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The endoplasmic reticulum (ER) represents the gateway for intracellular trafficking of
membrane proteins, soluble cargoes and lipids. In all eukaryotes, the best described
mechanism of exiting the ER is via COPII-coated vesicles, which transport both membrane
proteins and soluble cargoes to the cis-Golgi. The vacuole, together with the plasma
membrane, is the most distal point of the secretory pathway, and many vacuolar proteins
are transported from the ER through intermediate compartments. However, past results
and recent findings demonstrate the presence of alternative transport routes from the
ER towards the tonoplast, which are independent of Golgi- and post-Golgi trafficking.
Moreover, the transport mechanism of the vacuolar proton pumps VHA-a3 and AVP1
challenges the current model of vacuole biogenesis, pointing to the endoplasmic reticulum
for being the main membrane source for the biogenesis of the plant lytic compartment.
This review gives an overview of the current knowledge on the transport routes towards
the vacuole and discusses the possible mechanism of vacuole biogenesis in plants.
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ENDOPLASMIC RETICULUM: ENTRANCE TO THE SECRETORY
PATHWAY
The endoplasmic reticulum (ER) consists on a network of inter-
connected membrane tubules and cisternae (“reticulum”) stretch-
ing across the entire cytoplasm (“endoplasmic”). First discovered
in culture cells from chicken embryos (Porter et al., 1945), the
ER is present in all eukaryotic cells, and is the intracellular com-
partment where membrane proteins, soluble cargoes and lipids
are synthesized. From the ER, correctly folded membrane and
soluble proteins are transported to other endomembrane com-
partments or to the extracellular space along the secretory pathway
(Vitale and Denecke, 1999). For all eukaryotes, the best char-
acterized mechanism of exiting the ER is the COPII-mediated
transport. The coat protein complex II (COPII) assembles on spe-
cific locations of the ER membrane, called ER-exit sites (ERES),
from which COPII-coated vesicles bud off. The assembly of
COPII begins with the activation of the small guanosine triphos-
phatase (GTPase) SAR1 provided by the ER membrane-bound
guanine nucleotide exchange factor (GEF) SEC12, which leads
to the coordinated recruitment of the cytosolic heterodimers
SEC23/SEC24 and SEC13/SEC31 to the ERES (Nakano et al.,
1988; Barlowe and Schekman, 1993; Barlowe et al., 1994). Cargo
recognition is provided by SEC24 and SAR1, whereas multiple
adjacent SEC13/SEC31 subcomplexes drive the bending of the
ER membrane using the energy of GTP hydrolysis (Brandizzi
and Barlowe, 2013). Passive incorporation of soluble cargoes into
COPII vesicles can occur (Wieland et al., 1987; Denecke et al.,
1990; Matsuoka and Nakamura, 1991; Phillipson et al., 2001; Thor
et al., 2009), instead membrane proteins and receptors require di-
acidic or di-hydrophobic motifs in their cytosolic domains for
efficient transport (Kappeler et al., 1997; Nishimura and Balch,
1997; Contreras et al., 2004; Hanton et al., 2005). In mammals,
most COPII subunits have one or more paralogs, which generate a

robust repertoire of COPII-coated vesicles with tissue specificities
and selectivity for different cargo molecules (reviewed in Zanetti
et al., 2011). In plants much less is known about specificities among
different COPII-coated carriers, even though it has been recently
shown that the concomitant function of all three SEC24 members
of Arabidopsis is necessary for the development of the gameto-
phytes (Conger et al., 2011; Tanaka et al., 2013). After a long debate
whether COPII vesicles versus COPII-coated tubules existed in
plant cells, ultrastructural analysis of high-pressure frozen samples
and 3D tomography reconstructions have shown that COPII vesi-
cles are present also in plants (Ritzenthaler et al., 2002; Donohoe
et al., 2007; Robinson et al., 2007; Kang and Staehelin, 2008).

LYTIC VACUOLES
The plant lytic vacuole can occupy up to 90% of the total volume
in mature vegetative cells. Its remarkable size allowed Antonie
van Leeuwenhoek to notice the vacuole already in the 1670s, at
the dawn of microscopy. The name “vacuole” was coined from
“vacuum,” because Felix Dujardin, in 1872, thought he was fac-
ing an empty space (Leigh and Sanders, 1997; De, 2000). On the
contrary, the vacuolar content can generate a stationary turgor
pressure of up to five bars (Zimmermann et al., 1980), which pro-
vides the driving force for plants’ growth by pushing the cells to
expand in oriented directions. Moreover, the lytic vacuole plays
a crucial role in pH homeostasis, storage of ions, degradation of
cellular waste, defense against pathogens, and in buffering abiotic
stresses. The rapid release from or uptake to the vacuolar lumen of
ions and water allow plants to efficiently cope with diversified envi-
ronmental challenges. The multiple roles of plant lytic vacuoles are
regulated by the activity of transporters that use the energy of the
electrochemical gradient generated across the tonoplast by the vac-
uolar H+-ATPase (V-ATPase) and vacuolar H+-PPase (V-PPase).
Despite good knowledge of the biochemistry and function of the
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vacuolar proton pumps (Maeshima, 2001; Schumacher and Krebs,
2010), little is known about the mechanisms of their sorting and
the intracellular routes they follow to reach the tonoplast. How-
ever, recent data has shown that both the V-ATPase and V-PPase of
Arabidopsis are incorporated to the tonoplast via a novel mecha-
nism that also challenges the current model for vacuole biogenesis
(Viotti et al., 2013).

