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During the last decade genome sequencing has experienced a rapid technological
development resulting in numerous sequencing projects and applications in life science.
In plant molecular biology, the availability of sequence data on whole genomes has
enabled the reconstruction of metabolic networks. Enzymatic reactions are predicted by
the sequence information. Pathways arise due to the participation of chemical compounds
as substrates and products in these reactions. Although several of these comprehensive
networks have been reconstructed for the genetic model plant Arabidopsis thaliana, the
integration of experimental data is still challenging. Particularly the analysis of subcellular
organization of plant cells limits the understanding of regulatory instances in these
metabolic networks in vivo. In this study, we develop an approach for the functional
integration of experimental high-throughput data into such large-scale networks. We
present a subcellular metabolic network model comprising 524 metabolic intermediates
and 548 metabolic interactions derived from a total of 2769 reactions. We demonstrate
how to link the metabolite covariance matrix of different Arabidopsis thaliana accessions
with the subcellular metabolic network model for the inverse calculation of the biochemical
Jacobian, finally resulting in the calculation of a matrix which satisfies a Lyaponov equation.
In this way, different strategies of metabolite compartmentation and involved reactions
were identified in the accessions when exposed to low temperature.
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INTRODUCTION
The rapidly increasing knowledge about whole plant genome
sequences represents a corner stone in the understanding of
plant metabolism. Next-generation sequencing (NGS) technolo-
gies have been developed allowing for the fast and cheap produc-
tion of huge sets of genome data sequences (Metzker, 2010). By
functional genome annotation, the information about coded pro-
teins is derived. Based on these postulated gene functions, enzy-
matic reactions can be predicted, e.g., representing metabolite
interconversions or transport processes. Genome-scale metabolic
reconstructions (GEMs) can be described as advanced func-
tional annotations (De Oliveira Dal’molin and Nielsen, 2013).
Here, the functional gene annotations are combined with a net-
work topology which is derived by connecting the metabolic
educts and products of the predicted reactions. The stoichio-
metric matrix N characterizes each metabolic interconversion
and transition in a metabolic network and is typically organized
in such way that rows of the matrix represent the metabo-
lites while reactions, i.e., connections, represent the columns of
the matrix. The stoichiometric coefficients of each reaction are
then given in the matrix cells. GEMs have been published for
multiple organisms (an overview is given in Collakova et al.,
2012) and comprehensive protocols for all stages of the recon-
struction process are available (Thiele and Palsson, 2010). Due

to the huge metabolic coverage of GEMs, which, in principle,
comprises all metabolic interactions known so far from genome
annotation, strategies for genome-scale experiments are needed
for efficient validation of model outputs. In this context, flux
measurements and high-throughput measurements of the tran-
scriptome, proteome and metabolome play a crucial role. Hence,
technologies like transcriptomics, proteomics and metabolomics
are central to systems biology approaches aiming at the system
wide understanding of biological networks (Weckwerth, 2011a,b;
Blazier and Papin, 2012; Nägele and Weckwerth, 2012). Recently,
we connected data from metabolomics experiments to a simpli-
fied metabolic network structure of leaf primary metabolism in
Arabidopsis thaliana to characterize metabolic shifts during cold
exposure (Doerfler et al., 2013). This allowed us to differenti-
ate short and long term metabolic response to low temperature
and to identify key points of regulation such as the interface of
primary and secondary metabolism mediated by the shikimic
acid pathway. This model did not include any subcellular com-
partmentation of metabolism. Plant cells, however, show a high
degree of compartmentation resulting in a complex biochem-
ical network comprising metabolite interconversions as well as
intracellular transport processes (Lunn, 2007). Therefore it is not
surprising that physiological responses to a changing environ-
ment could be related to subcellular metabolic reprogramming

www.frontiersin.org December 2013 | Volume 4 | Article 541 | 1

http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/about
http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org/journal/10.3389/fpls.2013.00541/abstract
http://www.frontiersin.org/people/u/50035
http://www.frontiersin.org/people/u/13413
mailto:thomas.naegele@univie.ac.at
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Systems_Biology/archive


Nägele and Weckwerth Subcellular modeling of leaf metabolism

(Knaupp et al., 2011; Schulze et al., 2012; Nägele and Heyer,
2013). To enhance the comprehensive biochemical and physiolog-
ical output of studies analyzing plant-environment interactions
a platform would be desirable focusing the linkage of experi-
mental data with the underlying subcellular metabolic network
structure.

