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Relationships between the flammability properties of a given plant and its chances of
survival after a fire still remain unknown. We hypothesize that the bark flammability of a
tree reduces the potential for tree survival following surface fires, and that if tree resistance
to fire is provided by a thick insulating bark, the latter must be few flammable. We test, on
subalpine tree species, the relationship between the flammability of bark and its insulating
ability, identifies the biological traits that determine bark flammability, and assesses their
relative susceptibility to surface fires from their bark properties. The experimental set
of burning properties was analyzed by Principal Component Analysis to assess the bark
flammability. Bark insulating ability was expressed by the critical time to cambium kill
computed from bark thickness. Log-linear regressions indicated that bark flammability
varies with the bark thickness and the density of wood under bark and that the most
flammable barks have poor insulating ability. Susceptibility to surface fires increases from
gymnosperm to angiosperm subalpine trees. The co-dominant subalpine species Larix
decidua (Mill.) and Pinus cembra (L.) exhibit large differences in both flammability and
insulating ability of the bark that should partly explain their contrasted responses to fires
in the past.
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INTRODUCTION
Fire is a fundamental disturbance process in terrestrial biomes
acting on the ecosystem composition and functioning (Bond
et al., 2005). Forecasting consequences of fire regime changes
on ecosystem functioning with on-going global changes needs
a comprehensive understanding of various mechanisms involved
in plant response to fire (Lavorel and Garnier, 2002), particu-
larly for ecosystems such as those at high altitude that are very
sensitive to climate (Thuiller et al., 2005). Response of plant to
fire differs between functional types according to biological traits
(Noble and Slatyer, 1980; Lavorel et al., 1997; Pausas, 1999). The
growing interest in the biological concept of flammability and its
application in fire ecology address the linkages between plants
and fire (Pausas and Moreira, 2012), and attempts to under-
stand the role of fire in generating trait divergence and species
persistence in fire-prone ecosystems (Keeley et al., 2011; Pausas
and Schwilk, 2011). Authors argue that plant flammability prop-
erties affect the community fire behavior (Scarff and Westoby,
2006; Schwilk and Caprio, 2011) and could be under positive
selection in fire-prone ecosystems (Mutch, 1970; Bond and Midg-
ley, 1995; Pausas et al., 2012). Surprisingly, few explore the effect
of flammability on the plant response to fire whereas increased
flammability reduces chances of individual survival (Cohn et al.,
2011). Assessing potential impacts of the plant flammability on
the aboveground phytomass seems irrelevant for herbs, shrubs or
saplings because these life forms are most likely to be completely
burned by fire even for low-intensity fires. However, the flamma-
bility of fire-exposed tree tissues (mostly trunk bark, branches,
and leaves) is of greater relevance to assess the tree susceptibility

to top-kill, i.e., to endure death of the aboveground phytomass
whatever the resprouting capacity.