GOLGI- AND POST-GOLGI-MEDIATED TRANSPORTS TO THE
LYTIC VACUOLE
Tonoplast-resident proteins and vacuolar soluble cargoes are syn-
thesized in the ER, many of them are delivered to the cis-side of
the Golgi apparatus via COPII vesicles, and from the Golgi they
proceed further through the secretory pathway (Figure 1; Pedrazz-
ini et al., 2013; Xiang et al., 2013). Vesicle transport between
endomembrane compartments is mediated by different effector
molecules, among which are the Rab GTPases, that are mem-
bers of the ras superfamily of regulatory GTPases (Rutherford and
Moore, 2002). The dissection of distinct steps of vacuolar trans-
port using nucleotide-deficient mutants of different Rab GTPases
in tobacco leaf epidermis cells has shown that tonoplast-resident
proteins might follow at least three different routes (Bottanelli
et al., 2011). In agreement with this finding, it has been shown
that the sucrose transporter SUC4 and the myo-inositol trans-
porter INT1 of Arabidopsis are delivered to the tonoplast in an
adaptor protein complex 3 (AP3)-dependent and -independent
manner respectively (Wolfenstetter et al., 2012). AP complexes sort
cargo proteins into coated vesicles, and AP3 is involved in vacuo-
lar trafficking. The exact localization of AP3 in plants is uncertain,

because this adaptor seems to interact with clathrin (Lee et al.,
2007; Zwiewka et al., 2011), which is present at the trans-Golgi net-
work (TGN; Kang et al., 2011), whereas SUC4 accumulates at the
Golgi apparatus in protoplasts isolated from ap3 mutant seedlings,
suggesting a Golgi-derived vesicle transport (Wolfenstetter et al.,
2012).

From the TGN other two clathrin-mediated vacuolar transport
carriers have been proposed to exist. Each of them has an EPSIN
N-TERMINAL HOMOLOGY (ENTH) protein, EPSIN1 or MTV1
respectively, that acts as a monomeric adaptor for clathrin recruit-
ment. Both EPSIN1 and MTV1 localize to the TGN, and both the
respective knock-out mutants show defects in vacuolar transport
(Song et al., 2006; Sauer et al., 2013).

The last and best known carrier in the vacuolar branch of
the secretory pathway is the multivesicular body (MVB), which
is an independent organelle (Tse et al., 2004) that arises from the
TGN through a maturation process that involves the function of
the TGN-located vacuolar proton pump VHA-a1, the calcium
dependent phospholipid binding protein ANNEXIN 3, and the
ESCRT-machinery (Scheuring et al., 2011). As in yeast and mam-
mals, plant membrane proteins destined for degradation due to
physiological turnover are incorporated to the MVB’s intraluminal
vesicles through the function of the ESCRT complexes, and then
released inside the vacuole via MVB-to-vacuole fusion (Reichardt
et al., 2007; Spitzer et al., 2009; Viotti et al., 2010; Scheuring et al.,
2011). Soluble vacuolar cargoes dissociate from vacuolar sorting
receptors (VSRs) in an acidic environment (Kirsch et al., 1996),
therefore this event might occur in the lumen of the TGN, which
is the most acidic organelle among the intermediate compartments

FIGURE 1 | Model for lytic vacuole biogenesis in Arabidopsis. The
precursors of vacuoles, the provacuoles, arise from the endoplasmic
reticulum (ER) via maturation. The vacuolar proton pumps VHA-a3 and AVP1
(and perhaps other tonoplast proteins) are incorporated to the nascent
provacuole directly from the ER-membrane through an uncharacterized
mechanism (lower right corner). Golgi- and post-Golgi trafficking (solid
arrows) continuously contribute, during the different steps of vacuole
formation (dotted lines), to the development of the vacuolar lumen via the

delivery of soluble cargoes (e.g., acid proteases) and tonoplast-resident
proteins that exit the ER with COPII-coated vesicles (dashed arrow).
Provacuoles can also fuse with already developed vacuoles (fusion).
Impairment of Golgi- and post-Golgi trafficking (crossed arrows) leads to
aberrant multilayered provacuoles.This observation could be explained if
impairment of Golgi- and post-Golgi trafficking would interfere (⊥) with the
process of provacuoles-release from the ER, or with the fusion between
provacuoles and vacuoles.

Frontiers in Plant Science | Plant Cell Biology February 2014 | Volume 5 | Article 20 | 2

http://www.frontiersin.org/Plant_Cell_Biology/
http://www.frontiersin.org/Plant_Cell_Biology/archive


Viotti Vacuolar transport and vacuole biogenesis

(Martinière et al., 2013; Shen et al., 2013). Soluble cargoes are then
incorporated into the lumen of nascent MVBs, that arise from
the TGN (Scheuring et al., 2011), for vacuolar transport. However,
VSRs are localized both to the TGN and MVBs (Niemes et al., 2010;
Stierhof and El Kasmi, 2010; Viotti et al., 2010), and the location
from where they recycle is a matter of controversy (De Marcos
Lousa et al., 2012; Robinson et al., 2012). An example of soluble
cargo transported via MVBs is the cysteine protease aleurain (Miao
et al., 2008), while regarding tonoplast resident proteins it has been
recently shown that the auxin transporter WAT1 additionally co-
localizes with the late endosomal marker RabG3f (Ranocha et al.,
2013).

UNCONVENTIONAL ER-EXPORT OF PROTEINS TO THE
VACUOLE
The conventional transport of proteins to the vacuole involves
COPII-mediated ER-exit and the passage through several inter-
mediate steps and compartments. Hence, the vacuole, together
with the plasma membrane, may be seen as the most distal point
of the secretory pathway.

