
OPINION ARTICLE
published: 17 February 2014

doi: 10.3389/fpls.2014.00032

Attainment of reproductive competence, phase transition,
and quantification of juvenility in mutant genetic screens
Ianis G. Matsoukas1,2*

1 Engineering, Sports and Sciences Academic Group, The University of Bolton, Bolton, UK
2 Institute for Renewable Energy and Environmental Technologies, The University of Bolton, Bolton, UK
*Correspondence: i.matsoukas@bolton.ac.uk

Edited by:

Christian Jung, Christian Albrechts University of Kiel, Germany

Reviewed by:

Matthias Fladung, Johann Heinrich von Thuenen Institute (vTI), Germany
Christian Jung, Christian Albrechts University of Kiel, Germany

Keywords: Arabidopsis thaliana, florigenic and antiflorigenic signaling, heteroblasty and attainment of reproductive competence, juvenile-to-adult phase

transition, reciprocal transfer experiments

INTRODUCTION TO JUVENILITY
Plant development between seedling
emergence and flowering is character-
ized by a series of successive qualitative
phases: (1) a post embryonic photoperiod-
insensitive phase, during which plants are
insensitive to photoperiod; (2) a photo-
period-sensitive inductive phase, in which
plants require a number of short day
(SD) or long day (LD) inductive cycles,
depending on their age for rapid flow-
ering, and (3) a photoperiod-insensitive
post-inductive phase, in which plant
development is no longer influenced by
photoperiod (Figure 1; Matsoukas et al.,
2013).

The early phase of development dur-
ing which the plants cannot be induced
to flower and are effectively insensitive to
environmental influences of photoperiod
and/or vernalization has been called the
juvenile phase (Thomas and Vince-Prue,
1997). This period differs from plant to
plant from a period of a few days, for small
herbaceous annual plant species, through
to periods that may last longer than 20
years, as is evident for many tree species.
From a physio-ecological perspective, by
having a juvenile phase, plant species avoid
the low seed yields that would occur if
they were to flower precociously while
still small and with limited photosynthetic
capacity (Thomas and Vince-Prue, 1997).

THE IMPORTANCE OF THE JUVENILE
PHASE STUDIES
Studies on the juvenile-to-adult phase
transition have significant scientific and

economic implications. Juvenility has long
attracted interest as an aspect of the fun-
damental topic of aging and also has
practical implications, especially in the
growth and development of those species
in which it is striking and prolonged
(Matsoukas et al., 2012). From a commer-
cial perspective, understanding the fac-
tors that affect the timing and duration
of the juvenile phase length is criti-
cal for scheduling in commercial hor-
ticulture and arable crops. In addition,
the long juvenile phase length of some
species is one of several features limiting
efficient breeding programs. For exam-
ple, the efficiency of trait selection and
genetic improvement in breeding pro-
grams is inversely related to the period
of the breeding cycle. Thus, the exploita-
tion of genotypes with short juvenile
phase is very important. On the other
hand, in many countries fast-growing
tree species are being increasingly used
for pulp and bioenergy production. In
such cases, it may be equally impor-
tant to explore molecular methods to
prevent flowering and prolong juvenil-
ity (Matsoukas et al., 2012). Therefore,
improving our knowledge of the ways,
by which abiotic conditions and genetic
factors influence juvenility and floral
induction could help with crop schedul-
ing, decrease time to flowering, and
reduce waste with resulting benefits for
the environment through lower inputs
and energy required per unit of mar-
ketable product (Matsoukas et al., 2012,
2013).