Top-kill was commonly related to damages to stem and
crown through height analyzes of burning (Van Wagner, 1973;
Hély et al., 2003; McHugh and Kolb, 2003; Catry et al., 2010).
While many identified surrogates of fire damage to explain the
probability of top-kill (e.g., Fernandes et al., 2008), the under-
lying functional processes still remain to be elucidated for the
emergence of a general comprehensive mechanistic model of
fire-induced top-kill (Michaletz and Johnson, 2008), as well
as the definition of traits involved in tree response to fire
(Brando et al., 2012). Physiological explanations of post-fire stem
mortality relate to the extent of thermal degradation of living
tissues involved in hydraulic conductance, i.e., phloem (carbohy-
drate transport function), xylem (water and nutrient uptake) and
cambium (source of phloem and xylem; Rundel, 1973; Michaletz
et al., 2012), although cambium necrosis have been suggested as
the main surrogate (Michaletz and Johnson, 2007). Bark thick-
ness is an adaptive trait in a wide range of fire prone ecosystems
(Jackson et al., 1999; Keeley et al., 2011) and was shown to be the
primary determinant of cambial resistance to fire injury (Harmon,
1984; van Mantgem and Schwartz, 2003; Lawes et al., 2011) and
thereby of tree top-kill (Dickinson and Johnson, 2001). Assess-
ing the susceptibility to top-kill of tree species that dominated
surface-fire prone subalpine forests of the Alps (e.g., Genries et al.,
2009b) is critical facing an increasing fire risk (Schumacher and
Bugmann, 2006) due to global warming (Im et al., 2010) and
fuel build-up following land-use abandonment (Chauchard et al.,
2010; Zumbrunnen et al., 2011).
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We assume that a flammable bark should increase the fire sever-
ity on inner vascular tissues and especially when bark is not deep
enough to provide to trees the protection against the surround-
ing radiant heat. Specifically bark flammability may promote an
increase in the likelihood of vascular cambium necrosis and then
rely to tree response to fire by enhancing the probability of top-
kill, or in a lesser extent by reducing the photosynthetic activity
(Ducrey et al., 1996). To explore how and on what basis bark
flammability vary depending on species and bark thickness, we
performed flammability tests on eight dominant subalpine tree
species of Alpine ecosystems. Flammability tests were carried out
on dried samples of the bole outermost surface of trees for the sake
of standardization, i.e., to remove differences in moisture that
could have been induced by environmental variability between
sites during sampling, and because of rehydrating bark and wood
indifferently would lead to experimental bias. Even if these lab-
oratory tests do not actually mimic field conditions (Fernandes
and Cruz, 2012), flammability is a process whose variability is
controlled by biological traits that can be assessed making stan-
dardized experiments (Pausas and Moreira, 2012). So we aim to
test (1) the relations between bark flammability and bark insulat-
ing ability, i.e., bark thickness, and (2) to identify what bark and
wood traits tie with bark flammability under low moisture con-
ditions, i.e., when wildfires are most likely to occur and affect the
trees. Finally, we aim (3) to rank the subalpine trees susceptibility
to surface fires according to their bark properties. We hypothesize
that bark thickness and flammability are two interrelated determi-
nants of a fire susceptibility syndrome (Figure 1), i.e., thick barks
must be few flammable to provide fire resistance to trees.

MATERIALS AND METHODS
SAMPLING
Subalpine communities are dominated by gymnosperm trees, e.g.,
larch (Larix decidua Mill.), Arolla pine (Pinus cembra L.), moun-
tain pine (Pinus uncinata Mill.), spruce (Picea abies Karst.) and fir
(Abies alba Mill.). The main associated angiosperm trees in terms
of occurrence and biomass are Betula pendula Roth. (silver birch),
Salix caprea L. (goat willow) and Sorbus aucuparia L. (rowan).

FIGURE 1 |Tree susceptibility to fire-induced top-kill (conceptual

model); the cambium insulating ability of tree (as a surrogate of the

insulating ability of vital conducting tissues) and the propensity of the

bark to burn and char, i.e., the bark flammability, express both the tree

susceptibility to endure lethal fire injuries.

These eight species were sampled in the Maurienne valley (Savoy,
French Alps) – one of the driest area of the Alps – from situa-
tions with similar ecological contexts, viz. north-facing slopes at
altitudes between 1900 and 2000 m a.s.l.

Bark flammability parameters were quantified for 80 trees by
performing burning tests from samples of the trunk outermost
surface (i.e., bark over sapwood). Ten trunks per species, in the
diameter-class 7–10 cm, were sampled at ∼50 cm height, the height
where fire-induced injuries are likely to occur in these surface-
fire prone ecosystems (Genries et al., 2009b). Logs were stored for
6 months away from moisture, to allow natural air-drying without
altering the physico-chemical properties of bark and wood. Sam-
ples for burning tests were extracted from the peripheral parts of
logs (outer bark, phloem, and sapwood) using a circular saw to
maximize standardization. Specifically the bark surface exposed
to heat and the inner wood volume were the same for all samples
(3 × 2 cm area of bark and 1.5 cm sapwood depth in radial section).
Differences in dry mass between samples mirror differences in
wood density (WD).

