunck
et al., 2013).

Plants, like other eukaryotes, have evolved dedicating enor-
mous resources and efforts to guarantee sexual reproduction.
Among others, they have developed molecular mechanisms,
which allow a tight regulation of all developmental events under-
lying the process. These mechanisms not only have contributed
to assure the emergence of genetically-improved progenies, but
also allowing plants to tune this process according to challenging
environmental conditions, which has let flowering plants evolve
dominating almost every terrestrial ecosystem (Hiscock, 2011).

Redox regulation has recently emerged as a crucial mechanism
able to manage significant stages during sexual plant reproduc-
tion where ROS, nitric oxide (NO) and other classical antioxidant
protein and molecules are critically involved (Feijó et al., 2004;
Prado et al., 2004; Dresselhaus and Franklin-Tong, 2013). In addi-
tion, several isoforms of plant redoxins like TRXs or GRXs seem
to be specifically associated with reproductive tissues accord-
ing to their precise space-temporal expression patterns (Table 1),
although no clear functions have usually been assigned in this
context.

TRXs and GRXs are redox proteins whose activity depends on
conserved cysteine (Cys) residues present in their active centers
(Meyer et al., 2012). These Cys residues are usually maintained
in their reduced state within the cell (Foyer and Noctor, 2005a).
TRXs and GRXs carry out oxide-reductive reactions on essen-
tial Cys residues of a variety of plant proteins. The Arabidopsis
genome contains about 40 genes encoding TRXs or TRX-related
proteins grouped in different clusters and subclusters according to
several aspects like sequence similarity, subcellular localization or
intron position, which have been described as putatively involved
in a plethora of plant roles (Buchanan and Balmer, 2005; Meyer
et al., 2012). GRXs share important similarities with the TRX
family like their protein structures (both protein types belong to
the TRX superfamily) and the fact that higher plants also possess

www.frontiersin.org November 2013 | Volume 4 | Article 465 | 1

http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/about
http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org/journal/10.3389/fpls.2013.00465/abstract
http://www.frontiersin.org/people/u/11176
http://www.frontiersin.org/people/u/78270
http://www.frontiersin.org/people/u/118894
http://www.frontiersin.org/people/u/79665
mailto:juandedios.alche@eez.csic.es
mailto:juandedios.alche@eez.csic.es
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Physiology/archive


Traverso et al. Redoxins in sexual plant reproduction

Table 1 | Described redoxins and other related proteins involved in sexual plant reproduction.

Protein /

Gene

Accession

number

Organism Localization associated with

sexual plant reproduction

Potential role Reference(s)

T
R

X
s

AtTRXh1 At3g51030 A. thaliana Gene expressed in style
Protein detected in pollen tube

Unknown Reichheld et al., 2002; Ge
et al., 2011

AtTRXh4 At1g19730 A. thaliana Gene expressed in pollen and
pollen tube

Unknown Reichheld et al., 2002

AtTRXh5 At1g45145 A. thaliana Protein detected in pollen tube Unknown Ge et al., 2011

PsTRXh1 AJ310990 P. sativum Gene expression and protein
localized in pollen and stigma

Unknown Traverso et al., 2007

TRX h
(subgr. 1)

Cl000057:1
(Contig)

C. sativus
(Saffron)

Gene highly expressed in stigma Unknown D’Agostino et al., 2007

THL-1 AF273844 B. rappa Protein in pollen coat and stigma Unknown (pollen) and
Self-Incompatibility
response (stigma)

Toriyama et al., 1998;
Cabrillac et al., 2001; Ivanov
and Gaude, 2009a

TRX h
(subgr. 3)

AF159388 mono and
dicot

Conserved genes expressed in
pollen

Unknown Juttner et al., 2000

NaTRXh AAY42864 N. alata Protein secreted into the
extracellular matrix (stylar
transmitting tract)

Self-Incompatibility? Juárez-Díaz et al., 2006

Protein S X81992 P.
coerulescens

Gene expressed in mature pollen Self-Incompatibility
(grass model)

Li et al., 1997

ACHT3 At2g33270 A. thaliana Gene highly expressed in pollen Unknown Becker et al., 2003; Lee and
Lee, 2003

PsTRXf and
PsTRXm

X63537 and
X76269

P. sativum Gene expressed in pollen grains,
anthers, style and ovules

Unknown;
Photosynthesis
regulation in style?

de Dios Barajas-López
et al., 2007

AtNTRC At2g41680 A. thaliana Gene expressed in style Unknown Kirchsteiger et al., 2012

G
R

X
s

CC-type
GRX

GRX; patent
US2009/0038
028A1

Maize Gene expressed in anthers Anther development Chaubal et al., 2003;
Timofejeva et al., 2013

CC-type
GRX
(ROXY1)

At3g02000 A. thaliana Gene expressed in anthers Petal and anther
development

Xing et al., 2005

CC-type
GRX
(ROXY2)

At5g14070 A. thaliana Gene expressed in anthers Anther development
(gametogenesis?)

Xing and Zachgo, 2008

CC-type
GRX

LOC_Os0
7g05630

rice Gene and protein expression in
anthers

Male gametogenesis
and anther
development

Hong et al., 2012

AtGrxC2 At5g40370 A. thaliana Extracellular protein secreted
from germinated pollen tube

Unknown Ge et al., 2011

GRX G4XH75_9POAL Triticale
(Triticum spp
x Secale spp)

Extracellular protein released
from pollen coat upon pollen
hydration

Unknown Zaidi et al., 2012

O
T

H
E

R
S

CBSX1 At4g36910 A. thaliana Gene and protein expressed in
anthers

Anther dehiscence Yoo et al., 2011

CP12-1 At2g47400 A. thaliana Gene expressed in style Unknown;
Photosynthesis
regulation in style?

