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Carpels are leaf-like structures that bear ovules, and thus play a crucial role in the plant life
cycle. In angiosperms, carpels are the last organs produced by the floral meristem and they
differentiate a specialized meristematic tissue from which ovules develop. Members of the
three-amino-acid-loop-extension (TALE) class of homeoproteins constitute major regulators
of meristematic activity. This family contains KNOTTED-like (KNOX) and BEL1-like (BLH
or BELL) homeodomain proteins, which function as heterodimers. KNOX proteins can
have different BELL partners, leading to multiple combinations with distinct activities, and
thus regulate many aspects of plant morphogenesis, including gynoecium development.
TALE proteins act primarily through direct regulation of hormonal pathways and key
transcriptional regulators. This review focuses on the contribution of TALE proteins to
gynoecium development and connectsTALE transcription factors to carpel gene regulatory
networks.

Keywords: carpel,TALE, transcription factors, development, Arabidopsis

INTRODUCTION
In Arabidopsis, the female reproductive organ, or gynoecium, con-
sists of an apical stigma, a style, and a basal ovary (Figure 1 and for
reviews, Ferrándiz et al., 1999; Roeder and Yanofsky, 2006; Girin
et al., 2009; Ferrándiz et al., 2010). The ovary is composed of two
fused carpels (termed valves after fertilization) whose margins are
joined by the replum. The inner (adaxial) side of the replum has
a typical meristematic layered structure. This meristem gives rise
to ovules and to two septum primordia, which grow and fuse to
create the septum that divides the ovary into two locules. Two
rows of ovules arise along the septum inside each locule. The sep-
tum differentiates a central transmitting tract tissue, which guides
pollen tubes from the style to the ovule. Upon fertilization, ovules
develop into seeds, and gynoecium structure changes dramatically:
the fruit enlarges both longitudinally and laterally to accommo-
date seed growth and the valve margins undergo cell wall changes
required for silique dehiscence and seed dispersal.

In multicellular organisms, development relies on stem cells,
which are defined by their ability to renew themselves and to
give rise to daughter cells that contribute to organ production. In
plants, stem cells are maintained within structures called meris-
tems, and new organs are produced at the meristem periphery
(for review, Sablowski, 2011). The shoot apical meristem (SAM)
produces leaves and axillary meristems. Following floral evoca-
tion, the SAM becomes an inflorescence meristem (IM), which
produces flower meristems (FMs) that give rise to flowers contain-
ing gynoecia. Carpels are thought to be modified leaves with their
margins representing a lateral organ boundary (Frohlich, 2003). As
such, similar interactions occurring between SAM-boundary-leaf
apply to fruit patterning.

Within meristems, cell proliferation and differentiation are
tightly controlled by networks of transcription factors (TFs),

which integrate developmental cues such as position, differen-
tiation, and growth (Sablowski, 2011). The KNOTTED1 (KN1)
gene in maize was the first regulator of meristem activity identi-
fied in plants (Hake and Vollbrecht, 1989). In Arabidopsis, SHOOT
MERISTEMLESS (STM), which is functionally related to KN1,
and WUSCHEL (WUS) control meristem activity (for review,
Aichinger et al., 2012). WUS is required to maintain the stem-
cell population, as wus mutants lack stem cells at the center of
the shoot apices while STM is required for SAM initiation and its
maintenance in an undifferentiated state, as strong stm mutants
fail to develop a meristem during embryogenesis and fail to pro-
duce lateral organs (Endrizzi et al., 1996; Long et al., 1996). STM
is expressed in SAM, IM, FM, and in the inner side of the replum
(Endrizzi et al., 1996; Long et al., 1996; Ragni et al., 2008). STM
is down-regulated when cells become specified as primordium
founder cells (Long et al., 1996).

