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Flowering time in rice (Oryza sativa L.) is determined primarily by daylength (photoperiod),
and natural variation in flowering time is due to quantitative trait loci involved in
photoperiodic flowering. To date, genetic analysis of natural variants in rice flowering
time has resulted in the positional cloning of at least 12 quantitative trait genes (QTGs),
including our recently cloned QTGs, Hd17, and Hd16. The QTGs have been assigned
to specific photoperiodic flowering pathways. Among them, 9 have homologs in the
Arabidopsis genome, whereas it was evident that there are differences in the pathways
between rice and Arabidopsis, such that the rice Ghd7–Ehd1–Hd3a/RFT1 pathway
modulated by Hd16 is not present in Arabidopsis. In this review, we describe QTGs
underlying natural variation in rice flowering time. Additionally, we discuss the implications
of the variation in adaptive divergence and its importance in rice breeding.
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INTRODUCTION
Photoperiodic flowering is one of the most important responses
of plants to their environment (Thomas and Vince-Prue, 1997).
In the last two decades, molecular genetics demonstrated that
external light signals perceived by photoreceptors induce flori-
gens (flowering signals). This process is regulated in part by the
circadian clock, and promotes flowering in response to favorable
daylength in both monocots and eudicots (reviewed by Andrés
and Coupland, 2012).

Rice is a short-day (SD) plant, i.e., flowering is accelerated
under SD conditions. Natural variation in rice flowering time
is generated mainly by quantitative trait genes (QTGs) involved
in photoperiod pathways, unlike in other cereals (such as wheat
and barley) and Arabidopsis thaliana, which also need to be sub-
jected to low temperature (vernalization requirement) (reviewed
by Greenup et al., 2009; Tsuji et al., 2011; Bentley et al., 2013;
Brambilla and Fornara, 2013; Itoh and Izawa, 2013).

To date, at least 12 QTGs, which belong to the two inde-
pendent flowering pathways, have been mapped and cloned
through quantitative trait locus (QTL) analysis of natural
variation in flowering time (Figure 1 and Table 1). In this
review, we describe the molecular basis of QTGs underly-
ing natural variation in rice flowering time and discuss the
implications on adaptive divergence and consequences for
breeding.

MOLECULAR BASIS OF NATURAL VARIATION IN RICE
FLOWERING
A genetic pathway resembling that the photoperiod pathway in
Arabidopsis [a long-day (LD) plant] is conserved in rice. Hd1 [a
CONSTANS (CO) homolog in rice] was the first flowering time
QTG cloned from natural rice variants. Hd1 promotes flowering
under SD conditions and represses it under LD conditions (Yano
et al., 2000) (Figure 1). By contrast, the Arabidopsis CO gene pro-
motes flowering under LD conditions (Putterill et al., 1995). The
daylength-dependent conversion of Hd1 activity between flower-
ing activator and flowering repressor is caused by phytochrome-
mediated signaling (e.g., Ishikawa et al., 2011). The repression
of flowering by Hd1 under LD conditions is enhanced by the
kinase activity of Hd6, which encodes the α-subunit of casein
kinase II (Takahashi et al., 2001; Ogiso et al., 2010). Hd6 enhances
the Hd1 repressor function under LD conditions through the
phosphorylation of an unknown protein (Ogiso et al., 2010).

Hd1 regulates Hd3a, a rice homolog of Arabidopsis
FLOWERING LOCUS T (FT) (Kojima et al., 2002) (Figure 1).
Tamaki et al. (2007) demonstrated that Hd3a functions as a
florigen. Another florigen gene, RFT1, is a tandemly duplicated
paralog of Hd3a (Kojima et al., 2002; Ogiso-Tanaka et al., 2013).
Komiya et al. (2008, 2009) found that RFT1 expression increases
under LD conditions, indicating that RFT1 is a LD-specific
florigen. More recently, Ogiso-Tanaka et al. (2013) demonstrated
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FIGURE 1 | Schematic representation of roles of QTGs within the photoperiodic flowering pathways in rice and Arabidopsis thaliana. QTGs that are marked
in red are not present in Arabidopsis. QTGs that were cloned by QTL analysis of natural variation are highlighted. Arrow heads, up-regulation; Bars, down-regulation.

that functional defects, which were caused by sequence polymor-
phisms in the regulatory and coding regions of RFT1, contribute
to late flowering under LD conditions in an indica cultivar.