Singh et al., 2008

CP12-2 At3g62410 A. thaliana Gene expressed in style Unknown;
Photosynthesis
regulation in style?

Singh et al., 2008

PRX (TPx2) At1g70950 A. thaliana Gene highly expressed in pollen Unknown Lee and Lee, 2003

(Continued)
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Table 1 | Continued

Protein /

Gene

Accession

number

Organism Localization associated with

sexual plant reproduction

Potential role Reference(s)

AtPRXII-C At1g65970 A. thaliana Gene expressed in mature pollen Unknown Bréhélin et al., 2003

AtPRXII-D At1g60740 A. thaliana Gene expressed in pollen and
pollen tube

Unknown Bréhélin et al., 2003

AtPRDII-E At3g52960 A. thaliana Gene expressed in immature
anthers and ovules

Unknown Bréhélin et al., 2003

a larger number of GRX genes per genome when compared to
other organisms (about 50 genes encoding for GRXs or GRX-
related proteins in Arabidopsis) (Couturier et al., 2009; Meyer
et al., 2012). The physiological roles of plant GRXs are less-known
than those of TRXs, although they have also been involved in a
variety of functions (Meyer et al., 2012).

Oxidized TRXs and GRXs are physiologically reduced by ded-
icated systems according to their subcellular localizations (for
an extended review see Meyer et al., 2012). Cytosolic and mito-
chondrial TRXs are mainly reduced by NADPH in a reaction
catalyzed by the enzyme NADPH-TRX-Reductase (NTR) (Arner
and Holmgren, 2000; Laloi et al., 2001), while the isoforms from
plastids are reduced by ferredoxin via the enzyme Ferredoxin-
TRX-Reductase (FTR) (Shürmann and Jacquot, 2000; Balmer
et al., 2006) and the GRXs are generally described as reduced
by reduced glutathione (GSH). However, alternative crosstalk
between both TRX and GRX systems has also been demonstrated
in addition to these classical schemes, which reveals a high plas-
ticity of the thiol-based redox regulation in plants (Gelhaye et al.,
2003; Balmer et al., 2006; Reichheld et al., 2007; Bandyopadhyay
et al., 2008; Marty et al., 2009).

TRXs and GRXs are described as the main protein families
responsible for the redox status of protein Cys residues within
the cell. These Cys are particularly susceptible to oxidations by
reactive species, this fact being usually identified by researchers
as a regulatory mechanism of the protein activity, as well as a
protective or redox signaling mechanism (Couturier et al., 2013).
These thiol-based regulations have been interpreted as a sensing
mechanism of the cellular redox state, which acts between stress
perception and plant response against environmental challenges
(Foyer and Noctor, 2005a).

In this review we summarize, discuss and hypothesize about
the occurrence of these thiol/disulfide containing proteins in
reproductive tissues, pointing out an increased importance of the
thiol-based redox regulation and signaling mechanisms in sexual
plant reproduction.

REDOX REGULATION BY ROS/RNS IN SEXUAL PLANT REPRODUCTION
Reactive species are produced in living cells as an unavoidable
consequence of their own metabolism (Foyer and Noctor, 2005a).
Apart from their activity damaging different macromolecules,
they have been shown to act as secondary messengers, reason why
the concept of oxidative stress has been re-evaluated (Foyer and
Noctor, 2005b). Taking into account that protein Cys residues are
particularly affected by reactive species, we review in this chapter
the most important results involving ROS and RNS at different
stages of the sexual plant reproduction.

Reactive species have been shown to increase in a rapid and
transient manner by specific molecular mechanisms for a proper
plant growth and development, including sexual plant repro-
duction (Foreman et al., 2003; Potocký et al., 2007). ROS and
NO have been involved in redox signaling taking place previ-
ously and during pollen-pistil interactions (Figure 1; Sharma
and Bhatla, 2013). A high production of H2O2, exclusively con-
fined to receptive stigmatic papillae was suggested to serve as
a redox signal promoting pollen-pistil interaction and/or ger-
mination, as well as a defense mechanism against microbe
attack (Figure 1A; McInnis et al., 2006a; Wilson et al., 2009;
Zafra et al., 2010). In parallel to ROS production, a Stigma-
Specific Peroxidase (SSP) was shown to be active only dur-
ing a short period of stigma receptivity in Senecio squalidus
(Figures 1A,B; McInnis et al., 2005, 2006b). In vitro experiments
also revealed that mature pollen grains produce a high level of
NO, which inhibits ROS production in the stigmatic papillae
(Figure 1B; McInnis et al., 2006a; Bright et al., 2009; Zafra et al.,
2010).

In addition, physiological mechanisms of ROS generation have
been indicated to be required for normal pollen tube develop-
ment (Figures 1B,C; Cardenas et al., 2006; Potocký et al., 2007,
2012). ROS production has been described to be mainly orig-
inated by the activity of specific isoforms of NADPH oxidases
(NOX) localized at the tip of tobacco pollen tube (Figure 1B),
whose activity was found to be increased by Ca2+ (Potocký
et al., 2007). This represents a conserved mechanism of polar-
ized cell tip growth (Bushart and Roux, 2007; Konrad et al.,
2011).

In cucumber germinated pollen, ROS and NO production
was specifically tip-localized during the initial germination steps,
although was extended along the pollen tubes and the pollen grain
later during germination (Figure 1B) (Šírová et al., 2011).