MOLECULAR GENETICS OF THE
JUVENILE-TO-ADULT PHASE
TRANSITION
Molecular genetic analyses have provided
insights into mechanisms that regulate
the juvenile-to-adult and vegetative-to-
reproductive phase transitions in several
plant model systems (reviewed in Jansson
and Douglas, 2007; Albani and Coupland,
2010; Huijser and Schmid, 2011; Andres
and Coupland, 2012; Bolouri Moghaddam
and Den Ende, 2013). MicroRNA156
(miR156), an ambient temperature-
responsive miR (Lee et al., 2010) and
strong floral inhibitor, is one of the cen-
tral regulators of the juvenile-to-adult and
vegetative-to-reproductive phase transi-
tions in several species (Wu and Poethig,
2006; Chuck et al., 2007, 2011; Wang et al.,
2011). Functional analysis of the hasty1
(hst1) mutant of Arabidopsis thaliana
revealed the function of the contrasting
transcriptional pattern of the phloem-
transmitted miR156 (Lee et al., 2010)
and miR172 (Lauter et al., 2005; Martin
et al., 2009; Varkonyi-Gasic et al., 2010)
in regulation of phase transitions (Wu
and Poethig, 2006; Chuck et al., 2007;
Jung et al., 2007; Mathieu et al., 2009).
It has been shown that the juvenile-to-
adult phase transition is accompanied by
a decrease in miR156/miR157 abundance
and a concomitant increase in abundance
of miR172, as well as the SQUAMOSA
PROMOTER-BINDING PROTEIN-LIKE
(SPL) transcription factors (TFs; Shikata
et al., 2009; Wang et al., 2009; Jung et al.,
2011; Shikata et al., 2012). Expression of
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FIGURE 1 | The ability to sense and respond to photoperiod and/or

vernalization varies in different phases of development. Plants undergo a
series of qualitative transitions during their life-cycle in response to
environmental and endogenous factors. One of the most distinguishable is
the transition from a vegetative to reproductive phase of development, also
known as the transition to flowering. This stage is preceded by the

juvenile-to-adult phase transition within the vegetative phase. During the
juvenile phase plants are incompetent to initiate reproductive development
and are effectively insensitive to photoperiod and/ or vernalization. With the
change to adult phase, plants attain competence to respond to floral inducers,
which is required for the transition to the reproductive phase. Photoperiod is
perceived in the leaf, whereas vernalization at the shoot apical meristem.

miR172 in leaves activates FLOWERING
LOCUS T (FT; Aukerman and Sakai, 2003;
Jung et al., 2007), the final output of
the photoperiodic pathway (Corbesier
et al., 2007), through repression of
AP2-like transcripts SCHLAFMÜTZE
(SMZ), SCHNARCHZAPFEN (SNZ)
and TARGET OF EAT 1–3 (TOE1–3;
Jung et al., 2007; Mathieu et al., 2009),
whereas the increase in SPLs at the shoot
apical meristem (SAM), leads to the
transcription of floral meristem iden-
tity (FMI) genes (Wang et al., 2009;
Yamaguchi et al., 2009). The FMI genes
trigger the expression of floral organ
identity genes (Causier et al., 2010),
which function in a combinatorial fash-
ion to specify the distinct floral organ
identities.

The juvenile-to-adult phase transition
is genetically regulated, although, as with
most genetic traits, there are interac-
tions with abiotic factors (Telfer and
Poethig, 1998; Mohamed et al., 2010;
Bergonzi et al., 2013). Arabidopsis geno-
types impaired in sugar signaling, starch
anabolism and catabolism, and floral
repressor mutants show altered juvenile
phase lengths compared to their respec-
tive wild types (Matsoukas et al., 2013). In
addition, examination of diurnal metabo-
lite changes in starch deficient and starch
excess mutants indicates that their altered

juvenile phase length may be due to lack of
starch turnover, which influences carbohy-
drate availability (Matsoukas et al., 2013).
Interestingly, miR156a and miR156c, the
major sources of miR156 in Arabidopsis,
are significantly down regulated by sug-
ars (Yang et al., 2013; Yu et al., 2013).
Furthermore, it has been shown that
trehalose-6-phosphate (Tre6P) acts as a
local signal that links sugar availability
to the juvenile-to-adult and vegetative-
to-reproductive phase transitions (Wahl
et al., 2013). Arabidopsis plants impaired in
Tre6P signaling pathway are late flowering.
This late flowering phenotype was found
to be due to reduced expression levels of
FT, the elevated levels of miR156, and
reduced levels of at least three miR156-
regulated transcripts, SPL3, SPL4, and
SPL5 (Wahl et al., 2013).