In Arabidopsis, the CO–FT pathway is regulated by
GIGANTEA (GI), which is a component of the circadian
clock (Fowler et al., 1999; Park et al., 1999) (Figure 1). Similarly,
regulation of the Hd1–Hd3a pathway is mediated by OsGI, a
rice homolog of GI (Hayama et al., 2003). These findings reveal
that a floral induction pathway from GI to FT in photoperiodic
flowering is conserved between Arabidopsis (LD) and rice (SD),
but that the photoperiod response differs between these plants.

A unique rice pathway with no obvious ortholog in Arabidopsis
is also involved in photoperiodic flowering (Figure 1 and
Table 1). Ehd1 is a flowering promoter that encodes a B-type
response regulator. Ehd1 functions upstream of Hd3a and RFT1
(Doi et al., 2004). Ghd7, which encodes a CCT (CO, CO-LIKE,
and TIMING OF CAB1)-domain protein, was isolated by analy-
sis of natural variations in flowering time. Ghd7 affects the levels
of Ehd1 and Hd3a transcripts, but does not affect Hd1 mRNA lev-
els (Xue et al., 2008). Ghd7 represses Ehd1, Hd3a, and RFT1 under
LD conditions, thereby delaying flowering.

Thus, two independent flowering pathways are present in
rice, the conserved Hd1–Hd3a pathway and a unique Ghd7–
Ehd1–Hd3a/RFT1 pathway, which may integrate environmental
photoperiod signals in the control of flowering. In the following
sections, we describe additional QTGs that were more recently
cloned.

Hd17, A RICE HOMOLOG OF ARABIDOPSIS ELF3
Subspecies japonica cultivars “Nipponbare” and “Koshihikari”
differ in their flowering time and flowering responses to pho-
toperiod. QTL analyses revealed that two QTLs on chromosomes
3 and 6 are involved in the difference in heading date between

the two cultivars (Matsubara et al., 2008). The QTL mapped on
chromosome 3 was designated as Hd16, and the QTL mapped
on chromosome 6 was designated as Hd17. Both Hd16 and Hd17
are involved in photoperiod response, as revealed by observation
of heading date in near-isogenic lines (NILs) under SD and LD
conditions.

Hd17 explained a small proportion of the variance in flower-
ing time between “Nipponbare” and “Koshihikari.” Map-based
cloning demonstrated that this difference may result in part
from a single-nucleotide polymorphism (SNP) within a puta-
tive gene encoding a rice homolog of the Arabidopsis EARLY
FLOWERING 3 (ELF3) protein (Matsubara et al., 2012). The SNP
was observed among Asian rice cultivars, mainly in japonica culti-
vars. It seems that the wild-type allele has the “Koshihikari” SNP
(i.e., the “Nipponbare” allele is a natural variant), because almost
all indica cultivars and wild accessions surveyed in the study carry
the “Koshihikari” SNP.

The amino acid change (serine to leucine) caused by this SNP
in Hd17 may reduce the mRNA level of the floral repressor Ghd7
under LD conditions, causing ‘Nipponbare’ to flower earlier than
NIL-Hd17, which carries a chromosomal segment including the
“Koshihikari” allele in the “Nipponbare” background. On the
other hand, a loss-of-function mutation ef7 in the rice ELF3-like
gene (= Hd17) seems to increase the Ghd7 transcription level,
and the mutants flower later than wild-type plants under both
SD and LD conditions (Saito et al., 2012). This suggests that the
ELF3-like gene acts as a floral promoter by attenuating the Ghd7
transcription level (Figure 1).