Both redox chemical agents and external conditions have
shown to alter the production of these reactive species (Šírová
et al., 2011). The addition of a reducer like ascorbate abolishes
this production probably due to its capacity to effectively scavenge
the intracellular ROS. The treatment with NO donors inhibits
pollen germination and growth, and the addition of NO scav-
engers increases pollen germination rates (Prado et al., 2004;
Šírová et al., 2011). NO seems also to be involved in the inhibition
of germination and tube growth after pollen exposure to UV-B
(Feng et al., 2000; He et al., 2007; Wang et al., 2010a,b). Curiously,
NO exerts just the opposite effect in gymnosperm pollens, since
it was shown that Pine pollen tube growth rate is accelerated by
NO donors, whereas NO scavengers affect contrary (Wang et al.,
2009a,b).
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FIGURE 1 | ROS/NO are implicated in plant reproduction signaling.

Model gynoecium of an Angiosperm. (A) Receptive stigma at high
magnification, before pollen-pistil interaction. Pollen grains are active NO
producers, while the receptive stigma papillae generate large quantities
of H2O2 and display enhanced peroxidase activity, in some cases in
the form of stigma-specific peroxidase (SSP). (B) Stigma and pollen
grains during diverse phases of their interaction. Both the enhanced

peroxidase activity and the high levels of H2O2 become significantly
reduced after pollen landing on the stigma and pollen germination, likely
through pollen-produced NO signaling. The germinating pollen grains and
the elongating pollen tubes produce ROS and NO, particularly at their
tips. (C) The embryo sac is reached by the pollen tube tip trough the
micropylar end. NO produced in micropyle could be involved in pollen
tube guidance.

Although the mechanisms controlling pollen tube guid-
ance and pollen-pistil interaction are still unknown (Boavida
et al., 2005; Higashiyama and Hamamura, 2008; Márton and
Dresselhaus, 2008) there is also evidence about the involvement
of NO as a key molecule at this regard (Prado et al., 2004).
Prado et al. (2008) showed that a Ca2+ specific response to NO
induces pollen tube re-direction toward the ovule. Prado’s work
also describes the detection of NO production in the micropyle,
where it was suggested to participate in pollen tube guidance to
the ovules (Figure 1C; Prado et al., 2008). The generation of reac-
tive oxygen species has also been involved in microsporogenesis,
usually throughout programmed cell death (Jiang et al., 2007;
Wan et al., 2007). In addition, it was recently shown that the male

germ cell fate critically depends on H2O2 levels of the precur-
sor cells (Kelliher and Walbot, 2012). Moreover, the molecular
models developed in order to explain self-incompatibility (SI) in
plants, usually include important roles for ROS or NO (McClure
and Franklin-Tong, 2006; McInnis et al., 2006a,b; Wilkins et al.,
2011).

Several of the detailed molecular mechanisms through which
ROS and NO exert these functions are beginning to be outlined,
and some of them involve thiol modifications. At this regard,
Cys residues in proteins are particularly affected by these reac-
tive species, and Cys-based signaling by ROS and/or RNS is a
well-described feature affecting an increasing number of pro-
teins, some of them from plants (Couturier et al., 2013; Corpas
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and Barroso, 2013). In bacteria, fungi or mammals, Cys modi-
fication by ROS and/or RNS has been described to affect DNA
binding properties of some transcription factors (D’Autreaux
and Toledano, 2007). In plant cells, the Cys-based actions of
RNS (S-nitrosylation) and ROS (oxidation) on NPR1 and TGA1
proteins regulate plant systemic defense (Tada et al., 2008;
Lindermayr et al., 2010). Protein S-nitrosylation is produced by
the interaction of specific Cys residues with NO generated by dif-
ferent types of RNS, and this modification is emerging as a crucial
regulatory mechanism involved in several aspect of plant physiol-
ogy (Corpas et al., 2013). As an example, the activity of NADPH
oxidases can be controlled by the S-nitrosylation of a C-terminal
Cys (Yun et al., 2011). NOX proteins are highly involved in pollen
tube growth and the subject of further regulation mechanisms
(Potocký et al., 2007, 2012).

S-nitrosoglutathione (GSNO), an abundant molecule in plant
tissues (Airaki et al., 2011) originated by S-nitrosylation of
reduced glutathione (GSH) (Broniowska et al., 2013) is con-
sidered a reservoir, vehicle and biological donor of NO in
plant cells (Corpas et al., 2013). Protein S-nitrosylation by
GSNO (S-transnitrosation) also seems to be a feasible physio-
logical mechanism for post-translational modification of pro-
teins (Begara-Morales et al., 2013), however, not yet sufficiently
described in plant reproductive tissues.

According to all these data, further experiments must be car-
ried out to identify key proteins involved in the regulation of
sexual plant reproduction via ROS or NO-mediated Cys oxida-
tions. The specific presence of redoxins at these stages (Table 1;
Figure 3) together with the importance of these reactive species
suggests a more critical thiol-based regulation of several stages of
the sexual plant reproduction than initially thought.

SPECIFIC REDOXINS INVOLVED IN ANTHER DEVELOPMENT AND MALE
GAMETOGENESIS
Successful sexual reproduction depends on the proper forma-
tion of specialized complex structures in the flower: anthers and
pistils. Initially, a group of somatic cells must switch from the
mitotic to the meiotic pathway to generate the haploid gametes.
All processes are developed according to both environmental and
developmental signals (Bhatt et al., 2001). Later, anther dehis-
cence will produce the release of mature pollen grains. Anther
development and male gametogenesis processes are known to be
critically influenced by the redox activity of specific thiol-based
redox proteins. CC-type GRXs and the redox chloroplastidial
system including CBSX (single cystathionine β-synthase domain–
containing proteins)/TRX/PRX proteins play important roles in
redox homeostasis and development in male reproductive tissues
(Figure 2) (Wang et al., 2009a,b; Yoo et al., 2011).