BIOLOGICAL TRAITS
For each log, three bark traits were measured from samples for
burning tests while WD was measured from supplementary sam-
ples of sapwood cut under bark. Wood density (WD, g × cm−3) is
defined as the ratio given by the oven-dried mass of a wood sam-
ple divided by its volume. Volume measurements were obtained
from the geometrical dimensions of the wood core (Chave et al.,
2006). The bark traits: bark thickness (BT, mm), bark roughness
and proportion of outer bark (rhyt idome) over entire bark, were
measured with a WinDendro 2009 device (© Regent Instrument,
Québec) from all samples for burning tests. BT was estimated from
the maximum value of 10 measurements per sample. In order to
obtain quantitative estimates of bark fissure-depth and degree of
bark roughness for a given BT (i.e., the bark thickness variability as
proportion of the bark thickness), bark roughness was estimated
for each sample as follows:

y = max (BT) − min (BT)

max (BT)
(1)

The bark insulating ability is given by the critical time to cambium
kill which was computed from BT. The time for kill the cambium
is directly proportional to the bark thickness squared (Hare, 1965;
Vines, 1968; Peterson and Ryan, 1986; Hengst and Dawson, 1994;
Lawes et al., 2011). We choose the simplified formula of Peterson
and Ryan (1986):

τc = 2.9BT2, (2)

where the critical time for cambium kill (minutes), τc , is calculated
from bark thickness, BT (cm).

FLAMMABILITY TESTS AND PARAMETERS
Samples were dried in an oven for 72 h at 30◦C to ensure gen-
tle and uniform drying and to prevent peeling of bark. Samples
were randomly selected for burning. The 80 flammability tests (10
per species) were carried out in a fume hood using a constant
radiant heat from an epiradiator (reference UNE 23729-90-IR, the
bark side of each sample was uniformly exposed to 215 ± 6◦C,
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mean ± SD) with a thermocouple and a digital scale connected
to data-loggers (measures of temperature and sample mass with a
time resolution of 2 s). The relative amount of heat released was
approximated with as the temperature recorded by a thermocou-
ple 1 cm above the sample. Quantifying flammability properties
of the aboveground outermost surface of trees required to focus
on bark ignitability and on the depth of combustion from bark
to inner sapwood. A burning experiment thus began when the
sample was exposed to the heat source, and was considered com-
plete after a standard time interval (180 s) to take into account
only the first times of bark and wood combustion than can occur
in subalpine Alpine ecosystems during slow-moving surface fires
(Genries et al., 2009b). At the end of the experience, all sam-
ples were still burning. For each flammability test, the ignition
delay was noted and the bark temperature at ignition point (igni-
tion temperature) was recorded. The Table 1 provides the set of
experimental variables used to describe bark flammability. The
heating rate, the heat release, the burning, and mass loss rates were
computed on the entire experiment duration (flameless pyrolysis
stage followed by flaming combustion stage). The burning rate
and the rate of mass loss were also computed on the time period
restricted to the flaming combustion period in order to assess the
consumption ability of the bark regardless of its intrinsic ability to
ignite.