Arabidopsis ELF3 regulates circadian rhythms by affecting
the transcription of clock-associated genes such as LATE
ELONGATED HYPOCOTYL (LHY), CIRCADIAN CLOCK-
ASSOCIATED 1 (CCA1), PSEUDO-RESPONSE REGULATORs
(PRRs), and GI; the clock output gene CHLOROPHYLL A/B
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BINDING 2 (CAB2); and the floral promoter CO (reviewed by
McClung, 2011) (Figure 1). The circadian clock function is con-
served also in rice (Murakami et al., 2007). In the ef7 mutant,
the expression of the luciferase gene driven by the CAB PROTEIN
(a rice homolog of Arabidopsis CAB2) promoter under constant
darkness was not affected, but the period of free-running rhythms
under constant light was slightly shortened, suggesting that Ef7
mediates light input to the circadian clock but is not required for
the clock function in the dark (Saito et al., 2012). By using an
ELF3-like gene knockout and down-regulation of the expression
of ELF3-like gene by RNAi, other groups revealed that the ELF3-
like gene affects the mRNA expression of clock-associated genes
and Hd1 (Yang et al., 2012; Zhao et al., 2012) (Figure 1). These
observations suggest that the rice ELF3-like gene is also involved
in the function of the circadian clock.

Hd16, A GENE ENCODING CASEIN KINASE I
The “Koshihikari” allele of Hd16 decreased photoperiod response
in comparison with the “Nipponbare” allele. Map-based cloning
revealed an SNP in the gene encoding casein kinase I (CKI),
which has no obvious ortholog in Arabidopsis (Hori et al., 2013).
The SNP resulted in a non-synonymous substitution of an ala-
nine (“Nipponbare”) with threonine (“Koshihikari”). CKI is a
protein serine/threonine kinase that is highly conserved among
plant and animal species (reviewed by Tuazon and Traugh, 1991;
Gross and Anderson, 1998). CKI has various functions in both
the cytoplasm and the nucleus, such as DNA repair, and regula-
tion of the cell cycle and circadian rhythm (Liu et al., 2003; Rumpf
et al., 2010). Phosphorylation of the clock components by CKI
is the key step that initiates and regulates the circadian rhythm.
The tau gene encodes CKIε in golden hamster (Mesocricetus aura-
tus), and a missense mutation in this gene drastically reduces the
period of the circadian rhythm (Ralph and Menaker, 1988). The
non-synonymous substitution in the “Koshihikari” Hd16 allele
is located at a site close to the tau mutation site, and is within
the activation loop of the catalytic domain of CKI (Hori et al.,
2013). However, the expression patterns of clock-associated genes
are similar in the presence of the “Nipponbare” and “Koshihikari”
Hd16 alleles. Therefore, Hd16 regulates flowering time mediated
by the photoperiodic flowering pathway without affecting the
regulation of the circadian rhythm.

To reveal the role of Hd16 in the photoperiodic flower-
ing pathway, we investigated the genetic interactions between
Hd16 and other flowering time QTLs, and the expression lev-
els of the latter (Hori et al., 2013). In rice NILs with functional
or deficient alleles of flowering-time genes, significant pairwise
interactions were observed between Hd16 and four other QTLs:
Ghd7, Hd1, DTH8, and Hd2 (= OsPRR37). The transcription
levels of Ehd1, Hd3a, and RFT1 differed between NILs carrying
the “Nipponbare” and “Koshihikari” Hd16 alleles. Biochemical
characterization indicated that the Hd16 recombinant protein
encoded by the “Nipponbare” allele specifically phosphorylated
Ghd7 (but not Hd1) in vitro. The kinase activity of “Koshihikari”
Hd16 was strongly decreased relative to that of “Nipponbare”
(Hori et al., 2013). Thus, Hd16 acts as a Ghd7 inhibitor in the rice
flowering-time pathway by enhancing the photoperiod response
as a result of Ghd7 phosphorylation (Figure 1).