However, it was shown by Gomez and Chrispeels (1993) that the
tonoplast intrinsic protein α-TIP, unlike the soluble vacuolar pro-
tein phytohemagglutinin (PHA), can reach the lytic vacuole even
after brefeldin A (BFA) or monensin treatment when transiently
expressed in tobacco leaves, suggesting the presence of different
vacuolar transport routes. Few years later, Jiang and Rogers (1998)
showed that a chimera composed by the C-terminal domain of α-
TIP fused to the transmembrane domain of the VSR BP80 reaches
the protein storage vacuole (PSV) through a direct route from the
ER. Evidence for an alternative mechanism of vacuolar trafficking
was provided by the analysis of the calcineurin B-like (CBL) pro-
teins, which are calcium sensors functioning in different locations
within a cell (Batistič and Kudla, 2009). Among the ten members
of Arabidopsis, CBL2, CBL3, CBL6 and CBL10 are targeted to the
tonoplast in a COPII-independent manner, since overexpression
of a dominant-negative mutant of SAR1did not interfere with
their localization (Batistič et al., 2010). Moreover, it was shown
that CBL6 is transported to the vacuole bypassing both the Golgi
and post-Golgi compartments (Bottanelli et al., 2011). CBL pro-
teins, however, seem not to enter the secretory pathway, but are
rather synthesized in the cytosol and delivered to the tonoplast
due to the presence of a tonoplast targeting signal (TTS) in their
N-terminal domain (Bottanelli et al., 2011; Batistič et al., 2012;
Tang et al., 2012). An example of soluble cargo transported to the
plant vacuole through an unconventional route is the human α-
mannosidase MAN2B1, which still reaches the vacuolar lumen
even upon BFA treatment when transiently expressed in tobacco
leaf mesophyll protoplasts (De Marchis et al., 2013).

The most abundant tonoplast resident protein, the vacuolar
H+-ATPase VHA-a3, is transported to the vacuole through a novel
mechanism. By blocking COPII-mediated transport via BFA treat-
ment of GNL1 BFA-sensitive Arabidopsis seedlings (Richter et al.,
2007), VHA-a3 was not retained in the ER and was detected as
normal at the tonoplast, whereas the TGN-located H+-ATPase
VHA-a1 was efficiently retained in the endoplasmic reticulum,
indicating that VHA-a3 exits the ER in a COPII-independent man-
ner (Viotti et al., 2013). Interestingly, while the N-terminal domain

of the a1 subunit carries a typical di-acidic motif (EE--D) for
COPII-mediated export, in those of the a2 and a3 isoforms there
is none. Moreover, in a β-AP3 knock-out mutant (Feraru et al.,
2010)VHA-a3 was detected as normal at the tonoplast (Viotti et al.,
2013), and its transport was not stopped at the level of interme-
diate compartments by using the post-Golgi-transport inhibitor
concanamycin A (ConcA). Similarly, the second Arabidopsis vac-
uolar proton pump, the H+-PPase AVP1, did not accumulate to
the Golgi/TGN interface upon ConcA treatment, and it did not
localize to the limiting membrane of MVBs (Viotti et al., 2013). In
other words, none of the known Golgi- and post-Golgi trafficking
routes seemed to be involved in the delivery of the two vacuolar
proton pumps.

AVP1 was not only detected to the limiting membrane of
rounded vacuoles, but also uniformly present on the membranes
of lytic vacuole precursors, the provacuoles. Provacuoles display a
much finer (down to 30 nm thickness) tubular network in provas-
cular cells of the root meristem, they are acidic, they carry VHA-a3
too, can fuse with already-developed vacuoles, and are distinct
structures respect to autophagosomes (Viotti et al., 2013).

How is AVP1 transported from the ER to the provacuole and
where does the latter originate from? A hypothesis is provided in
the last section on this review.

MECHANISMS OF VACUOLE BIOGENESIS
Relatively little is known about the biogenesis of vacuoles in plants.
Even the donor membrane from where newly formed vacuoles
originate from is unclear. The model that boasts most of the credits
in text books suggests that newly formed lytic vacuoles in root-tip
cells originate from post-Golgi-derived vesicles (Marty, 1999; De,
2000; Robinson and Rogers, 2000). These vesicles would homotyp-
ically fuse to form tubular structures that represent the precursors
of vacuoles, the provacuoles. The tubular provacuoles are sup-
posed to fuse with one another, forming a complex network that
finally will give raise to the central vacuole (Marty, 1999). This
hypothesis is based on an early electron microscopy study that
revealed tubular structures at the trans-side of the Golgi apparatus
which were strongly electrondense after incubation with sodium
β-glycerophosphate or cytidine 5′-monophosphate (Marty, 1978).
These two compounds serve as substrates to detect acid phos-
phatase and thiolacetic acid esterase activity respectively, thus they
were used as biochemical markers to highlight acidic compart-
ments. The tubular-vesicular structure at the trans-side of the
Golgi was named Golgi-associated endoplasmic reticulum (GERL;
Marty, 1978), and later it was renamed as TGN (Griffiths and
Simons, 1986). Due to its acidic intraluminal pH, the TGN was
proposed to represent the donor membrane for the biogenesis of
the lytic vacuole (Marty, 1999).

A few years ago it was shown in Arabidopsis that the vacuo-
lar H+-ATPase localizes also to the TGN, thus it is not a purely
“vacuolar” enzyme. The V-ATPase (VHA) is a holoenzyme com-
posed by two subcomplexes: the membrane-integral complex V0,
and the cytosolic complex V1, both composed by multimeric sub-
units (Schumacher and Krebs, 2010). The subcellular localization
depends on which isoform of the “a” subunit is incorporated in the
V0 subcomplex. Enzymes incorporating a1 are exclusively located
to the TGN, instead enzymes incorporating either a2 or a3 localize
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to the tonoplast (Dettmer et al., 2006). The presence of VHA-a1 at
the TGN contributes to the acidification of tubules at the trans-side
of the Golgi, and this might explain Marty’s (1978) data. However,
conclusive experimental evidence to unequivocally prove that the
TGN represents the donor membrane for the biogenesis of the
vacuole is lacking up to date.