CC-type GRXs, (also named ROXY proteins), are conserved
plant-specific GRXs involved in anther and male gamete differ-
entiation and flower development (Figure 2A; Xing et al., 2006;
Wang et al., 2009a,b). The first evidence about such involvement
was described by Chaubal et al. (2003) during the characteriza-
tion of the maize mutant msca1. In this mutant, all anther cell
layers were transformed into non-differentiated vegetative tissues.
This phenotype was associated later with the lack of a GRX (Xing
et al., 2011), and recently corroborated during the screening of

male sterile lines in maize (Timofejeva et al., 2013). Culture of
the msca1 mutant under hypoxia conditions (low oxygen / H2O2)
allows a rescue of the differentiation of the germinal line in the
mutant flowers (Kelliher and Walbot, 2012).

However, probably the most important data concerning the
role of ROXY proteins in anther development was provided by
studies based on A. thaliana. Initially, the redox activity of the
GRX ROXY1 was identified as a major regulator of early petal
organ initiation and further steps of floral morphogenesis (Xing
et al., 2005). Afterwards, the functionally redundant GRXs ROXY
1 and 2 were described to perform essential redox-dependent
activities in early steps of anther and tapetum differentiation
(Figure 2A; see anther structure in Figure 2B) by affecting the
expression of a large variety of anther genes supporting critical
roles (Xing and Zachgo, 2008). During anther development, they
act via the redox activation of TGA9 and 10 transcription fac-
tors, probably among other protein targets (Murmu et al., 2010).
Arabidopsis ROXY proteins were also suggested to be involved
in male gametogenesis (Xing and Zachgo, 2008). In fact, this
involvement has been recently evidenced in monocots (Hong
et al., 2012). These authors have shown that the rice MIL1
gene encodes for a CC-type GRX which is not only involved
in the differentiation of the surrounding somatic layer of the
anthers, but also in the switch of microsporocytes from mitosis
to meiosis (Figure 2A). According to these results, pollen mother
cells contain specific meiosis-initiation machinery in which this
nuclear GRX (MIL1) plays preponderant roles, probably acting
also via TGA-type transcription factors. In this context, the results
from Kelliher and Walbot (2012), demonstrating that changes
in the redox status critically control the male germ lineage fate
in maize, suggest a master or integrator role of these types of
GRXs in the redox regulation associated with anther and gamete
differentiation.

In the anthers, the chloroplast redox system comprising
CBSXs, TRXs and peroxiredoxins (PRXs) is involved in anther
dehiscence and therefore pollen release via the control of H2O2

(Ok et al., 2012), which ultimately allows connecting plant nutri-
tional information and pollen release (Figure 2B). CBSX are
redox proteins characterized by sharing only a single pair of
Cystathione β-Synthase domains (CBS) in their structures that
belong to the CBS-containing protein (CDCPs) superfamily.
Arabidopsis genome contains six genes encoding CBSX proteins
(CBSX1-6), which have recently been described as cellular sensors
involved in the control of plant redox homeostasis and devel-
opment (Yoo et al., 2011). They act interacting and increasing
the activity of TRXs by sensing cellular changes of adenosine
nucleotides. CBSX1 is a member of this family in Arabidopsis,
which is preferentially expressed in the chloroplast of the anther.
This protein is able to interact and increase the activity of all
four types of plastidial TRXs (f, m x and y). This augmenta-
tion is favored by the presence of AMP, but not by ADP or ATP
(Figure 2B; Yoo et al., 2011; Ok et al., 2012). The overexpres-
sion of CBSX1 or CBSX2 in Arabidopsis transgenic plants yields
plants showing a severe sterility as a consequence of the inhibi-
tion of their anther dehiscence, which prevents the liberation of
mature pollen grains (Yoo et al., 2011; Jung et al., 2013). This
sterility is due to a decrease of H2O2 in the anthers, which causes

www.frontiersin.org November 2013 | Volume 4 | Article 465 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Plant_Physiology/archive


Traverso et al. Redoxins in sexual plant reproduction

FIGURE 2 | Thiol-based redox proteins are critically involved in male

gametogenesis, anther development and dehiscence. (A) Ontogenic
development of the male germline. CC-type GRXs are essential for the
switch from mitosis to meiosis in the microsporocytes (blue arrow),
which ultimately originate the haploid pollen grains. They also participate
in the development of the anther layers surrounding the
microsporocytes (red arrows). (B) Diagram representing the histological

structure of an anther (transversal section) and major changes occurring
after dehiscence. H2O2 is required for cell wall lignification, which
induces a thickening of the endotecium leading to anther dehiscence.
CBSXs can regulate the level of H2O2 via their ability to active TRXs,
which ultimately reduce PRXs in the plastids. This activity is enhanced
by the presence of AMP, thus connecting the nutrition state with
anther development.