STM belongs to the “Three-Amino-acid-Loop-Extension”
(TALE) homeodomain superclass of TFs, which in Arabidopsis
comprises 9 KNOTTED-like (KNAT or KNOX) and 13 BEL1-like
(BLH or BELL) members (Box 1). The TALE factors function
as KNOX-BELL heterodimers (for reviews, Hay and Tsiantis,
2010; Hamant and Pautot, 2010; Di Giacomo et al., 2013).
STM maintains the pool of indeterminate meristematic cells
through repression of gibberellin (GA) biosynthesis, activation
of GA catabolism, and activation of cytokinin (CK) biosynthe-
sis (Sakamoto et al., 2001; Chen et al., 2004; Jasinski et al., 2005;
Bolduc and Hake, 2009). In addition, in the SAM, STM represses
the ASYMMETRIC LEAVES1 (AS1) gene, which encodes a MYB
TF involved in leaf patterning. AS1 represses other TALE-family
members such as KNAT1/BREVIPEDICELLUS (BP), KNAT2, and
KNAT6 in leaves (Byrne et al., 2000; Phelps-Durr et al., 2005).
Subsequent organ initiation requires high auxin and GA levels
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FIGURE 1 | Arabidopsis gynoecium development. (A) Schematic cross
sections showing the different tissues of the gynoecium at three
developmental stages according to Smyth et al. (1990). (B) Optical cross
sections through the Arabidopsis gynoecium at four developmental
stages stained with iodine green and carmine alum: upper left, stage 7,
showing the layered structure of the meristem; upper right, stage 9,

showing ovule primordia initiating from the placenta; lower left, stage
12, lower left, close-up of the medial tissue (stage 17b) showing the
replum and lignin deposition at the valve margins and at the endocarp
b layer. Scale bars represent 25 μm. (C) Schematic representation of
expression patterns of TALE genes in the Arabidopsis gynoecium
(stage 12).
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BOX 1 | Meet theTALE gene family.

The TALE family is a superclass of homeodomain TFs which com-
prises eight KNOTTED-like proteins in Arabidopsis thaliana (KNAT
or KNOX) plus a mini KNAT lacking the homeodomain (KNATM) and
13 BEL1-like (BLH or BELL) members (for a detailed review of the
structure of this gene family, see Mukherjee et al. (2009) and for a
phylogenetic tree of the Arabidopsis TALE family, see Hamant and
Pautot, 2010). This family controls development in all eukaryotic lin-
eages (Hay and Tsiantis, 2010). KNOX and BELL families occur in
single copy in Green algae and have diversified in land plant (Lee
et al., 2008).The KNOX family is divided into three classes based on
sequence similarity and gene expression pattern (Hake et al., 2004;
Magnani and Hake, 2008): Class I includes STM, BP/KNAT1, KNAT2
and KNAT6; Class II includes KNAT3, 4, 5, and 7. Class III contains
KNATM, which can interact with other TALE members to modulate
their activity (Kimura et al., 2008; Magnani and Hake, 2008). The
BELL family comprises RPL/BLH9, PNF/BLH8, ATH1, SAW1/BLH2,
SAW2/BLH8, BEL1 – whose functions have been characterized- and
BLH1, BLH3, BLH5, BLH6, BLH7, BLH10, and BLH11 – whose func-
tions are not yet known (Hamant and Pautot, 2010). The interaction
of KNOX and BELL proteins is critical for their nuclear localization
and their binding affinity to DNA, thereby imparting their activity
(Smith et al., 2002; Rutjens et al., 2009; Kim et al., 2013). TALEs
can also form complexes with otherTFs, such as MADS-Box family
members, to control ovule development (Brambilla et al., 2007) and
with OVATE proteins, which negatively regulate KNOX-BELL het-
erodimers by relocalizing them from the nucleus to the cytoplasm
(Hackbusch et al., 2005). STM protein traffics selectively through
plasmodesmata, and this cell-to-cell movement, which involves
chaperonins belonging to a group of cytosolic chaperones, is critical
to maintain of the SAM (Xu et al., 2011).

and down regulation of STM and related TFs (Hay and Tsiantis,
2010).

Multiple combinations of TALE heterodimers with distinct
activities are produced throughout the plant life cycle, control-
ling diverse developmental processes, such as SAM and boundary
maintenance, leaf development and flowering. This review dis-
cusses the contribution of TALE TFs to gynoecium development
in Arabidopsis, and links these proteins to the other key molecular
players of carpel development.

CARPEL INITIATION: KNOX AND BELL INTERACTIONS WITH AGAMOUS
Carpels are the last organs to be produced by floral meristems.
Weak STM alleles or weak STM RNAi lines show no carpel for-
mation due to premature differentiation of meristematic cells
(Endrizzi et al., 1996; Scofield et al., 2007). Consistent with this,
CLAVATA (CLV) receptors control the proliferation and number
of organs in developing gynoecia through STM activity. Mutations
in CLV1, CLV2, and CORYNE (CRN) receptors lead to increased
meristem size correlated with an enlarged STM expression pattern
(Durbak and Tax, 2011). Unlike the SAM, which is indetermi-
nate, the FM terminates after carpel initiation. This determinacy
depends on a negative feedback loop involving the C-function
homeotic MADS domain TF, AGAMOUS (AG) which acts in part
via activation of the zinc finger protein KNUCKLES (KNU) to
repress WUS expression (Lenhard et al., 2001; Lohmann et al.,
2001; Sun et al., 2009). AG controls carpel identity in combination
with another MADS BOX TF, SEPALLATA3 (SEP3) (Bowman