Another missense mutation was found in the kinase domain of
Hd16 in the early-heading Korean cultivar “H143” (Kwon et al.,
2014). In vitro kinase assays revealed that the “H143” Hd16 allele
is also defective. Thus, there are two defective natural variants
of Hd16. The “Koshihikari” and “H143” alleles were found only
among japonica cultivars in temperate areas (Hori et al., 2013;
Kwon et al., 2014).

Hd16 was previously identified as Early flowering 1 (EL1) (Dai
and Xue, 2010), which controls rice flowering time by down-
regulating the gibberellin (GA) signaling pathway mediated by
phosphorylation of SLR1, encoded by Slender rice 1. SLR1 phos-
phorylation suppresses the GA response, whereas Ghd7 phos-
phorylation enhances the photoperiod response. In both cases,
phosphorylation leads to delayed flowering under LD conditions.
Thus, Hd16/EL1 appears to be associated with both photoperiod
and GA responses in rice flowering.

OTHER QTGs UNDERLYING NATURAL FLOWERING TIME
VARIATION IN RICE
In addition to the QTGs described above, four rice homologs
of the Arabidopsis flowering-related genes have been cloned by
using genotypes that show natural variation in flowering time
(Table 1). DTH8 encodes a rice homolog of the Arabidopsis
HEME ACTIVATOR PROTEIN (YEAST) HOMOLOG 3 sub-
unit of the CCAAT-box-binding transcription factor. Under LD
conditions, DTH8 down-regulates Ehd1 and its downstream tar-
get Hd3a and therefore acts as a flowering suppressor (Wei
et al., 2010) (Figure 1). A DTH8 variant also promotes flowering
under SD conditions (Yan et al., 2011). Most recently, interaction
between DTH8 and Hd1 was demonstrated by yeast-two-hybrid
assay (Chen et al., 2014).

DTH3 encodes a rice homolog of Arabidopsis SUPPRESSOR
OF OVEREXPRESSION OF CO1, a MIKC-type MADS-box pro-
tein. DTH3 up-regulates Ehd1 and RFT1 under both SD and
LD conditions and thereby promotes flowering (Bian et al.,
2011) (Figure 1). At this QTL, there is functional allelic variation
between O. sativa and O. glaberrima, but probably not among O.
sativa cultivars.

DTH2 encodes a CONSTANS-like protein. DTH2 up-regulates
Hd3a and RFT1 under LD conditions and thus promotes flower-
ing (Wu et al., 2013) (Figure 1). OsPRR37 encodes a rice homolog
of Arabidopsis PRR7, and down-regulates Hd3a expression to sup-
press flowering under LD conditions (Murakami et al., 2007; Koo
et al., 2013) (Figure 1).

CONSERVATION AND DIVERSIFICATION OF FLOWERING
TIME REGULATION BETWEEN RICE AND ARABIDOPSIS
Much progress has been made in understanding the natural
genetic variation in rice flowering. 12 QTGs have been isolated
and assigned to specific photoperiod flowering pathways. Among
them, 9 have homologs in the Arabidopsis genome, suggesting that
the genetic basis of photoperiodic flowering has an ancient origin
in flowering plants (Table 1).

On the other hand, it is evident that there are differences in
the photoperiodic flowering pathways between the two species
(Figure 1). The Ghd7–Ehd1–Hd3a/RFT1 pathway, which is mod-
ulated by Hd16, is not present in Arabidopsis. However, in many
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cases even orthologous genes have divergent functions, as exem-
plified by CO (flowering promotion in LD) and Hd1 (flowering
promotion in SD), and by ELF3 (flowering repression in SD) and
Hd17 (flowering promotion in both SD and LD). The differences
between these orthologs may be associated with neofunctional-
ization, which is the evolution of new function of a duplicated
gene, as suggested about the divergent function of orthologs of
FLOWERING LOCUS VE and FT in sugar beet (Beta vulgaris,
Pin et al., 2010; Abou-Elwafa et al., 2011). Actually, both Hd1 and
ELF3 have putative paralog(s) in the rice genome.