THE ER IS THE MAIN MEMBRANE SOURCE FOR VACUOLE
BIOGENESIS
Immunogold electron microscopy found AVP1-positive provac-
uoles directly connected to the ER, and immuno-fluorescent
in situ visualization of sterols showed that ER-export of newly
formed membranes can be COPII-independent in Arabidopsis
roots (Viotti et al., 2013).These data point to the presence of an
unknown mechanism in the endoplasmic reticulum that incor-
porates VHA-a3 and AVP1 to the provacuolar membrane that
arises from the ER (Figure 1). It is important to mention that
this mechanism could not occur anymore in fully mature cells
where the growth of the central vacuole and the turnover of tono-
plast resident proteins would involve only Golgi- and post-Golgi
trafficking.

The hypothesis that the ER was the membrane source for the
biogenesis of the vacuole was already proposed decades ago by
Matile and Moor (1968) after ultrastructural analysis via freeze-
etching of Zea mays seedlings, and one year later Mesquita (1969)
published intriguing electron-micrographs showing connections
between vacuoles and the rough ER in Lupinus albus roots. Dur-
ing the 1980s, other studies reproposed the ER to be the donor
compartment for vacuolar biogenesis (Amelunxen and Heinze,

1984; Hilling and Amelunxen, 1985), nevertheless the absence
of immunocytochemistry in these old works did not allow an
univocal determination of structures’ identity.

The Arabidopsis gene VACUOLESS 1 (VCL1) is crucial for
vacuole development, since embryo and suspensor cells in
the vcl1 knock-out mutant do not develop vacuoles and the
mutant is embryo-lethal (Rojo et al., 2001). Interestingly in this
study the authors reported the presence of a high number of
auotophagosome-like structures in the embryo cells, which could
have been, at least partially, provacuoles. From an ultrastructural
point of view provacuoles appear indeed similar to autophago-
somes. A recent study nicely depicted autophagosomes at the
ultrastructural level for the first time in plants (Zhuang et al.,
2013). Provacuoles and autophagosomes seem to be distinct enti-
ties, since the former were normally found in atg2, atg5, and
atg7 knock-out mutants, which lack these key players for the
formation of the phagophore (Viotti et al., 2013). Since immuno-
cytochemistry of AVP1 did not label several ring-like structures
either in wild-type or in pat2 seedlings (Figure 2A), this data
point to the presence of distinct populations of circular double-
bilayered membranes in the root meristem of Arabidopsis. It
is likely that provacuoles and autophagosomes might at some
point fuse, both contributing to the development of the vacuole
(Figure 2B).

Several Golgi- and post-Golgi-trafficking mutants, such as pat2,
vps45, and amsh3, display alterations in vacuole morphology
(Zouhar et al., 2009; Feraru et al., 2010; Isono et al., 2010), and
in all these mutants provacuoles were still present albeit often with
aberrant profiles (Viotti et al., 2013). The Golgi and the TGN do

FIGURE 2 | (A) Immunogold labeling on ultra-thin sections of high-
pressure frozen, freeze-substituted, and HM20-embedded Arabidopsis
pat2 root-tip cells shows a provacuole (dashed red line) carrying the
V-PPase AVP1. Adjacent to the provacuole, a ring-like structure which is
not labeled by the antibody (αAVP1) could be an autophagosome. This

picture shows that at least two distinct populations of circular/semicircular
double-bilayered structures existin Arabidopsis root-tip cells. Scale bar,
200 nm. (B) The development of mature vacuoles is probably the result
of fusion events between provacuoles, autophagosomes and vacuolar
transport carriers.
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not seem to be the donor compartments for provacuole formation,
but seem to be required for a rapid and efficient development
of the vacuolar lumen, and for the delivery of some, although
not all, tonoplast resident proteins. The presence of multilay-
ered provacuoles in the pat2 and vps45 mutants suggests that an
impaired Golgi- and post-Golgi-trafficking could affect the release
of provacuoles from the ER, or the fusion between provacuoles
and vacuoles, with the result of a proliferation of membranes that
at some point start to curl concentrically forming multilayered
compartments.

The incorporation of VHA-a3 and AVP1 already in nascent
provacuoles at the ER could be explained through the imme-
diate necessity of acidification of the lumen, which is a key
feature of vacuolar activities. The molecular players involved in
this putative mechanism of sorting and biogenesis are unknown.
The functions of VHA-a2, VHA-a3 and AVP1 seem not to be
required, since provacuoles and vacuoles are normally present
in vha-a2/vha-a3 and avp1 mutants (Viotti and Schumacher,
unpublished data). Since α-TIP transport in tobacco leaf cells
was shown to be BFA-insensitive (Gomez and Chrispeels, 1993)
and can be blocked by SEC12 overexpression (Bottanelli et al.,
2011), it cannot be excluded that α-TIP follows the same route
of VHA-a3 and AVP1, with SEC12 playing an additional role
in this process. While we propose that newly formed lytic vac-
uoles arise from the ER, a subpopulation might originate from
the conversion of protein storage vacuoles (PSVs) when seeds
start to germinate (Zheng and Staehelin, 2011). Interestingly,
direct transport from the ER to PSVs was reported in pump-
kin cotyledons and seeds, where precursors-accumulating vesicles
(PAC) arise from the endoplasmic reticulum and are delivered
to PSVs (Hara-Nishimura et al., 1998). It is tempting to imagine
PACs (diameter of 200–400 nm) being the precursors of PSVs,
that slowly acquire their final size and identity via Golgi- and
post-Golgi-mediated transport, as we have proposed to happen
between provacuoles and lytic vacuoles. The idea that membrane-
ous sheets (as provacuoles look like) arise from the ER (that also
has similar structures, the cisternae) appears more reasonable in
terms of geometry. One of the elements that could contribute to
the formation of provacuoles is the different lipid composition of
the nascent membrane compared to that of the ER. Theoretically,
the clustering in discrete domains of one or more specific kind
of lipids could drive the maturation of an organelle from another
one. This could also be the case for the maturation of MVBs,
which are enriched in phosphatidylinositol-3-phosphate (PI3P),
while the Golgi and TGN mainly have PI4P (Vermeer et al., 2006;
Vermeer et al., 2009).