Here, we present a workflow aiming at the development
of such a platform. Based on a recently published metabolic
network reconstruction accounting for subcellular organization
of leaf metabolism in Arabidosis thaliana (Mintz-Oron et al.,
2012), we derived a metabolic model structure including all
metabolic intermediates which are accessible by experimental
high-throughput measurements. The model comprises all subcel-
lular compartments of leaf cells which can be robustly analyzed
by a non-aqueous fractionation technique. For efficient data inte-
gration we present a strategy of mathematical modeling which
we prove to be successful in providing a comprehensive overview
of metabolic changes induced by a perturbed plant-environment
interaction.

MATERIAL AND METHODS
ADAPTATION OF A GENOME-SCALE METABOLIC RECONSTRUCTION
MODEL TO A SET OF EXPERIMENTALLY ACCESSIBLE DATA
The model adaptation was performed starting with the original
metabolic reconstruction model for (juvenile) leaf metabolism,
which was derived by Mintz-Oron and co-workers (Mintz-Oron
et al., 2012). This reconstruction model comprises 7 compart-
ments which are the cytoplasm, endoplasmic reticulum, golgi
apparatus, mitochondrion, peroxisome, plastid and vacuole
with a total of 2463 metabolic intermediates and 2769 reactions
(Mintz-Oron et al., 2012). In a first step, we reduced the compart-
ments in the model to the cytoplasm, plastid and vacuole which
can experimentally be analyzed from the same sample using the
non-aqueous fractionation (NAF) method (Nägele and Heyer,
2013). In a second step, we reduced the metabolic intermediates
of these compartments to a set of metabolites which are exper-
imentally accessible by a gas chromatography coupled to mass
spectrometry (GC-MS) analysis. This reduction step was per-
formed by comparison of metabolites in the model to metabolites
in the Golm Metabolome Database for GC-MS based metabolite
profiling (Hummel et al., 2007). Additionally, the model contains
the plastidial starch pool as well as CO2. In the following step, all
intermediates in the reduced model were (re)connected manually
according to the reactions described in the original reconstruc-
tion model and no further reactions were added. Hence, the
reduced model describes a subset of the metabolic connections
in the original model with a lower degree of detail. A step of this
reduction procedure is exemplarily shown in Figure S1. Finally,
our reduced model contained 3 compartments, 524 metabolic
intermediates and 548 metabolic interactions. The reduced model
of leaf metabolism is provided in the supplements in Systems
Biology Markup Language (SBML; File ‘Model_S3.xml’).
Model reduction, connection and graphical evaluation
was performed using the open source software COPASI
(Version 4.8; http://www.copasi.org) (Hoops et al., 2006) and
CellDesigner™ (Version 4.3; http://www.celldesigner.org/)
(Funahashi et al., 2003).

DATA INTEGRATION AND JACOBIAN MATRIX CALCULATION
A metabolic interaction matrix was derived from the reduced
model describing all metabolic interactions in the model. Hence,
the metabolic interaction matrix represents a simplified version
of the stoichiometric matrix of the original metabolic recon-
struction model. This metabolic interaction matrix was applied
for inverse calculation of the Jacobian matrix of the metabolic
model. The calculation procedure was based on an algorithm,
which is implemented in the metabolomics toolbox COVAIN
(Sun and Weckwerth, 2012), solving (Eq. 1) by applying a total
least square optimization procedure. To test the reliability of our
calculations we applied the inverse calculation on a data set on
subcellular carbohydrate distribution from non-cold exposed and
7 days cold exposed Arabidopsis leaf samples which were pub-
lished recently (Nägele and Heyer, 2013). This experimental data
set contained 5 biological replicates for each metabolite concen-
tration (Nägele and Heyer, 2013). The reduced model structure,
i.e., the metabolic interaction matrix, was adapted to the metabo-
lite pools which had been experimentally analyzed by Nägele and
Heyer. The covariance matrix C was built from the experimental
data on subcellular carbohydrate concentration and linked to the
underlying biochemical system by the following equation (Steuer
et al., 2003; Sun and Weckwerth, 2012):

JC + CJT = −2D (1)

Here, J represents the Jacobian matrix and D is the fluctuation
matrix. All diagonal entries of D were randomly drawn from
a standard normal distribution. In general, the Jacobian matrix
characterizes the local dynamics at a steady state condition. In
context of a metabolic network, entries of the Jacobian J represent
the elasticities of reaction rates to any change of the metabolite
concentrations which are characterized by equation 2:

J = N
∂r

∂M
(2)

N is the stoichiometric matrix, r represents the rates for each
reaction and M represents metabolite concentrations. In our
approach, we replaced the stoichiometric matrix N by the
reduced metabolic interaction matrix. This results in a Jacobian
matrix referring to the underlying stoichiometric simplification.
Although N was changed, the term Jacobian matrix can still be
used as it directly refers to the first partial derivative of (now sim-
plified) metabolic functions to changes in metabolite levels. This
corresponds to the general definition of the Jacobian matrix in
context of the mean value theorem of vector functions, which is
provided elsewhere (Strehmel et al., 2012). The Jacobian matri-
ces Ja and Jb, which describe two different metabolic states, were
calculated 105 times each. Medians of calculated Jacobians were
normalized to the square of the interquartile distance in order
to increase the median-to-noise ratio of the inverse calculations
(Eq. 1). To compare two different metabolic states, we determined
the absolute values of the differential Jacobian, dJij, abs, defin-
ing the relative change of the two normalized Jacobians Ja,norm

and Jb,norm which are associated with different treatments or
genotypes:
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∣
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∣
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(3)

All calculations of Jacobian matrices as well as statistical anal-
yses (t-tests) were performed using the numerical software
environment Matlab® (V7.12.0 R2011a).

RESULTS
A SUBCELLULAR METABOLIC NETWORK MODEL COMPRISING
EXPERIMENTALLY ACCESSIBLE INTERMEDIATES FROM
HIGH-THROUGHPUT ANALYSIS OF ONE SAMPLE
The reduction process of the metabolic reconstruction network of
leaf metabolism (Mintz-Oron et al., 2012) resulted in a metabolic
network model comprising the compartments cytoplasm, plastid
and vacuole with a total of 524 metabolic intermediates and 548
metabolic interactions. In addition to metabolite pools which are
accessible by a GC-MS experiment, the model also comprises the
plastidial starch pool and CO2. These intermediates are exper-
imentally accessible by, for example, GC-MS analysis of starch
hydrolysate, photometric assays (starch) and infrared gas analy-
sis (CO2) as previously described (Wienkoop et al., 2010; Nägele
and Heyer, 2013; Valledor et al., 2013).

While the metabolic network reconstruction of subcellular
leaf metabolism resulted in a stoichiometric matrix derived from
genome sequence information (Mintz-Oron et al., 2012), this
stoichiometric matrix was changed during the reduction process
by deleting and reconnecting components. Hence, the result-
ing matrix of the reduced model differs a lot from the orig-
inal stoichiometric information and therefore it is termed as
the metabolic interaction matrix. It describes all experimen-
tally accessible metabolic interactions by superpathways. These
superpathways implicitly describe all metabolic steps which are
involved in a metabolic interaction. If all metabolic intermedi-
ates of a reaction or pathway are included in both the original
and reduced model then the entries of the metabolic interaction
matrix equal the entries of the stoichiometric matrix.

APPLICATION OF THE REDUCED METABOLIC INTERACTION MATRIX TO
ANALYSE REGULATION OF CARBOHYDRATE COMPARTMENTATION
To test the applicability of the reduced model structure to anal-
yse subcellular metabolic interaction, we used the underlying
metabolic interaction matrix for inverse calculation of Jacobian
matrices to a recently published data set on subcellular carbohy-
drate compartmentation (Nägele and Heyer, 2013). We derived
a specific metabolic interaction matrix which contained only
those pools which were measured by Nägele and Heyer by fur-
ther reduction of the metabolic network structure. Finally, the
model described the pools of sucrose, raffinose, glucose, fruc-
tose and starch in the cyotsol, plastid and vacuole as well as
their metabolic interactions. In addition to these measured pools
we also included all direct metabolic interactions which were
not experimentally analyzed, i.e., all metabolites which were
connected to the measured pools by one further metabolic inter-
action. Including those interactions may be helpful for estimating
the impact of modeling results with respect to the metabo-
lite interconversions which are directly connected to the set of
metabolites which were experimentally analyzed. Yet, this model