a lignin deficiency that originates a failure in the secondary wall
thickening of the endothecium layer, and subsequently a very
narrow crevice in the stomium area (region of the anther where
dehiscence occurs and pollen grains leave the anthers; Figure 2B).
Male sterility caused for this same reasons (a limitation of H2O2)
have previously been reported (Karlsson et al., 2005; Villarreal

et al., 2009). According to these authors, CBSX1 regulates the
level of H2O2 via the activation of plastid TRXs, which reduce
and activate peroxiredoxins (PRX) directly detoxifying this radi-
cal (Figure 2B). In our opinion, an evaluation of the roles of other
enzymes or non-enzymatic systems known to be involved in the
homeostasis of H2O2 would be of great interest at this regard.
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FIGURE 3 | Redoxins and related proteins are critical for pollen-pistil

interactions. Illustration of the stigma and style during pollen-pistil
interaction. (A) Representation of a pollen grain and the pollen coat. The
presence of redoxins has been described both within the pollen grain and
in the pollen coat. It is particularly remarkable the specific and conserved
occurrence of h-type TRXs in the pollen grains, which can be secreted to
the pollen coat. We hypothesize that N-terminal lipidations may play a role
in this mechanism of secretion. Also, some redoxins synthesized in the
tapetum may become integrated into the pollen coat after tapetum
degeneration (B) Image representing the initial stages of the pollen-stigma
interaction. Upon pollen arrival, pollen starts to hydrate, rapidly releasing

GRXs present in the pollen coat. Also, the stigmatic papillae are rich in
subgroup 1 TRXs. These TRXs have been involved in SI processes in
Brassica although their occurrence has also been described for
self-compatible species. (C) Representation of a pollen tube growing
throughout the transmitting tissues of the style. Different types of redoxins
are present in the pollen tube, some of them being secreted to the
extracellular matrix of the transmitting tissue. Other redoxins are mainly
expressed in stylar cells and may also be secreted to the extracellular
matrix. Several redoxins related to photosynthesis are specifically
expressed in the cells of the stylar tissues, which suggest that high
photosynthetic rates are probably supporting pollen tube growth.

For example, the NADPH-TRX-Reductase C (NTRC) protein has
been shown to be the main reducer of type-2 PRXs in chloro-
plasts (Kirchsteiger et al., 2009; Pulido et al., 2010). Apoplastic
type III peroxidases (POXs), which are involved in cell wall poly-
merization via H2O2 regulation, should be assessed into their
participation in this process (Hiraga et al., 2001). It is also well
known the role of the ascorbic acid as main redox buffer in
apoplast compartments (Foyer and Noctor, 2005a). Finally, over-
expression of ROXY GRXs has also been shown to alter the level
of H2O2 (Wang et al., 2009a,b).

Plant genomes contain higher number of genes encoding
redoxins (like TRXs or GRXs) than other species, allowing them
assigning specific isoforms to precise plant metabolic functions.

This includes anther development and male gametogenesis.
Remarkably, a similar case is found in mammals, where male
germ cells are endowed with three testis-specific thioredoxins
named Sptrx-1, Sptrx-2, and Sptrx-3, which are specially involved
in spermatogenesis (Jiménez et al., 2004; Miranda-Vizuete et al.,
2004).

UNEXPECTED AND SPECIFIC OCCURRENCE OF REDOXINS IN PLANT
REPRODUCTIVE TISSUES SUGGEST KEY FUNCTIONS IN POLLEN-PISTIL
INTERACTIONS
Once a mature and dehydrated pollen grain lands on the appro-
priate stigma, it rapidly hydrates and incorporates nutrients from
the stigma exudates (wet stigmas) or the stigma papillae (dry
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stigmas). This fact transforms the pollen grain into a polarized
cell, which organizes its cytoplasm and cytoskeleton to support
the extension of a tube within minutes after hydration (Edlund
et al., 2004). This tube must grow to enter the transmitting tract
along the style and finally reach the embryo sac where it will
deliver the sperm nuclei that will participate of the double fer-
tilization. At these stages, it is required a continuous interchange
of both physical and chemical signals between partners (pollen,
stigma, ovules. . . ), which has to take place in a tight time frame
(Dresselhaus and Franklin-Tong, 2013). Redox regulation and
signaling by reactive species (Figure 1; see part 2) and probably
by some redoxins (Table 1; Figure 3), might be critically involved
in these signal exchanges.

Redoxins in pollen grain
TRXs h from subgroup 1 (Gelhaye et al., 2004), and GRXs are
among the most abundant redoxins present in the pollen grain
and the pollen coat (Figure 3). THL-1 is an h-type TRX that
was immunodetected as a B. rapa extracellular pollen protein
(Toriyama et al., 1998). However, although THL-1 is a well-
known stigmatic protein involved in SI (Cabrillac et al., 2001),
there is no clear data about its function in the pollen coat. The
Arabidopsis h-type TRXh4 was shown to be expressed in the
pollen grain and the pollen tube (Reichheld et al., 2002). Their
counterparts AtTRXh1 and AtTRXh5, and the GRX AtGrxC2 pro-
teins were detected in the pollen tube but not in the mature
pollen grain. AtGrxC2 was also identified as a secreted pro-
tein (Figures 3A,C; Ge et al., 2011). Molecular and proteomic
approaches also identified a GRX from triticale as a major pollen
protein rapidly released upon pollen hydration on the stigma
papillae (Figure 3B; Zaidi et al., 2012). This GRX contains a
Gly in position 2, predicted to be co-translationally modified by
N-myristoylation (N-MYR), a type of lipidation assisting pro-
tein anchoring to membranes, which therefore could account
for secretion (Figure 3B; Denny et al., 2000; Utsumi et al.,
2005; Martinez et al., 2008). The occurrence of this N-terminal
modification has been recently evidenced in vitro for a simi-
lar GRX, AtGrxC1 from Arabidopsis (At5g63030) (Traverso, Pers.
Commun.). It must be mentioned here that some of the proteins
of the pollen coat are originated in the tapetum, and then incor-
porated into the pollen coat after the degeneration of this layer
(Figure 2B), a mechanism that could be also suggested for the
GRX released after hydration (Figures 2A,B; Zaidi et al., 2012).