More and more evidence is accumulating for direct ER-to-
vacuole transport, and those that were supposed to be the “farest”
intracellular compartments in plant cells could be, although briefly
in time and space, even physically attached.
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Batistič, O., Waadt, R., Steinhorst, L., Held, K., and Kudla, J. (2010). CBL-mediated
targeting of CIPKs facilitates the decoding of calcium signals emanating from dis-
tinct cellular stores. Plant J. 61, 211–222. doi: 10.1111/j.1365-313X.2009.04045.x

Bottanelli, F., Foresti, O., Hanton, S., and Denecke, J. (2011).Vacuolar trans-
port in tobacco leaf epidermis cells involves a single route for soluble cargo
and multiple routes for membrane cargo. Plant Cell 23, 3007–3025. doi:
10.1105/tpc.111.085480

Brandizzi, F., and Barlowe, C. (2013). Organization of the ER-Golgi interface
for membrane traffic control. Nat. Rev. Mol. Cell. Biol. 14, 382–392. doi:
10.1038/nrm3588

Conger, R., Chen, Y., Fornaciari, S., Faso, C., Held, M. A., Renna, L., et al. (2011).
Evidence for the involvement of the Arabidopsis SEC24A in male transmission. J.
Exp. Bot. 62, 4917–4926. doi: 10.1093/jxb/err174

Contreras, I., Yang, Y., Robinson, D. G., and Aniento, F. (2004). Sorting signals in
the cytosolic tail of plant p24 proteins involved in the interaction with the COPII
coat. Plant Cell Physiol. 45, 1779–1786. doi: 10.1093/pcp/pch200

De, D. N. (2000). Plant Cell Vacuoles: An Introduction. Collingwood, VIC: CSIRO
Publishing.

De Marchis, F., Bellucci, M., and Pompa, A. (2013). Traffic of human α-mannosidase
in plant cells suggests the presence of a new endoplasmic reticulum-to-vacuole
pathway without involving the Golgi complex. Plant Physiol. 161, 1769–1782. doi:
10.1104/pp.113.214536

De Marcos Lousa, C., Gershlick, D. C., and Denecke, J. (2012).Mechanisms and
concepts paving the way towards a complete transport cycle of plant vacuolar
sorting receptors. Plant Cell 24, 1714–1732. doi: 10.1105/tpc.112.095679

Denecke, J., Botterman, J., and Deblaere, R. (1990). Protein secretion in plant cells
can occur via a default pathway. Plant Cell 2, 51–59. doi: 10.1105/tpc.2.1.51

Dettmer, J., Hong-Hermesdorf, A., Stierhof, Y. D., and Schumacher, K. (2006).Vac-
uolar H+-ATPase activity is required for endocytic and secretory trafficking in
Arabidopsis. Plant Cell 18, 715–730. doi: 10.1105/tpc.105.037978

Donohoe, B. S., Kang, B. H., and Staehelin, L. A. (2007).Identification and char-
acterization of COPIa- and COPIb-type vesicle classes associated with plant
and algal Golgi. Proc. Natl. Acad. Sci. U.S.A. 104, 163–168. doi: 10.1073/pnas.
0609818104

Feraru, E., Paciorek, T., Feraru, M. I., Zwiewka, M., De Groodt, R., De Rycke, R., et al.
(2010).The AP-3 βadaptin mediates the biogenesis and function of lytic vacuoles
in Arabidopsis. Plant Cell 22, 2812–2824. doi: 10.1105/tpc.110.075424

Gomez, L., and Chrispeels, M. J. (1993). Tonoplast and soluble vacuolar pro-
teins are targeted by different mechanisms. Plant Cell 5, 1113–1124. doi:
10.1105/tpc.5.9.1113

Griffiths, G., and Simons, K. (1986). The trans Golgi network: sorting at the exit site
of the Golgi complex. Science 234, 438–443. doi: 10.1126/science.2945253

Hanton, S. L., Renna, L., Bortolotti, L. E., Chatre, L., Stefano, G., and Bran-
dizzi, F. (2005). Diacidic motifs influence the export of transmembrane proteins
from the endoplasmic reticulum in plant cells. Plant Cell 17, 3081–3093. doi:
10.1105/tpc.105.034900

Hara-Nishimura, I., Shimada, T., Hatano, K., Takeuchi, Y., and Nishimura, M.
(1998). Transport of storage proteins to protein storage vacuoles is medi-
ated by large precursor-accumulating vesicles. Plant Cell 10, 825–836. doi:
10.1105/tpc.10.5.825

www.frontiersin.org February 2014 | Volume 5 | Article 20 | 5

http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Cell_Biology/archive


Viotti Vacuolar transport and vacuole biogenesis

Hilling, B., and Amelunxen, F. (1985). On the development of the vacuole.
II. Further evidence for endoplasmic reticulum origin. Eur. J. Cell Biol. 38,
195–200.