FIGURE 1 | Differential Jacobian matrices derived from inverse

calculations on subcellular carbohydrate concentrations. Differential
Jacobians were built for Te and C24 before (A), and after (B) 7 days of cold
exposure. For Rsch and C24, the differential Jacobian was built for 7 day
cold exposed samples (C). Experimental data were taken from a previous
study (Nägele and Heyer, 2013). Metabolic interaction sites are indicated on
the horizontal x- and y-axis by the metabolites which participate in the
reaction that is characterized by the entry of the Jacobian matrix. For
example, in (B) the interaction of plastidial and cytosolic sucrose is
significantly different between Te and C24 (non-diagonal blue bar). This can
also be observed in (C) but not in (A).

extension does not affect the modeling results but is rather sug-
gested to support the interpretation. The resulting metabolic
interaction matrix describing all reactions and transports of
the measured metabolites was used for the inverse calculation
of a Jacobian matrix. Calculations were performed exemplar-
ily on experimental data sets for three natural accessions of
Arabidopsis thaliana, C24, Rschew (Rsch) and Tenela (Te) before
(non-acc) and after a 7 day exposure to 4◦C (7d acc) (Nägele
and Heyer, 2013). Results of inverse calculations indicated a
main difference between C24 and Te to exist in vacuolar hexose
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FIGURE 2 | A workflow for deriving subcellular metabolic network

structures according to experimental data sets. In the present study, the
first step of deriving a genome-scale metabolic network reconstruction
model was not performed, but a published reconstruction work was applied
instead (Mintz-Oron et al., 2012). NAF: Non-Aqueous Fractionation.

interactions as well as in the cytosolic and plastidial sucrose
interaction (Figures 1 A,B; p < 0.05). Comparison of calcula-
tions for 7d acc samples of C24 and Rsch revealed a similar
and still significant interaction pattern, but to a lower extent
(Figure 1C; p < 0.05). For non-acc samples, the comparison
between C24 and Rsch revealed no further signficant differ-
ences than the comparison of C24 and Te (data not shown). To
exclude the possiblity that these differences in metabolic inter-
actions represent artifacts from the model reduction process
itself, the reactions in the reduced model structure were com-
pared to the original metabolic reconstruction work (Table S2,
yellow marked lines). In the reduced model, these interactions
still correspond to the original model and were not a conse-
quence of inserted reactions. Hence, they are directly linked to the
enzymatic reactions described in the original metabolic network
reconstruction.

DISCUSSION
The development of genome-scale metabolic network models
has become a central approach to approximate the topology of
metabolic networks in vivo. While such networks have success-
fully been applied in several studies to analyse network properties
(Poolman et al., 2009) or to derive strategies of metabolic engi-
neering (Feist and Palsson, 2008), experimental validation of the
model output is still limiting. Frequently, this results in a descrip-
tive and qualitative network model which is useful for many
purposes but lacks of a predictive output. To overcome this limi-
tation, merging kinetic or stoichiometric modeling and genome-
scale metabolic network models represents a promising approach.
For kinetic modeling, it is necessary to reduce the metabolic
system of interest to an extent which allows the absolute quan-
tification of all participating metabolic intermediates and enzyme
kinetic parameters. Although there exist platforms for measuring
enzyme activities in an automatized and high-throughput man-
ner (Gibon et al., 2004), it is still highly laborious to robustly
resolve systems dynamics which allow for an unambigous out-
put of computational model simulation (Schaber et al., 2009).
Yet, despite these limitations, the output of such enzyme kinetic
models has been shown to significantly promote the understand-
ing of complex biological issues (Nägele et al., 2012; Rohwer,
2012). Stoichiometric modeling, in contrast, relies rather on the
stoichiometry of a network than on detailed kinetic information
about enzymatic interconversions. Although the metabolic cov-
erage of stoichiometric models is, in general, much larger than in
enzyme kinetic models, systems dynamics can, very often, only be
approximated by linearization of metabolite functions, i.e., reac-
tion rates, at a certain metabolic steady state. This results in the
Jacobian matrix which characterizes the dynamic capabilities at
these steady states (Steuer, 2007) and represents the elasticities
of reaction rates to any change of the metabolite concentrations.
Hence, to determine the entries of the Jacobian matrix explicit
knowledge about enzyme kinetics is needed, which can, again,
hardly be determined for a metabolic network comprising several
hundred or even thousands of metabolic interactions. Instead, the
inverse approximation of the Jacobian entries from metabolomics
(co-)variance can be applied and directly links experimental
data with stoichiometric information on a metabolic network
(Weckwerth, 2011b; Sun and Weckwerth, 2012; Doerfler et al.,
2013).