The h-type TRXs belonging to the subgroup 3 (Gelhaye et al.,
2004) were initially identified as a highly conserved group of
pollen-expressed TRXs from both mono and dicots, featured by
the presence of a N-terminal extension which contains conserved
Gly and Cys residues in positions 2 and 4, respectively (Juttner
et al., 2000). Curiously, these N-terminal extensions have been
recently identified as a substrate for N-terminal myristoylation
(N-MYR) as well as N-terminal palmitoylation (N-PAL). This
last is another type of lipidation, usually identified in plasma
membrane proteins (Traverso et al., 2008, 2013). No clear infor-
mation is available concerning the specific roles or the subcellular
localizations of these TRXs in pollen, although a member of this
subgroup in A. thaliana (AtTRXh9) was shown to move from cell
to cell via its N-terminal extension (Meng et al., 2010). According

to these results, we hypothesized that these lipidations can be
involved in the release of this subgroup of TRXs to the extracel-
lular matrix, where others TRXs and redoxins have already been
identified (Figure 3A; Ge et al., 2011; Zaidi et al., 2012).

Other types of redoxins have been identified as highly
expressed in pollen. Two independent transcriptomic analyses
(Becker et al., 2003; Lee and Lee, 2003) have shown ACHT3 TRX
to be highly expressed in Arabidopsis pollen. However, no func-
tional data are associated with this presence. In addition, PRXs
are also among the redoxins displaying specific localization in
pollen grains (Figure 3A). Transcriptomic analysis of Arabidopsis
revealed two PRXs among the 50 most expressed genes in pollen.
One of them (TPx2) showed increased expression under cold
treatment (Lee and Lee, 2003). In addition, some type II PRXs
from Arabidopsis showed specific expression patterns associated
with male reproductive tissues (Figures 3A,C) (Bréhélin et al.,
2003). The cytosolic AtPRXII-C is almost exclusively expressed in
mature pollen, whereas its counterpart AtPRXII-D is detected in
mature pollen, germinating pollen and pollen tubes, where both
proteins could be reduced by AtTRXh4 (Reichheld et al., 2002;
Bréhélin et al., 2003). Finally, the plastid-addressed AtPRDII-E
has been described as mainly expressed in immature anthers and
ovules (Bréhélin et al., 2003).

Considering that no clear functional data are associated with
this specific occurrence in pollen grains, further work is necessary
to better understand the precise redox mechanisms underlying
pollen function. It is well-known that when pollen grains reach
the appropriated stigma, they release a number of proteins from
pollen coat, which together with the proteins released from pistil
surrounding tissues, seem to play important roles during pollen-
pistil interaction, adhesion, germination or pollen tube growth as
well as providing protection against pathogen attack (Andersson
and Lidholm, 2003; Grote et al., 2008; Zaidi et al., 2012). In a dif-
ferent context, redoxins from the pollen coat have been attributed
with some allergic potential (Toriyama et al., 1998). However,
there is no evidence supporting this fact, with the exception of
the description of a 1-Cys PRXs and a h-type TRX as respiratory
wheat flours allergens from maize (Fasoli et al., 2009; Pahr et al.,
2012).

Occurrence of GR/GRX and NTR/TRX systems during pollen
germination and pollen tube growth
Several works based on the characterization of A. thaliana mutant
lines have evidenced that GRXs and TRXs are specifically involved
in pollen germination and pollen tube growth. The Arabidopsis
double mutant ntra ntrb, lacking NTR activity to reduce cytoso-
lic h-type TRXs, showed a reduced fitness due to defects in pollen
functions (Reichheld et al., 2007). Under this genetic background,
GRXs are also able of directly reduce h-type TRXs although in
lesser extension, thus revealing a more complex in vivo inter-
play between the TRX and glutathione pathways (Reichheld
et al., 2007). In fact, the additional disruption of the glutathione
reductase 1 gene (GR1) under this double mutant background
(triple mutant ntra ntrb gr1) led to a pollen lethal phenotype
(Marty et al., 2009). Noteworthy, the characterization of the single
mutant gr1 demonstrated that a residual reduction of GSSG could
be directly attributed to h-type TRXs, reason why this NTR/TRX
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system was described as a functional backup for the activity of
GR1 (Marty et al., 2009).

The characterizations of the double (ntra ntrb) and triple
mutant (ntra ntrb gr1) headed to other important conclusions.
Defects in pollen grains were not associated with gametogene-
sis, since mature pollen grains inside the anthers were viable in
both mutants (Reichheld et al., 2007; Marty et al., 2009). Then
it is important to elucidate, in our opinion, in which subsequent
process these redox systems are critically involved: (i) pollen ger-
mination, (ii) pollen tube growth, (iii) polarity or guidance, or
(iv) pollen tube–embryo sac interactions and fertilization.

A second conclusion is that the lack of both redox systems
drastically affected male gametophyte functions, contrary to what
occurred in the female haploid gametophyte. The unpaired NTR-
TRX System (NTS) in the double ntra ntrb mutant yielded
reduced fitness in pollen grains, probably derived from a lim-
ited reduction of h-type TRXs, although the diploid sporophyte
or the female gametophyte did not show such drastic phenotypes
(Reichheld et al., 2007). In a similar way, the ntra ntrb gr1 triple
mutant produced a lethal phenotype in pollen, while the female
embryo sac was unaffected (Marty et al., 2009). This strong differ-
ence is probably associated with the exceptional burst metabolism
occurring during pollen germination, that produces important
redox imbalances and would justify the exceptional requirement
of both thiol-dependent redox GR/GRX and NTR/TRX systems.
This is in agreement with the results compiled in our present
review, showing how the h-type TRXs or the GRXs are specifically
found in pollen grain, pollen tube or pollen coat.