Such differences may have resulted from evolution of these lin-
eages in different geographic regions: rice in equatorial regions
characterized by stable temperature and daylength all year round,
Arabidopsis in temperate regions with fluctuating temperatures
and changing daylength. As a result, rice has developed photope-
riodic flowering, while Arabidopsis acquired an additional vernal-
ization requirement as adaptation to the cold season (reviewed by
Ballerini and Kramer, 2011).

Probably, this hypothesis should be examined among cere-
als, such as maize (Zea mays), wheat (Triticum aestivum) and
barley (Hordeum vulgare) as well as rice, because they are more
closely related to each other as rice and Arabidopsis (Magallón
and Sanderson, 2005). Additionally, a similar difference in flow-
ering phenology has been observed between tropical-origin (rice
and maize) and temperate-origin (wheat and barley) cereals as
between rice and Arabidopsis (e.g., Greenup et al., 2009; Jung and
Müller, 2009).

We suggest that emphasizing divergence among plant species
(particularly cereals) rather than conservation would help to bet-
ter explain the genetic basis of flowering and adaptive divergence
in rice.

APPLICATION OF NATURAL VARIATION IN FLOWERING TIME
GENES IN BREEDING PROGRAMS
Adjustment of photoperiod response changes flowering time and
enhances adaptability to local environmental conditions in many
plant species, including rice (e.g., Jung and Müller, 2009; Hori
et al., 2012). To introduce rice at high latitudes, breeders have
selected lines with a weaker response to photoperiod to produce
early-flowering cultivars and to ensure maturation during the
optimal period (e.g., Izawa, 2007; Ebana et al., 2011). The weak
allele of Hd16 may have permitted the extension of the rice culti-
vation area into northern regions (Hori et al., 2013; Kwon et al.,
2014). Deficient or weak alleles of Hd1, Ghd7, DTH8, DTH2, and
OsPRR37 are also distributed in northern rice cultivation areas at
high latitudes (Xue et al., 2008; Takahashi et al., 2009; Wei et al.,
2010; Koo et al., 2013; Wu et al., 2013), strongly suggesting that
such alleles are involved in the expansion of rice cultivation areas.

In addition to several major flowering time QTGs isolated in
previous studies, we have identified QTLs with minor effects:
Hd4 (likely allelic to Ghd7), Hd7, Hd9 (Lin et al., 2002, 2003),
and Hd17 (Matsubara et al., 2012). These QTLs are necessary
for breeders in fine tuning of the flowering time in rice culti-
vars. Breeders sometimes want to slightly change the flowering
time of rice cultivars. Natural variations are observed at many
loci (at least more than 20, according to a publicly available
database, Q-TARO: http://qtaro.abr.affrc.go.jp/) involved in rice

photoperiodic flowering pathways. These variations are avail-
able for producing a number of allelic combinations of flowering
time QTLs and for developing rice cultivars adjusted to diverse
cultivation areas.

CONCLUSIONS AND PERSPECTIVES
Molecular cloning of QTGs underlying natural variation in flow-
ering time of rice has improved our understanding of the genetic
basis and provides insights into adaptive evolution and breed-
ing in rice. However, we still know little about the distribution
of QTG associated with flowering time in rice cultivars. We are
still unable to predict exactly the relative effects of individual
QTG on flowering time of rice cultivars in diverse natural field
conditions, owing to limited knowledge of QTG × QTG and
QTG x environmental interaction. This leads to the gap between
genotype and phenotype (discussed by Benfey and Mitchell-Olds,
2008; Olsen and Wendel, 2013). To resolve this problem, we
will need to assess the effect of each allele on flowering time
in different allele combinations and in various environments by
the combination of experimental populations, such as recom-
binant inbred lines (RILs), chromosome segment substitution
lines (CSSLs), nested association mapping (NAM) population
and multi-parent advanced generation inter-cross (MAGIC) pop-
ulation, and sequencing the alleles from each line. Furthermore,
the transcriptome analysis of flowering-time genes under natu-
ral field conditions may also pave the way for the prediction of
flowering time (Nagano et al., 2012).
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