et al., 1989; Honma and Goto, 2001; Pelaz et al., 2001). AG expres-
sion is first detectable in developing flowers at early stage 3, flower
stages defined by Smyth et al. (1990), where it is initially local-
ized in the center of the FM, and is later restricted to stamen
and carpel primordia (Bowman et al., 1991; Drews et al., 1991).
At late stage 5, the floral meristem forms a flattened oval where
the gynoecium initiates (Smyth et al., 1990). This stage coincides
presumably with the generation of auxin maxima similar to those
observed at the initiation of other organs, although no expres-
sion of auxin-signaling reporters at stages 5–7 has been described
(for review, Larsson et al., 2013). The BELL member, REPLUM-
LESS (RPL), also known as PENNYWISE (PNY), BELLRINGER
(BLR), VAAMANA (VAN), or LARSON (LSN) and its close rel-
ative POUNDFOOLISH (PNF) together with STM, function in
parallel with LEAFY (LFY) and WUS to promote carpel forma-
tion through positive regulation of AG (Byrne et al., 2003; Roeder
et al., 2003; Smith and Hake, 2003; Bao et al., 2004; Bhatt et al.,
2004; Yu et al., 2009). Interestingly, a previous report showed that
RPL represses AG together with LEUNIG and SEUSS, two tran-
scriptional co-regulators of AG (Bao et al., 2004). This study was
based on analysis of two recessive rpl alleles (blr-4 and blr-5) whose
flowers exhibit homeotic conversion of sepals to carpels at high
temperature during late-stage flower development. This suggests
that RPL could have two antagonistic activities depending presum-
ably on its partner. However, no ectopic AG expression has been
reported so far in null rpl mutants. An alternative hypothesis is that
the point mutations within the homeobox region in blr-4 and blr-5
mutants cause the production of abnormal protein with regulatory
defects.

GYNOECIUM PATTERNING
Once initiated, the gynoecium developmental program promotes
correct patterning of the future fruit. Several specific tissues are
formed (see above and Figure 1), some of which require the activ-
ity of TALE TFs. At stage 6, the gynoecium forms as a ridge of
raised cells around a central cleft and starts to acquire its medio-
lateral symmetry, comprising replum, valve margins and valves. In
the transverse plane, the adaxial inner side of the replum has a typ-
ical meristematic layered structure (Figure 1B), and accordingly
expresses the meristematic genes STM, CLV1/2, and CRN (Long
et al., 1996; Durbak and Tax, 2011; Romera-Branchat et al., 2012).
However, WUS is not expressed in the replum (Groß-Hardt et al.,
2002). Recently, a role for WUS-LIKE HOMEOBOX13 (WOX13)
in replum was reported (Romera-Branchat et al., 2012). Unlike
WUS, which marks a few cells in the SAM, defining its organizing
center, WOX13 has a broad expression pattern in replum, suggest-
ing that the medial region of the gynoecium does not show typical
SAM organization.