Within this context, it must be noted the importance of GSH
and auxins for pollen functionality. Zechmann et al. (2011) have
shown that GSH availability is essential for pollen germination
and early elongation steps of the pollen tube, since its depletion
triggers disturbances in the auxin metabolism, which led to inhi-
bition of pollen germination. Considering that NTR/TRX and
GSH pathways are involved in auxin homeostasis (Bashandy et al.,
2010, 2011), we suggest that both redox systems can act somehow
linking the GSH cellular status and auxin downstream signals
during and/or after pollen germination.

Redoxins in female reproductive tissues
TRXs h have been shown to be specifically expressed in the
stigmatic papillae of different plants (Figure 3B). The PsTRXh1
from P. sativum has been immunolocalized in the receptive stig-
matic papillae and the mature pollen grain of this plant (Traverso
et al., 2007). THL-1 from B. rapa, a TRXs h from the same sub-
group, which has been involved in SI (Cabrillac et al., 2001)
also shows a similar pattern of expression in flower tissues than
PsTRXh1. Considering that P. sativum is a self-compatible species,
the role associated with this dual localization in pea flower is
unlikely implicated in SI. Besides, an h-type TRX from sub-
group I was included within the 50 most highly expressed genes
characterized in a transcriptomic analysis from saffron stigmas
(D’Agostino et al., 2007), and another TRX, h-type Arabidopsis
h1 was distinctively detected in the style (Reichheld et al., 2002).

Classical chloroplastidial TRXs or TRX-related proteins have
also been associated with pistils (Figure 3C). For example, expres-
sion of Pea TRXs m and f types was specifically detected in pollen

grains, tapetum, style and ovules (de Dios Barajas-López et al.,
2007). Other plastidial TRX-related proteins like the NTRC or
CP12 redox proteins are also present in the style (Figure 3C).
CP12 are small, dithiol-based redox-sensitive proteins which
together with the plastidial TRX f, regulate the activity of the
Calvin cycle in response to rapid light changes (Howard et al.,
2008). The redox state of CP12 has been shown to be regulated by
TRXs (Marri et al., 2009). The Arabidopsis genome contains three
genes encoding CP12 proteins (CP12-1, 2 and 3), which could
be involved in plant reproduction since CP12-1 and 2 are specif-
ically expressed in the style (Singh et al., 2008). No clear roles
are associated with these expressions, although CP12-antisense
lines of tobacco and Arabidopsis display a complex phenotype
including reduced fertility (Singh et al., 2008). AtNTRC is also
a redox plastidial protein characterized as the principal reducer of
2-Cys PRXs (Kirchsteiger et al., 2009; Pulido et al., 2010). This
protein allows the use of NADPH to maintain the redox sta-
tus of the chloroplast (Spínola et al., 2008), as well as acting as
a general molecular switch able to convert NADPH into redox
signal in non-photosynthetic plastids (Kirchsteiger et al., 2012).
Remarkably, this protein also shows a high level of expression in
the style (Kirchsteiger et al., 2012).

Pollen tube growth throughout the style depends on nutri-
ents supported by female tissues (Lind et al., 1996; Taylor and
Hepler, 1997; Wu et al., 2001). The presence of photosynthesis
regulatory proteins like those described here might be derived
from the necessity of extra nutrients from the stylar photosyn-
thetic cell to feed pollen tubes. However, we cannot exclude
other possibilities like their involvement in the control of the
redox imbalance derived from the burst metabolism of the grow-
ing pollen tube. Under this context, the redox state of two key
enzymes of the Benson-Calvin cycle (fructose-1,6-bisphosphatase
and phosphoribulokinase) could be regulated by S-nitrosylation,
since they have been previously identified as S-nitrosylated pro-
teins (Lindermayr et al., 2005; Begara-Morales et al., 2013).

SELF-INCOMPATIBILITY AND h-type TRXs
Self-incompatibility (SI) is a mechanism adopted by flow-
ering plants to prevent self-fertilization as well as to avoid
crossings with genetically-related plants, promoting outcross-
ing and subsequently, genetic diversity in the offspring (Iwano
and Takayama, 2012). Therefore, this mechanism has been
critically relevant on the dominant position reached by flow-
ering plants in the biosphere during evolution (Gaude and
Cabrillac, 2001). Genes involved in SI display high allelic vari-
ability, and are referred as haplotypes in the literature. SI sys-
tems are based on the discrimination between male-specificity
and female-specificity determinants (S-determinants) localized in
the surface of pollen grains and the stigmatic papillae respec-
tively, both encoded at the S-locus. Therefore, SI depends on
a specific interaction between male and female S-determinants
derived from the same or different S-haplotypes (depending
on the plant family. For a review see Iwano and Takayama,
2012). Although these determinants differ among plant species,
the redox activity of the TRXs h has been described as crit-
ically involved within most of the proposed SI molecular
models.
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In the plant Phalaris coerulescens, the SI model system is based
on two multiallelic not-linked loci, called S and Z (Hayman and
Richter, 1992; Li et al., 1997; Klaas et al., 2011). Locus S encodes
a monocot-conserved protein exclusively expressed in mature
pollen. Its N-terminal domain is highly variable and contains
the allelic information, whereas the C-terminal end contains a
conserved TRX h-type motif responsible of the catalytic activ-
ity and its disruption yields the lost of the SI (Li et al., 1994,
1995). Although no enough data are available for assembling a
clear model, the redox activity of the TRX domain has been shown
to be essential for the SI response in P. coerulescens (Li et al., 1996).