DATA ANALYSIS
Multivariate analysis of species flammability was performed by
Principal Component Analysis (PCA) applied to all flammabil-
ity variables. Ellipses corresponding to 95% confidence intervals
(mean ± SE) were calculated, based on the average coordinates
of species, as a means of representing intra-specific variation. The
species position on a given axis was tested by the v-test (modi-
fied t-test, Lebart et al., 2000). Individual scores of the two first
principal components of the PCA were added in a flammabil-
ity index φ to synthesize ignition, combustion and consumption
properties of subalpine tree barks, i.e., considering three major
flammability components (Anderson, 1970; Martin et al., 1994).
Correlations analyzes between biological traits and flammability

parameters were performed using Spearman’s correlation coef-
ficient as some variables did not exhibit a normal distribution.
Simple and multiple linear regressions were conducted to test the
relationship between φ and τc , and then to evaluate the variance
of bark flammability explained by biological attributes. The ana-
lyzes were performed using the R program (PCA from FactoMineR
package, Le et al., 2008) and Statgraphics Centurion XVI © for post
hoc Duncan tests.

RESULTS
We performed a PCA for taking into account the strong colin-
earity among flammability parameters (Behm et al., 2004). The
first factorial plane of the PCA explains almost 90% of variance in
bark flammability parameters and discriminates them to different
components of the flammability (Table 1, Figure 2A). Ignitability
and combustibility of bark are positively expressed by the first axis.
The two axes positively express bark consumability. It means that
during a given period of tree exposure to heat, the earlier the bark
ignition the higher the burning intensity and the stronger the bark
degradation.

The v-test discriminated angiosperms from gymnosperms on
the axis-2 (v > 0 for Salix caprea, Betula pendula, Sorbus aucuparia:
p < 0.001; Figure 2B). So, the angiosperm bark is higher consum-
able, i.e., burned faster and lost higher biomass per time unit.
Sorbus aucuparia and, among gymnosperms, Pinus cembra are
located on the positive side of axis-1 (v = 2.42 and v = 2.14, respec-
tively, p < 0.001; Figure 2B). Therefore these species have a rapidly
igniting bark that burned readily reflecting a critical exposure of
vascular tissues to high temperature in comparison to Salix caprea,
Larix deciduas, and Abies alba (v < 0, p < 0.05). As ignitabil-
ity, combustibility, and consumability increase with increasing
scores of the two PCA axes, we added individual coordinates
in the PCA plane to synthesize information of all flammability
parameters into a synthetic bark flammability index noted φ. An
inter-specific comparison of φ performed by ANOVA and Duncan
post hoc test indicated four levels of significance at a 95% confi-
dence level (p < 0.05, illustrated by straight lines on Figure 2B)
from Larix decidua (lowest φ) to Sorbus aucuparia (highest φ).

Table 1 | Flammability parameters, components, definitions and the processes they describe

Flammability component Parameter Unit Process described

Ignitability Ignition delay (or time to ignition) s Inverse fuel ability to ignite

Ignition temperature ◦C Inverse fuel ability to ignite at low temperatures

Combustibility (Average) heat release† ◦C Fuel ability to release high temperatures in the first times of

heat exposure

Heating rate (ratio of maximum

temperature over its arrival time)†

◦C × s−1 Fuel ability to reach high temperatures

Consumability Rate of mass loss† ‡ g × s−1 Speed and intensity of early thermal degradation of biomass

Burning rate† ‡ s−1 Speed of early fuel consumption

Parameters are associated with the different flammability components sensu Anderson (1970) and Martin et al. (1994) as described by White and Zipperer (2010).
†Variables computed on time period encompassing bark flameless pyrolysis and bark flaming combustion stages, i.e., the ignition ability (180 s from heat exposure).
‡Variables computed also on time period of bark flaming combustion only (90 s from ignition).
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FIGURE 2 | Principal component analysis (PCA) of bark flammability for

eight subalpine tree species. 95% confidence intervals for average
coordinates of species are depicted by ellipses (means ± SE). (A) The circle
indicates correlations and contributions of flammability parameters on the
two first factorial axes; (B) individual dispersion is depicted on the two
factorial axes. The symbol ‡ indicates variables that are computed over the
time period of bark flaming combustion only (90 s since ignition). Species

are labeled as follow: Ld for Larix decidua, Aa, Abies alba; Pu, Pinus
uncinata; Pa, Picea abies, Pc, Pinus cembra; Sc, Salix caprea; Bp, Betula
pendula; Sa, Sorbus aucuparia. Bark flammability index (φ) was derived
for all trees from the sum of their scores on the two first principal
components. Significant differences (p = 0.05) between species were
tested from ANOVA and Duncan post hoc tests and indicated by straight
lines.