Consistent with a role for STM in initiating and maintain-
ing meristems, weak alleles of STM or weak STM RNAi lines
produce fewer ovules than the wild type (Endrizzi et al., 1996;
Scofield et al., 2007). Two other TALE genes, RPL and BP, are
also expressed in the replum. The rpl mutant shows defects in
replum differentiation and in septum fusion (Roeder et al., 2003).
RPL promotes replum identity through restriction of expression
of the MADS-BOX genes SHATTERPROOF1/2 (SHP1/2) and the
basic helix-loop-helix (bHLH) gene INDEHISCENT (IND), to the
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valve margins (Roeder et al., 2003; Liljegren et al., 2004; Dinneny
et al., 2005), but RPL is not required per se for replum specifi-
cation, since double or triple mutant combinations including rpl
alleles develop a normal replum. In addition, RPL represses sev-
eral valves-associated genes in the replum: JAGGED (JAG), and
genes conferring abaxial fate FILAMENTOUS FLOWER (FIL) and
YABBY3 (YAB3), which promote FRUITFULL (FUL), SHP1/2 and
IND expression in the presumptive valve and valve margin tis-
sues, respectively (Dinneny et al., 2005). BP, which interacts with
RPL and activates its expression, contributes redundantly with
RPL to replum development (Alonso-Cantabrana et al., 2007).
Similarly to their role at the leaf/SAM interface, AS1 and the lat-
eral organ boundary (LOB)-domain protein asymmetric leaves2
(AS2) restrict the expression of BP to the replum, exemplifying
the co-option of this regulatory module in the SAM and carpel
(Alonso-Cantabrana et al., 2007; González-Reig et al., 2012; Luo
et al., 2012; Lodha et al., 2013). Together these studies led to propo-
sition of a model in which antagonism between the lateral factors
(JAG/FIL and AS1/2) and the medial factors (BP and RPL) deter-
mines the medio-lateral fruit pattern by regulating the formation
and size of three domains: valve, valve margin and replum. Fur-
thermore, APETALA2, a member of the AP2/Ethylene-responsive
element binding protein (EREBP) TF family, limits growth of
both replum and valve margins by repressing BP and RPL in
the replum and SHP1/2 and IND in valve margins (Ripoll et al.,
2011). Although BP, together with RPL, contributes to replum
development, single bp loss-of-function mutants have wild-type
repla (Alonso-Cantabrana et al., 2007; Ripoll et al., 2011). BP is
also expressed in the style where it is required for radial growth
(Venglat et al., 2002).

From the maternal side, optimal seed production relies on ade-
quate generation of ovules. Ovule primordia formation depends
on auxin maxima (Bencivenga et al., 2012). Auxin levels are mod-
ulated by the combined activity of CUP-SHAPED COTYLEDON1
(CUC1) and CUC2 TFs, which are redundantly required to regu-
late the polar auxin transporter pin-formed1 (PIN1) expression
(Galbiati et al., 2013). CK also regulates PIN1 expression dur-
ing early stages of ovule development (Bencivenga et al., 2012).
The interplay between hormones and TFs forms an integrative
framework enabling ovule primordia initiation. Once initiated, an
ovule differentiates a central nucellus containing the embryo sac,
two integuments that envelop the nucellus, and a funiculus that
connects the ovule to the placenta (for reviews, Colombo et al.,
2008; Shi and Yang, 2011). Correct ovule development requires
the activity of the BEL1 gene, the founding member of the BELL
family. BEL1 is expressed in ovule integument primordia, and
controls ovule integument identity (Robinson-Beers et al., 1992;
Reiser et al., 1995). The bel1 mutant exhibits bell-shaped ovules –
hence its name – caused by the abnormal development of integu-
ments (Reiser et al., 1995). Occasionally, the bel1 mutant shows
homeotic conversion of ovules into carpeloid structures due to
prolonged AG expression during ovule development (Modru-
san et al., 1994; Ray et al., 1994; Brambilla et al., 2007). BEL1
is required for auxin and CK signaling pathways during ovule
development; the level and localization of PIN1 expression are
controlled by CK in part via BEL1 activity (Bencivenga et al.,
2012).

Inside the future fruit, tissues required for successful
fertilization and fruit compartmentalization are formed concomi-
tantly. Two placenta ridges develop in the medial plane to give
rise to a specialized structure compartmentalizing the fruit, the
septum, which divides the fruit into two halves. In its center, the
transmitting tract differentiates in the apical-basal axis to guide
pollen tube growth. To date, little is known about the role of TALE
genes in septum development. SAWTOOTH1 (SAW1)/BLH2 and
SAW2/BLH4, members of the BELL family, are expressed in
the transmitting tract, and interact with STM and BP, but their
exact role in medial tissue development remains to be determined
(Kumar et al., 2007).