Isono, E., Katsiarimpa, A., Müller, I. K., Anzenberger, F., Stierhof, Y. D., Geldner, N.,
et al. (2010). The deubiquitinating enzyme AMSH3 is required for intracellular
trafficking and vacuole biogenesis in Arabidopsis thaliana. Plant Cell 22, 1826–
1837. doi: 10.1105/tpc.110.075952

Jiang, L., and Rogers, J. C. (1998). Integral membrane protein sorting to vac-
uoles in plant cells: evidence for two pathways. J. Cell Biol. 143, 1183–1199. doi:
10.1083/jcb.143.5.1183

Kang, B. H., Nielsen, E., Preuss, M. L., Mastronarde, D., and Staehelin, L.
A. (2011). Electron tomography of RabA4b- and PI-4Kβ1-labeled trans Golgi
network compartments in Arabidopsis. Traffic 12, 313–329. doi: 10.1111/j.1600-
0854.2010.01146.x

Kang, B. H., and Staehelin, L. A. (2008). ER-to-Golgi transport by COPII vesicles
in Arabidopsis involves a ribosome-excluding scaffold that is transferred with the
vesicles to the Golgi matrix. Protoplasma 234, 51–64. doi: 10.1007/s00709-008-
0015-6

Kappeler, F., Klopfenstein, D. R., Foguet, M., Paccaud, J. P., and Hauri, H. P. (1997).
The recycling of ERGIC-53 in the early secretory pathway. ERGIC-53 carries a
cytosolic endoplasmic reticulum-exit determinant interacting with COPII. J. Biol.
Chem. 272, 31801–31808. doi: 10.1074/jbc.272.50.31801

Kirsch, T., Saalbach, G., Raikhel, N. V., and Beevers, L. (1996). Interaction of a
potential vacuolar targeting receptor with amino- and carboxylterminal targeting
determinants. Plant Physiol. 111, 469–474.

Lee, G. J., Kim, H., Kang, H., Jang, M., Lee, D. W., Lee, S., et al. (2007). EpsinR2
interacts with clathrin, adaptor protein-3, AtVTI12, and phosphatidylinositol-3-
phosphate. Implications for EpsinR2 function in protein trafficking in plant cells.
Plant Physiol. 143, 1561–1575. doi: 10.1104/pp.106.095349

Leigh, R. A., and Sanders, D. (1997).The Plant Vacuole. Advances in Botanical
Research, Vol. 25. San Diego: Academic Press.

Maeshima, M. (2001).Tonoplast transporters: organization and function. Annu.
Rev. Plant Physiol. Plant Mol. Biol. 52, 469–497. doi: 10.1146/annurev.arplant.52.
1.469

Martinière, A., Bassil, E., Jublanc, E., Alcon, C., Reguera, M., Sentenac, H., et al.
(2013). In vivo intracellular pH measurements in tobacco and Arabidopsis reveal
an unexpected pH gradient in the endomembrane system. Plant Cell 25, 4028–
4043. doi: 10.1105/tpc.113.116897

Marty, F. (1978). Cytochemical studies on GERL, provacuoles, and vacuoles in root
meristematic cells of Euphorbia. Proc. Natl. Acad. Sci. U.S.A. 75, 852–856. doi:
10.1073/pnas.75.2.852

Marty, F. (1999). Plant vacuoles. Plant Cell 11, 587–600. doi: 10.1105/tpc.11.4.587
Matile, P., and Moor, H. (1968). Vacuolation: origin and development of the lyso-

somal apparatus in root-tip cells. Planta 80, 159–175. doi: 10.1007/BF00385592
Matsuoka, K., and Nakamura, K. (1991). Propeptide of a precursor to a plant

vacuolar protein required for vacuolar targeting. Proc. Natl. Acad. Sci. U.S.A. 88,
834–838. doi: 10.1073/pnas.88.3.834

Mesquita, J. F. (1969). Electron microscope study of the origin and development of
the vacuoles in root-tip cells of Lupinus albus L. J. Ultrastruct. Res. 26, 242–250.
doi: 10.1016/S0022-5320(69)80004-3

Miao, Y., Li, K. Y., Li, H. Y., Yao, X., and Jiang, L. (2008).The vacuolar transport of
aleurain-GFP and 2S albumin-GFP fusions is mediated by the same pre-vacuolar
compartments in tobacco BY-2 and Arabidopsis suspension cultured cells. Plant
J. 56, 824–839. doi: 10.1111/j.1365-313X.2008.03645.x

Nakano, A., Brada, D., and Schekman, R. (1988).A membrane glycoprotein, Sec12p,
required for protein transport from the endoplasmic reticulum to the Golgi
apparatus in yeast. J. Cell Biol. 107, 851–863. doi: 10.1083/jcb.107.3.851

Niemes, S., Langhans, M., Viotti, C., Scheuring, D., San Wan Yan, M., Jiang, L.,
et al. (2010). Retromer recycles vacuolar sorting receptors from the trans-Golgi
network. Plant J. 61, 107–121. doi: 10.1111/j.1365-313X.2009.04034.x

Nishimura, N., and Balch, W. E. (1997). A di-acidic signal required for selec-
tive export from the endoplasmic reticulum. Science 277, 556–558. doi:
10.1126/science.277.5325.556

Pedrazzini, E., Komarova, N. Y., Rentsch, D., and Vitale, A. (2013). Traffic routes
and signals for the tonoplast. Traffic 14, 622–628. doi: 10.1111/tra.12051

Phillipson, B. A., Pimpl, P., daSilva, L. L., Crofts, A. J., Taylor, J. P., Movafeghi,
A., et al. (2001). Secretory bulk flow of soluble proteins is efficient and COPII
dependent. Plant Cell 13, 2005–2020. doi: 10.1105/tpc.13.9.2005

Porter, K. R., Claude, A., and Fullam, E. F. (1945). A study of tissue culture cells
by electron microscopy: methods and preliminary observations. J. Exp. Med. 81,
233–246. doi: 10.1084/jem.81.3.233