Our reduced metabolic model of subcellular primary leaf
metabolism in Arabidopsis thaliana intends to provide a platform
aiming at the integration of as many as possible experimental
data to metabolic network information. Although the experimen-
tal coverage of metabolic intermediates may significantly deviate
from the metabolic coverage of the model, the model can be
adjusted to the available experimental data set. We have exem-
plarily performed such an adjustment to an experimental data
set on the central carbohydrate metabolism which was published
previously (Nägele and Heyer, 2013). Results of the inverse calcu-
lation of the Jacobian matrix indicated a main difference between
cold sensitive and tolerant accessions of Arabidopsis to exist in the
ability to transport sucrose across the chloroplast envelope. This
agrees with the predictions made previously, applying a different
approach of metabolic modeling (Nägele and Heyer, 2013). In
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addition, inverse calculations also pointed to a differential reg-
ulation of vacuolar hexose interaction, i.e., the interconversion
and transport of vacuolar glucose and fructose, which were also
found to be signficantly affected due to cold exposure in a previ-
ous study (Wormit et al., 2006). However, in this context, we want
to emphasize that because of the reduction step it is not possible to
give an interpretation of the differential Jacobian in terms of abso-
lute fluxes or rates of metabolic reactions. Based on the covariance
matrix of relative metabolite levels, entries of the differential
Jacobian matrix only report on a qualitative perturbation of a
certain metabolic interaction, i.e., changes in the Jacobian entries
between two conditions or genotypes. This directly corresponds
to the so-called community matrix A which was introduced to
describe species-species interactions in an ecosystem (May, 1974).
Its elements aij describe the net effect of species j on species i
near equilibrium. Likewise, entries of the differential Jacobian
dJij describe changes in the interaction between metabolite j with
respect to changes in metabolite i due to a perturbation of the
metabolic system.

Previous studies have shown that NAF coupled to high-
throughput analysis enables the comprehensive characterization
of a metabolic homeostasis (Klie et al., 2011; Krueger et al.,
2011). Such comprehensive experimental approaches result in
huge and multidimensional data sets, comprising information
about numerous variables, for example subcellular metabolite
levels. Besides experimental high-throughput analysis, systems
biology ultimately attempts to exploit the large calculating capac-
ities of computers to efficiently cope with the large data sets
covering complex interactions. Computer based handling of com-
plex metabolic networks requires their formal representation by
mathematical models. The integration of experimental data then
allows for the in silico simulation of specific responses, and pre-
dictions can be validated in further experiments. Hence, in an
iterative process of model development, model simulation and
experimental validation, systems biology is capable of advanc-
ing the understanding of complex networks significantly. Based
on these requirements for data integration and the results of the
present study, we suggest a workflow for the functional integra-
tion of experimental high-throughput data to the metabolic net-
work structure of the subcellular leaf metabolism of Arabidopsis
thaliana (Figure 2). Applying the genome sequence informa-
tion and a deduced metabolic network reconstruction model,
a metabolic interaction matrix can be constructed allowing for
the functional integration of experimental data on subcellular
metabolite levels. As experimental data sets may vary in the
components they comprise, the model structure can be specifi-
cally adapted to the available experimental data set which makes
this approach universally applicable to various (bio-) analytical
methods. This enables the application of methods from sys-
tems theory and applied mathematics (Nägele and Weckwerth,
2013) which are essential for the evaluation of complex biolog-
ical systems, such as the compartmentalized leaf metabolism of
Arabidopsis. Finally, hypotheses about regulation of subcellu-
lar metabolic interactions can be tested in a new experimental
design which completes the iterative cycle of model predicitons
and experiments, being a general characteristic of systems biology
approaches.
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SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found
online at: http://www.frontiersin.org/Journal/10.3389/fpls.
2013.00541/abstract
Figure S1 | Schematic overview of the model reduction process. In

contrast to metabolite (B), metabolites (A) and (C) are accessible by a

GC-MS measurement and are kept in the reduced model structure.

Table S2 | Reactions included in the reduced model (column B) are

compared to reactions of the original reconstruction network (column E).

Reactions which have been identified to be affected differentially during

cold exposure of sensitive and tolerant Arabidopsis accessions are

marked in yellow (referring to Figure 1).

Model S3 | Reduced model structure in format of Systems Biology Markup

Language (xml-file).
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