POST-FERTILIZATION EVENTS
Upon fertilization, the gynoecium will develop into a fruit that
contains the seeds. Gynoecium enlargement to accommodate the
developing seeds relies on the coordinated growth of the entire
organ, which strongly depends on hormonal balances (for review,
Reyes-olalde et al., 2013). For instance, GA-deficient mutants
show reduced fruit size, indicating that fruit development involves
extensive GA-activated cell elongation (Koornneef and van der
Veen, 1980; Chiang et al., 1995). While the fruit enlarges, differen-
tiation processes take place to ensure efficient release of the seeds
(Reyes-olalde et al., 2013). At the cellular level, this includes the
differentiation of the dehiscence zone at the valve margins. This
process depends on the activity of IND, which is responsible of
the formation of a local auxin minimum at the valve margins
through the regulation of PINOID and WAG2 kinases (Sorefan
et al., 2009). The dehiscence zone consists of two cell layers: the
lignified and the separation layers. The lignified layer, located at
the boundary with the valve, is continuous with the lignified inter-
nal layer (endocarp b) and contributes to tension that builds up in
the silique until dehiscence. The layer located on the replum side,
which constitutes the separation layer, is composed of isodiamet-
ric cells that undergo middle lamella breakdown. This separation
process involves the activity of specialized cell wall enzymes such as
polygalacturonases (PGs) and pectin methylesterases (PMEs) that
increase the ability of PGs to break down pectin (Ogawa et al., 2009
and for review, Wolf et al., 2009). A link between TALE proteins
and cell wall modifications has been shown in studies of intern-
ode patterning in rpl and bp mutants (Mele et al., 2003; Smith
and Hake, 2003; Peaucelle et al., 2011). BP prevents premature
deposition of lignin during internode growth by direct repres-
sion of genes involved in lignin biosynthesis, and regulates other
cell-wall-specific genes such as ones encoding PMEs or cellulose
synthetase (Mele et al., 2003; Wang et al., 2006). RPL is involved
in maintaining normal phyllotaxy via the regulation of PMEs,
which are involved in the cell wall loosening necessary to allow
growth (Peaucelle et al., 2011). Interestingly, KNAT6 and KNAT2,
which act antagonistically to BP and RPL in stems, are expressed in
valve margins (Ragni et al., 2008). This is consistent with KNAT6
expression in SAM and its role in maintaining boundaries between
SAM and lateral organs (Belles-Boix et al., 2006). Inactivation of
KNAT6 rescues replum formation in rpl mutants, showing that
the antagonistic interaction between KNAT6 and RPL also con-
trols fruit architecture. Consistent with their expression in valve
margins, KNAT6, and KNAT2 positively regulate lignin deposition
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(Khan et al., 2012a,b). These factors also act antagonistically to BP
during floral organ abscission, a process that also requires cell
wall remodeling. BP regulates the timing of floral abscission by
controlling abscission zone cell size. Upon activation of a signal-
ing pathway including inflorescence deficient in abscission (IDA)
and two receptor-like kinases, HAESA and HAESA-LIKE2 (HAE-
HSL2), BP is inactivated, leading to an increase of KNAT2 and
KNAT6 expression, which act as positive regulators of floral organ
separation (Shi et al., 2011). The link between TALEs and cell wall
remodeling enzymes was further confirmed with the identifica-
tion of STM, KN1, and RPL targets, which include several genes
involved in cell wall modifications (Spinelli et al., 2011; Bolduc
et al., 2012; Etchells et al., 2012).

FUTURE DIRECTIONS
Gynoecium development is critical for Angiosperm reproductive
success, and is therefore tightly controlled by interconnected net-
works of TFs. Here, we reviewed the role of TALE TFs in the
control of carpel development, and present the state of knowl-
edge of the molecular interactions within this gene regulatory
network. To date, the studies concerning the contribution of
TALE TFs to carpel development focused on a few members of
this family. Despite the number of studies, several pieces of the
puzzle that will be needed to decipher the entire carpel regu-
latory network are still missing. In particular, the role of the
KNAT class II members in carpels has not been investigated.
Although several TALE members are expressed in carpels, the
detailed expression pattern remains to be characterized for most
of them. A precise map of TALE expression and co-localization
of KNOX and BELL in the gynoecium will provide clues about
putative partners and redundancies. Despite evidence linking
TALE TFs, CK and GA pathways, the exact role of this regu-
latory node and its precise contribution to carpel development
are not yet well established. Recently, the direct targets of KN1
in maize inflorescences were identified, and these data confirm
that TALE TFs function as major orchestrators of hormone syn-
thesis or response (Bolduc et al., 2012). Importantly, a clear link
between KN1 and the auxin pathway was demonstrated. Further-
more, key developmental regulators such as homeodomain TFs
are highly represented among KN1 targets, suggesting that KN1
orchestrates upper levels of regulatory networks controlling devel-
opment. New strategies based on next generation sequencing to
identify targets of TFs have begun to shed light on the molecular
interactions downstream of key TFs, providing crucial insight into
the mechanisms controlling development and opening new per-
spectives regarding carpel development. The integration of these
data into comprehensive models accounting for spatial and tem-
poral information represents a challenge to fully understand how
fruits develop. Developing mathematical models will be particu-
larly useful for understanding how fruit morphology can vary and
how their astonishing diversity of shape can be achieved among
plant species.
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