Pinus cembra bark is significantly more flammable than the other
gymnosperms (p < 0.05). Student t-test indicated greater flamma-
bility for angiosperm barks (Welch modification to the degree of
freedom, t70 = 5.56, p < 0.001).

A log-linear regression indicated a highly significant rela-
tionship (r2 = 0.39, p < 0.001; Figure 3A) between the bark
flammability φ and the bark thickness squared that expresses
the bark insulating ability. Thus distribution of trees in our fire
susceptibility model (Figures 1 and 3A) is not random because
bark flammability decreased with increasing cambial insulation,
i.e., with bark thickness (BT). Specifically, bark traits (thickness,
roughness and outer bark proportion) are negatively correlated
with the burning rate and the mass loss rate whatever the bark
ability to ignite (p < 0.01, Table 2). A variance partition analysis
indicates that bark traits explains 44% of φ variance, BT explains
39% of the total variance, alone or throughout the interactions
with outer bark proportion and bark roughness (F1,78 = 51.17,
p < 0.001). We also investigated the role of bark density, i.e.,
estimated from the bark volume, the sample mass and the wood
density under bark, but it did not affect significantly flammability
(data not shown). After accounting for covariation between φ and
BT, we found that bark flammability decreased with increasing
wood density, especially for gymnosperms (r2 = 0.35 of residuals,
p < 0.001, Figure 3B). Specifically, bark over light-wood tends
to ignite earlier and at lower temperature, to burn faster and to
release higher temperatures (p < 0.05, Table 2). Multiple linear
regression indicated that wood density and bark thickness (both
log-transformed) explained 66% of bark flammability variance of
gymnosperms (F1,47 = 47.65, p < 0.001).

The relative susceptibility of subalpine species to surface fires
can be assessed from their bark properties, i.e., by their relative
position in the two-dimensional theoretical model (Figure 1).
Species located at top-left (Figure 3A), e.g., Pinus cembra and
angiosperm species (Sorbus aucuparia, Betula pendula, and Salix

caprea) should be the most susceptible to endure bole damage due
to both flammable and poor insulating barks. Larix decidua has
the lowest susceptibility to top-kill with the least flammable bark
and the greater cambial insulation. Other gymnosperms (Picea
abies, Abies alba, and Pinus uncinata) are characterized by an
intermediate susceptibility due to low flammability of their bark
despite short times before cambial necrosis (bottom-left location,
Figures 1 and 3A).

DISCUSSION
We found species-specific signatures of flammability properties
among gymnosperm and angiosperm subalpine trees, i.e., their
barks had varied ability to ignite and to burn. Especially, we
found that bark thickness controls bark flammability and act not
only as cambium insulation. Because inter-specific differences
in flammability may relate to different parameters (Behm et al.,
2004), we used a bark flammability index φ, which represents a
set of burning properties of bark that are expected to promote
an increase in the likelihood of vascular cambium necrosis during
slow-moving surface fires. This first analysis of bark flammabil-
ity, carried out in relation to the well-known insulating function
of bark depth, provides some new features about the function of
flammability in the comprehensive study of plant-fire relation-
ships. By now, studies have focused on a non-intuitive hypothesis
that enhancing flammability can be adaptive for“pyrogenic”plants
(Mutch, 1970; Bond and Midgley, 1995; Schwilk and Kerr, 2002;
Pausas et al., 2012). On the contrary, we hypothesized that the
flammability properties of a living tree must interact with other
fire-related traits to shape its potential response to fire.