BIOCHEMICAL INFLUENCE
A number of biochemical changes have
been proposed to mark the juvenile-to-
adult phase transition in different plant
species. For example, differences in per-
oxidase and esterase isozymes (Brand
and Lineberger, 1992) and in protein
phosphorylation (Huang et al., 1992).
Furthermore, while various hormones
have been shown to affect the juvenile-
to-adult phase transition, their responses
sometime differ. The hormones auxin (De

Zeeuw and Leopold, 1955), abscisic acid
(Rogler and Hackett, 1975), cytokinin
(Mullins et al., 1979) and ethylene (Beyer
and Morgan, 1971) have been demon-
strated to be involved in the juvenile-
to-adult phase transition. In addition,
gibberellic acid (GA) has promotional
and repressive effects depending on plant
species (Wilson et al., 1992; Chien and
Sussex, 1996; Telfer et al., 1997; Telfer and
Poethig, 1998). In Arabidopsis, GA muta-
tions that affect GA biosynthesis (ga1-
3, ga4-1, and ga5-1) and GA sensitivity
(spindly4) lengthen and shorten the vege-
tative phase transition, respectively (Telfer
et al., 1997). However, it is unclear whether
alterations in various hormones levels
directly control the juvenile-to-adult phase
transition. The action of hormones could
be indirect, for instance, by controlling
partitioning or mobilization of photosyn-
thates, and/or interacting with other hor-
mones (Domagalska et al., 2010) and sugar
signals (Zhou et al., 1998; Moore et al.,
2003).

MORPHOLOGICAL, HISTOLOGICAL,
AND PHYSIOLOGICAL MARKERS
In some species, the juvenile-to-adult
phase transition has also been associ-
ated with several morphological, his-
tological, and physiological traits. For
instance, leaves may change in shape, size,
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phyllotaxy, and thickness. Other features
associated with the developmental stage
may relate to pigmentation, rooting ability,
growth habit, orientation of vascular bun-
dles, cold and disease resistance, and the
physiological status of the plant (Poethig,
1990, 2003; Brunner and Nilsson, 2004;
Itoh et al., 2005). However, these features
are not totally reliable, since they are usu-
ally affected by different factors such as
water availability, temperature, photope-
riod, light quality and irradiance. In addi-
tion, the morphological, histological, and
physiological changes are often less dis-
tinct in herbaceous than in woody species,
and in many cases no clear association
exists (Jones, 1999; Brunner and Nilsson,
2004).

In Arabidopsis the appearance of tri-
chomes marks the juvenile-to-adult phase
transition (Telfer et al., 1997). Leaves of
plants in their juvenile phase of growth
produce trichomes only on the adaxial
surface, whereas leaves of plants in their
adult phase produce trichomes on both
the adaxial and abaxial surfaces. However,
mutations in Arabidopsis affecting tri-
chome development can alter trichome
distribution in ways that are not phase spe-
cific (Telfer et al., 1997). This complicates
the use of trichome distribution as a phase
marker in mutant genetic screens.

The term “vegetative phase transition”
is currently being used to character-
ize both heteroblasty and attainment
of reproductive competence, since the
two developmental events occur dur-
ing the vegetative growth that precedes
the transition to the reproductive phase
(Poethig, 1990, 2009). However, by assess-
ing morphological characteristics, several
plant species undergo the vegetative-to-
reproductive phase transition while still
displaying juvenile traits, and others in
which floral induction does not occur,
even if adult traits are appeared and the
plants are treated with photo- and/or
thermo-inductive conditions (Brunner
and Nilsson, 2004; Poethig, 2010). This
could indicate that estimation of the
length of the juvenile phase based on
morphological traits does not necessar-
ily provide a reliable indication of when
juvenility ends. Therefore, the use of the
terms “juvenile vegetative phase” and
“adult vegetative phase” in defining both
the heteroblastic transition as well as the

state of floral competence may lead to
perplexity.