Ranocha, P., Dima, O., Nagy, R., Felten, J., Corratgé-Faillie, C., Novák, O., et al.
(2013). Arabidopsis WAT1 is a vacuolar auxin transport facilitator required for
auxin homoeostasis. Nat. Commun. 4: 2625. doi: 10.1038/ncomms3625

Reichardt, I., Stierhof, Y. D., Mayer, U., Richter, S., Schwarz, H., Schumacher, K.,
et al. (2007). Plant cytokinesis requires de novo secretory trafficking but not
endocytosis. Curr. Biol. 17, 2047–2053. doi: 10.1016/j.cub.2007.10.040

Richter, S., Geldner, N., Schrader, J., Wolters, H., Stierhof,Y. D., Rios, G., et al. (2007).
Functional diversification of closely related ARF-GEFs in protein secretion and
recycling. Nature 448, 488–492. doi: 10.1038/nature05967

Ritzenthaler, C., Nebenführ, A., Movafeghi, A., Stussi-Garaud, C., Behnia, L., Pimpl,
P., et al. (2002). Reevaluation of the effects of brefeldin A on plant cells using
tobacco Bright Yellow 2 cells expressing Golgi-targeted green fluorescent protein
and COPI antisera. Plant Cell 14, 237–261. doi: 10.1105/tpc.010237

Robinson, D. G., Herranz, M. C., Bubeck, J., Pepperkok, R., and Ritzenthaler, C.
(2007). Membrane dynamics in the early secretory pathway. Crit. Rev. Plant Sci.
26, 199–225. doi: 10.1080/07352680701495820

Robinson, D. G., Pimpl, P., Scheuring, D., Stierhof, Y. D., Sturm, S., and Viotti,
C. (2012). Trying to make sense of retromer. Trends Plant Sci. 17, 431–439. doi:
10.1016/j.tplants.2012.03.005

Robinson, D. G., and Rogers, J. C. (2000).Vacuolar Compartments (Annual Plant
Review), Vol. 5, Sheffield, UK: Academic Press.

Rojo, E., Gillmor, C. S., Kovaleva, V., Somerville, C. R., and Raikhel, N. V. (2001).
VACUOLELESS1 is an essential gene required for vacuole formation and morpho-
genesis in Arabidopsis. Dev. Cell 1, 303–310. doi: 10.1016/S1534-5807(01)00024-7

Rutherford, S., and Moore, I. (2002). The Arabidopsis RabGTPase family: another
enigma variation. Curr. Opin. Plant Biol. 5, 518–528. doi: 10.1016/S1369-
5266(02)00307-2

Sauer, M., Delgadillo, M. O., Zouhar, J., Reynolds, G. D., Pennington, J. G.,
Jiang, L., et al. (2013). MTV1 and MTV4 encode plant-specific ENTH and
ARF GAP proteins that mediate clathrin-dependent trafficking of vacuolar cargo
from the trans-Golgi network. Plant Cell 25, 2217–2235.doi: 10.1105/tpc.113.
111724

Scheuring, D., Viotti, C., Krüger, F., Künzl, F., Sturm, S., Bubeck, J., et al. (2011).
Multivesicular bodies mature from the trans-Golgi network/early endosome in
Arabidopsis. Plant Cell 23, 3463–3481.doi: 10.1105/tpc.111.086918

Schumacher, K., and Krebs, M. (2010). The V-ATPase: small cargo, large effects.
Curr. Opin. Plant Biol. 13, 724–730. doi: 10.1016/j.pbi.2010.07.003

Shen, J., Zeng, Y., Zhuang, X., Sun, L., Yao, X., Pimpl, P., et al. (2013). Organelle
pH in the Arabidopsis endomembrane system. Mol. Plant 6, 1419–1437. doi:
10.1093/mp/sst079

Song, J., Lee, M. H., Lee, G. J., Yoo, C. M., and Hwang, I. (2006). Arabidopsis
EPSIN1 plays an important role in vacuolar trafficking of soluble cargo proteins
in plant cells via interactions with clathrin, AP-1, VTI11, and VSR1. Plant Cell 18,
2258–2274.doi: 10.1105/tpc.105.039123

Spitzer, C., Reyes, F. C., Buono, R., Sliwinski, M. K., Haas,T. J., and Otegui, M. S.
(2009). The ESCRT-related CHMP1A and B proteins mediate multivesicular body
sorting of auxin carriers in Arabidopsis and are required for plant development.
Plant Cell 21, 749–766. doi: 10.1105/tpc.108.064865

Stierhof, Y. D., and El Kasmi, F. (2010).Strategies to improve the antigenicity, ultra-
structure preservation and visibility of trafficking compartments in Arabidopsis
tissue. Eur. J. Cell Biol. 89, 285–297. doi: 10.1016/j.ejcb.2009.12.003

Tanaka, Y., Nishimura, K., Kawamukai, M., Oshima, A., and Nakagawa, T. (2013).
Redundant function of two Arabidopsis COPII components, AtSec24B and
AtSec24C, is essential for male and female gametogenesis. Planta 238, 561–575.
doi: 10.1007/s00425-013-1913-1

Tang, R. J., Liu, H., Yang, Y., Yang, L., Gao, X. S., Garcia, V. J., et al. (2012). Tono-
plast calcium sensors CBL2 and CBL3 control plant growth and ion homeostasis
through regulating V-ATPase activity in Arabidopsis. Cell Res. 22, 1650–1665. doi:
10.1038/cr.2012.161

Thor, F., Gautschi, M., Geiger, R., and Helenius, A. (2009). Bulk flow revisited:
transport of a soluble protein in the secretory pathway. Traffic 10, 1819–1830.
doi: 10.1111/j.1600-0854.2009.00989.x