BARK FLAMMABILITY TRAITS
As expected, we found that the variance of bark flammabil-
ity among trees related significantly with the main trait related
to tree survival following surface fires, i.e., the bark thickness
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FIGURE 3 | Relative top-kill susceptibility of subalpine tree species

with surface fires involving the bark flammability of subalpine

trees (φ) versus the critical time for cambium kill (τc ). This latter
was computed from bark thickness (BT) using the Peterson and Ryan’s
function (1986). As φ and τc (or BT) covaried significantly (p < 0.001,

A), regression residuals were used to explore relationship between φ

and wood density (WD, B) among all trees (straight line, p < 0.05)
and among gymnosperms (dashed line, p < 0.001). Species means
and standard errors are indicated by larger symbols and bars,
respectively.

(Harmon, 1984; Michaletz and Johnson, 2008). It implies that the
location of a tree species on the bivariate plane of bark flamma-
bility versus bark insulating ability (fire-susceptibility conceptual
model, Figures 1 and 2A) is not random but mostly determined
by the cambium insulating ability of the species itself. In other
words, subalpine trees do not fulfil the top-right side of this con-
ceptual diagram implying that trees cannot exhibit both a thick
and a flammable bark. These results do not indicate that low bark
flammability has the same effect that its thickness to provide tree
resistance to cambium necrosis, but it highlights the hidden poten-
tial role of flammability. When the fire environment allows the
bark ignition, i.e., low moisture levels, this supports the hypothesis
that bark inhibits the increase of underlying cambial temperature

respective to both its depth (Hare, 1965; van Mantgem and
Schwartz, 2003; Lawes et al., 2011) and its related flammability. In
other words, bark depth prevents both the heat transfer to inner
living tissues and the severity with which the bark burns.

Among other studied bark traits, the roughness and the outer
to inner thickness ratio did not explain much more flammability
variance than the only bark thickness. These results corroborate
findings about heat transfer rate from bark surface to the inner
cambium, where roughness, density and moisture content of bark
had also little effect compared to bark depth (Hengst and Dawson,
1994; Pinard and Huffman, 1997; Brando et al., 2012). Otherwise,
we found that one third of bark flammability variance is explained
by variation in wood density in gymnosperms, irrespective to bark

Table 2 | Spearman correlation coefficients between the flammability parameters and the biological traits.

Flammability

component

Variable Bark

thickness

Outer bark

proportion

Bark

roughness

Wood density

All (n = 80) Gymnosperm (n = 50)