COMPETENCE TO RESPOND TO
FLORAL INDUCTIVE SIGNALS: A
RELIABLE DETERMINANT THAT CAN
BE USED TO QUANTIFY THE LENGTH
OF THE JUVENILE PHASE
The juvenile-to-adult phase transition is
affected by several abiotic conditions
(Matsoukas et al., 2013) and so chrono-
logical time (or the number of dormancy
cycles) does not necessarily provide a reli-
able indication of when juvenility ends.
Floral competence is the most robust
determinant that can be used to dis-
tinguish between the juvenile and adult
vegetative phases of plant development.
However, non-flowering plants are not
necessarily in their juvenile phase of devel-
opment; they might be floral competent
but have not been exposed to photo-
and/or thermo-inductive conditions for
flowering.

A simple method of quantifying the
length of the juvenile phase accurately
and reproducibly is to conduct recip-
rocal transfer experiments (Mozley and
Thomas, 1995; Matsoukas et al., 2013).
This approach involves transferring plants
at regular intervals between conditions
that are inductive and non-inductive
for flowering, for example between LDs
and SDs (or between different levels
of temperature; response to vernaliza-
tion), and assess leaf number and flow-
ering time responses (Adams et al., 2001,
2003). This approach enables the anal-
ysis of reciprocal transfer experiments
data in terms of the following parame-
ters: (1) the photoperiod-insensitive juve-
nile phase; (2) the photoperiod-sensitive
floral inductive phases in both SDs and
LDs; and (3) the photoperiod-insensitive
post inductive phase (Adams et al., 2003).
Plants transferred from non- or less induc-
tive conditions to inductive conditions
before the end of juvenility will exhibit
similar flowering times (and for terminal
flowering plant species, have the same leaf
numbers), as those grown constantly in the
inductive conditions (Adams et al., 2003).
On the other hand, floral induction will be
delayed in plants that remain under non-
inductive conditions after juvenility has
ended. Experimental data sets obtained
by the reciprocal transfer approach can

be analyzed by fitting models such as
those described by Adams et al. (2001,
2003). The reciprocal transfer approach
has the advantage that it can be used
on small seedlings, where grafting tech-
niques are impractical, and in species
where genetic analyses are not possible as
little is known about the genetic regulation
of the juvenile-to-adult phase transition.

CONCLUDING REMARKS
The juvenile-to-adult and vegetative-to-
reproductive phase transitions regulated
by multiple pathways, which show dif-
ferent responses to external and internal
stimuli. Much of the evidence for the var-
ious factors involved in the juvenile-to-
adult phase transition can be subject to
multiple interpretations. However, it can
be proposed that the prolonged juvenile-
to-adult and vegetative-to-reproductive
phase transitions might be due to a
plethora of antiflorigenic signals, which
affect the transcription levels of FT and
SPLs. Therefore, juvenility can be defined
as the period during which the abun-
dance of antiflorigenic signals such as
miR156/miR157 is sufficiently high to sup-
press the expression of FT and SPL genes.

Determination of the length of the
juvenile phase is a complex issue. The
estimation of juvenility based on mor-
phological, physiological, histological and
biochemical markers does not necessar-
ily provide a reliable indication of when
juvenility ends. The exploitation of a sin-
gle and simple experimental system to
obtain accurate and reproducible esti-
mates regarding the length of juvenility
in different plant species is of crucial
importance. Reproductive competence is a
robust determinant that can be used to dis-
tinguish between plants that are juvenile
or adult. This can be determined by con-
ducting reciprocal transfer experiments.
The simplicity of this approach enables
its application in diverse plant species
with comparative ease, including on young
seedlings, and in genotypes where the
practice of grafting is unfeasible.
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