In the classical model of Brassica, several genes are involved in
SI, all of them linked to the S-locus. Two of these genes encode
for the female and male determinants, the S-locus Receptor
Kinase (SRK) expressed in the stigma-papilla cells and its lig-
and, the S-locus Cys rich protein (SCR) localized in the pollen
coat (Schopfer et al., 1999; Takasaki et al., 2000). Pollen rejec-
tion is achieved when SRK recognizes SCR coming from the
same S-allele. SRK is a transmembrane protein with a serine
threonine kinase activity in the cytoplasmic region, which trig-
gers the downstream biochemical pathways of the SI response
(Giranton et al., 2000). In a classical model suggested by Cabrillac
et al. (2001), this kinase activity is reversibly blocked by the
direct interaction with a h-type TRX (THL-1) in the subcortical
cytoplasmic side of stigma papillae cells, and only the allele-
specific interaction between SCR and SRK produces the release
of the TRX, therefore releasing the kinase activity (Cabrillac
et al., 2001). However, according to Ivanov and Gaude (2009a),
SRK is mostly intracellular, and the scarce part present in dif-
ferent domains of the plasma membrane can interact with SCR.
After ligand recognition, the receptor-ligand complex is inter-
nalized in endosomes enriched in the negative regulator TRX h
(Ivanov and Gaude, 2009a). In fact, these authors proposed a
new model, the SI “domain” model, where the role of the TRX
is mainly relegated to the endomembrane system (Ivanov and
Gaude, 2009b). h-type TRXs are the biggest cluster of plant TRXs,
encoded by almost eleven TRXs in the genome of A. thaliana,
which have been usually described as soluble proteins due to the
lack of transit peptides (Florencio et al., 1988). However, some
TRXs h have recently been described to be modified by lipi-
dation (myristoylation and palmitoylation) at their N-terminal
extensions. These modifications result in their localization to the
endomembrane system or to the plasma membrane (Traverso
et al., 2008, 2013) and are in agreement with the endomem-
brane localizations of the TRXs h shown by Ivanov and Gaude
(2009a). Independently from the models suggested, the role of the
TRX h in Brassica SI mechanism was demonstrated, since anti-
sense transgenic lines for THL-1 displayed a limited level of SI
only (Haffani et al., 2004). Furthermore, it has been shown that
this role depends on both the redox activity of the TRX, and the
occurrence of a specific sequence in their active centers -WCPPC-
(Mazzurco et al., 2001).

The SI model mechanism described for Solanaceae, Rosaceae,
and Plantaginaceae families is based on the activity of secreted S-
RNases. In all three families, compatibility is also controlled by
a polymorphic S-locus containing at least two genes. S-RNases
determine the specificity of pollen rejection in the pistil, and

S-locus F-box proteins fulfill this function in pollen. In N. alata,
Juárez-Díaz et al. (2006) suggested the participation of a h-type
TRX (NaTRXh), which interacts with the S-RNase in the extracel-
lular matrix of the stylar transmitting tract (Figure 3C). Although
these authors suggested that NaTRXh was secreted due to some
information present in its N-terminal extension, the secre-
tion mechanism remained unexplained. Remarkably, NaTRXh
has also been characterized as a N-myristoylated membrane-
associated protein. Therefore, this characteristic could be involved
in its secretion (Figure 3C; Traverso et al., 2013).

ROS and RNS have also been shown to be involved in SI
mechanisms. In the Papaver model of SI (where no TRXs have
been directly implicated), SI response seems to be mediated by
ROS/NO redox signaling. Allele-specific interaction was shown to
induce a rapid and transitory increase of ROS and NO in Papaver
rhoeas pollen tubes. In this model, SI is triggered by an increase
of intracellular Ca2+ in the pollen tube, which ultimately origi-
nates actin reorganization and programmed cell death resulting
in the destruction of the self-pollen. ROS/NO seem to act medi-
ating the signal between calcium and PCD (Wilkins et al., 2011).
In the S-RNase-based model of SI response, the S-RNase specifi-
cally disrupts tip-localized ROS of incompatible pollen tubes via
arresting ROS formation in mitochondria and cell walls of Pyrus
pyrifolia (Wang et al., 2010a,b).

All these SI mechanisms usually originate the rejection of
the allele-incompatible pollen grains by affecting the pollen tube
growth throughout the stigma and the style. Although indepen-
dent SI molecular mechanisms are known, which indicates that SI
has clearly evolved independently several times during plant evo-
lution (Takayama and Isogai, 2005), the involvement of the TRXs
(and probably other redoxins) as well as the signaling mediated by
ROS or NO have been evidenced in different SI models proposed.
Further experiments are needed to clarify the role of redoxins in
all these models within the general context of redox regulation
and signaling, which includes reactive species-mediated signaling.

CONCLUDING REMARKS
In this review, we have listed and discussed the most remarkable
evidences suggesting that molecular and cellular events involved
in sexual plant reproduction are critically influenced by plant-
conserved and specific thiol-based redox mechanisms, which
include ROS and NO together with several isoforms of TRXs,
GRXs and other redox-related proteins. These plant reproductive-
specific redox mechanisms likely appeared as a consequence of the
high number of isoforms of redoxins available, which emerged
during plant evolution and somehow resulted in beneficial char-
acteristic for plant physiology. However, and comparatively with
non-reproductive plant tissues and organs, much is still unknown
about the nature, presence, localization and molecular features of
these proteins.
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