Tse, Y. C., Mo, B., Hillmer, S., Zhao, M., Lo, S. W., Robinson, D. G., et al. (2004).
Identification of multivesicular bodies as prevacuolar compartments in Nicotiana
tabacum BY-2 cells. Plant Cell 16, 672–693. doi: 10.1105/tpc.019703

Frontiers in Plant Science | Plant Cell Biology February 2014 | Volume 5 | Article 20 | 6

http://www.frontiersin.org/Plant_Cell_Biology/
http://www.frontiersin.org/Plant_Cell_Biology/archive


Viotti Vacuolar transport and vacuole biogenesis

Vermeer, J. E., Thole, J. M., Goedhart, J., Nielsen, E., Munnik, T., and Gadella, T.
W. Jr. (2009).Imaging phosphatidylinositol 4-phosphate dynamics in living plant
cells. Plant J. 57, 356–372. doi: 10.1111/j.1365-313X.2008.03679.x

Vermeer, J. E., van Leeuwen, W., Tobeña-Santamaria, R., Laxalt, A. M., Jones, D.
R., Divecha, N., et al. (2006). Visualization of PtdIns3P dynamics in living plant
cells. Plant J. 47, 687–700. doi: 10.1111/j.1365-313X.2006.02830.x

Viotti, C., Bubeck, J., Stierhof, Y. D., Krebs, M., Langhans, M., van den Berg, W.,
et al. (2010). Endocytic and secretory traffic in Arabidopsis merge in the rans-
Golgi network/early endosome, an independent and highly dynamic organelle.
Plant Cell 22, 1344–1357. doi: 10.1105/tpc.109.072637

Viotti, C., Krüger, F., Krebs, M., Neubert, C., Fink, F., Lupanga, U., et al. (2013). The
endoplasmic reticulum is the main membrane source for biogenesis of the lytic
vacuole in Arabidopsis. Plant Cell 25, 3434–3449.doi: 10.1105/tpc.113.114827

Vitale, A., and Denecke, J. (1999).The endoplasmic reticulum – gateway of the
secretory pathway. Plant Cell 11, 615–628. doi: 10.1105/tpc.11.4.615

Wieland, F. T., Gleason, M. L., Serafini, T. A., and Rothman, J. E. (1987).The rate of
bulk flow from the endoplasmic reticulum to the cell surface. Cell 50, 289–300.
doi: 10.1016/0092-8674(87)90224-8

Wolfenstetter, S., Wirsching, P., Dotzauer, D., Schneider, S., and Sauer, N.
(2012).Routes to the tonoplast: the sorting of tonoplast transporters in Arabidopsis
mesophyll protoplasts. Plant Cell 24, 215–232. doi: 10.1105/tpc.111.090415

Xiang, L., Etxeberria, E., and Van den Ende, W. (2013).Vacuolar protein sorting
mechanisms in plants. FEBS J. 280, 979–993. doi: 10.1111/febs.12092

Zanetti, G., Pahuja, K. B., Studer, S., Shim, S., and Schekman, R. (2011). COPII
and the regulation of protein sorting in mammals. Nat. Cell Biol. 14, 20–28. doi:
10.1038/ncb2390

Zheng, H., and Staehelin, L. A. (2011). Protein storage vacuoles are trans-
formed into lytic vacuoles in root meristematic cells of germinating seedlings
by multiple, cell type-specific mechanisms. Plant Physiol. 155, 2023–2035. doi:
10.1104/pp.110.170159

Zhuang, X., Wang, H., Lam, S. K., Gao, C., Wang, X., Cai, Y., et al. (2013). A
BAR-domain protein SH3P2, which binds to phosphatidylinositol 3-phosphate
and ATG8, regulates autophagosome formation in Arabidopsis. Plant Cell 25,
4596–4615. doi: 10.1105/tpc.113.118307

Zimmermann, U., Hüsken, D., and Schulze, E. D. (1980). Direct turgor pressure
measurements in individual leaf cells of Tradescantia virginiana. Planta 149, 445–
453. doi: 10.1007/BF00385746

Zouhar, J., Rojo, E., and Bassham, D. C. (2009). AtVPS45 is a positive regulator
of the SYP41/SYP61/VTI12 SNARE complex involved in trafficking of vacuolar
cargo. Plant Physiol. 149, 1668–1678. doi: 10.1104/pp.108.134361

Zwiewka, M. M., Feraru, E., Möller, B., Hwang, I., Feraru, M. I., Kleine-Vehn,
J., et al. (2011). The AP-3 adaptor complex is required for vacuolar function in
Arabidopsis. Cell Res. 21, 1711–1722. doi: 10.1038/cr.2011.99

Conflict of Interest Statement: The author declares that the research was conducted
in the absence of any commercial or financial relationships that could be construed
as a potential conflict of interest.

Received: 16 December 2013; accepted: 17 January 2014; published online: 04 February
2014.
Citation: Viotti C (2014) ER and vacuoles: never been closer. Front. Plant Sci. 5:20.
doi: 10.3389/fpls.2014.00020
This article was submitted to Plant Cell Biology, a section of the journal Frontiers in
Plant Science.
Copyright © 2014 Viotti. This is an open-access article distributed under the terms of the
Creative Commons Attribution License (CC BY). The use, distribution or reproduction
in other forums is permitted, provided the original author(s) or licensor are credited
and that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.

www.frontiersin.org February 2014 | Volume 5 | Article 20 | 7

http://dx.doi.org/10.3389/fpls.2014.00020
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Cell_Biology/archive

	ER and vacuoles: never been closer
	Endoplasmic reticulum: entrance to the secretory pathway
	Lytic vacuoles
	Golgi- and post-golgi-mediated transports to the lytic vacuole
	Unconventional er-export of proteins to the vacuole
	Mechanisms of vacuole biogenesis
	The ER is the main membrane source for vacuole biogenesis
	Acknowledgments
	References