Ignitability Ignition delay <0.01 −0.22* −0.21 0.29** 0.27

Ignition temperature 0.10 0.02 −0.12 0.22* 0.30*

Combustibility Heat release <0.01 0.29** 0.20 −0.30** −0.30*

Heating rate 0.03 0.25* 0.21 −0.24* −0.27

Consumability Mass loss rate −0.59*** −0.50*** −0.47*** 0.01 −0.53***

Mass loss rate‡ −0.62*** −0.64*** −0.60*** 0.21 −0.35*

Burning rate −0.53*** −0.30** −0.32** −0.39*** −0.81***

Burning rate‡ −0.60*** −0.49*** −0.52*** −0.15 −0.77***

The significant correlations are highlighted by gray (***p < 0.001; **p < 0.01; *p < 0.05).
‡Variables computed over the time period of bark flaming combustion only (90 s from ignition).
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thickness (Figure 3B). Specific features in wood structure and
chemical composition among hardwood species (angiosperms)
may override the strong relationships between wood density and
flammability observed among softwood species (gymnosperms).
Wood density controls thermal diffusivity (Papió and trabaud,
1990) affecting ignition and the rate of fuel consumption (Ander-
son, 1970; Nagaoka et al., 1998). For a given stem diameter, wood
density may act as a heat sink that limits the bark heating, inas-
much as larger trees are more resistant to fire damage because heat
sink capacity increases with tree mass (Peterson and Arbaugh,
1989). Furthermore, Brando et al. (2012) suggested that high
wood density increased chance of tree survival following fires in
a neotropical forest. Authors argued for indirect effects linked to
tree ability to compartmentalize wood decay (Romero and Bolker,
2008). From these findings wood density appears an important
trait of tree response to fire. By needing laboratory tests under
controlled conditions, this depth analysis of flammability did
not encompass all possible sources of variation, for instance the
bark moisture content that need a specific gradual experiment.
Bark thermal properties should change with increasing mois-
ture content due to higher heat capacity. Nevertheless, as bark
flammability mostly related with bark thickness, it is likely that this
fire-resistance trait must keep its inhibiting effect on flammability
by driving the amount of moisture that the bark may contain.

FIRE-SUSCEPTIBILITY OF SUBALPINE TREES
Our results imply that bark flammability should decrease with
tree size because the rate at which bark thickens for each species
depends directly on the rate of tree diameter growth (Harmon,
1984). Thus it is likely that bark flammability could have a rele-
vant selective meaning for small or young trees. The distribution
of subalpine trees in the fire-susceptibility diagram (Figure 1)
indicated a higher range of bark flammability among thin-barked
species (left side of Figure 3A). This is of importance since these
species would theoretically have similar cambial resistance on the
basis of the bark depth versus τc relationships (Peterson and Ryan,
1986). Thus high bark flammability should enhance the proba-
bility of cambium necrosis for small trees and differences in bark
flammability could lead to different rates of top-kill. We advocate
that taking into account the bark flammability would improve our
ability to predict stem mortality. In fact, this may explain why
top-kill is sometimes underestimated in the literature (Jones et al.,
2006; Hood et al., 2007; Lawes et al., 2011). Moreover, it has been
shown that a flammable bark increases the heat transfer to the
cambium due to a reduction of bark thickness and a blackening of
bark surface, with consequent greater differences of fire sensitiv-
ity among species (Gill and Ashton, 1968) than expected (Vines,
1968).

The increasing fire-prone conditions in European subalpine
forests needs to largely improve our knowledge about the response
to fire of dominant trees. The lack of data availability on post-fire
tree mortality wears down our ability to test the hypotheses and
confront the findings of this study. Among gymnosperm trees, the
Arolla pine has a thin bark and a light wood and thus seems the
most susceptible to incur lethal damages from surface fires due
to a highly flammable and low insulating bark. At the contrary,
larch has the thicker and so the least flammable bark that result in

the highest potential resistance to surface fires, as found in other
ecosystem types (Sannikov and Goldammer, 1996; Smith and
Fisher, 1997). The contrasted position of these two co-dominant
subalpine species in the fire-susceptibility gradient (Figure 3A)
is consistent with outcomes of paleobotanical studies (Genries
et al., 2009a; Blarquez and Carcaillet, 2010). Indeed larch (Larix
decidua) had an independent behavior facing fires in the past mil-
lennia whereas the higher fire-sensitive Arolla pine (Pinus cembra)
declined when fire intervals were too short (i.e., <150 years), which
prevents trees to become fire resistant, i.e., large enough to acquire
both low bark flammability and high cambium insulation.

An emerging set of studies in fire ecology argued that the
concept of flammability has a significant place in the underlying
processes of fire-plant relationships (Pausas and Moreira, 2012).
This study highlighted some new insights about the biological
meanings of tree bark flammability and probable relationships
with tree response to fire under low moisture conditions. Knowl-
edge of the diversity of mechanisms responsible for fire-induced
tree top-kill is needed to predict the responses of newly fire-prone
ecosystems to global changes. We stress the need to study the func-
tion of flammability properties of outermost tissues of trees on
their response to fire, because quantifying flammability of bark,
leaves and crown architecture for several climate scenarios (low
moisture levels) must improve our comprehension about species
susceptibility to incur stem and crown damages.
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