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Trichomes are differentiated epidermal cells on above ground organs of nearly all land plants.
They play important protective roles as structural defenses upon biotic attacks such as
herbivory, oviposition and fungal infections, and against abiotic stressors such as drought,
heat, freezing, excess of light, and UV radiation. The pattern and density of trichomes
is highly variable within natural population suggesting tradeoffs between traits positively
affecting fitness such as resistance and the costs of trichome production. The spatial
distribution of trichomes is regulated through a combination of endogenous developmental
programs and external signals. This review summarizes the current understanding on the
molecular basis of the natural variation and the role of phytohormones and environmental
stimuli on trichome patterning.
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INTRODUCTION
Plants have evolved sophisticated morphological and chemical sys-
tems to cope with biotic and abiotic challenges. Differentiated epi-
dermal cells such as leave hairs or trichomes represent one of these
systems. Trichomes develop on above ground organs including
seeds and fruits and occur in a large variety of morphologies. They
can be single-celled or multicellular, branched or unbranched, and
glandular or non-glandular, characteristics often used for species
identification (Luckwill, 1943; Beilstein et al., 2006, 2008). Tri-
chomes have a range of protective functions however producing
them is costly, depend on plant resource availability and can have
negative impacts on plant growth and vigor (Wilkens et al., 1996).
Therefore trichome production often underlies qualitative and
quantitative variation in most plant species.

TRICHOMES AND ABIOTIC FACTORS
In adverse environments, trichomes are beneficial because they
influence the water balance, protect photosynthesis and reduce
photoinhibition. Their density is negatively correlated with the
rate of transpiration (Choinski and Wise, 1999; Benz and Mar-
tin, 2006) and that of carbon dioxide diffusion (Ehleringer et al.,
1976; Galmés et al., 2007). The pubescent nature of plants grow-
ing in extreme alpine and Mediterranean habitats correlates with
trichome’s ability to protect the underlying tissue from sunlight by
increasing the reflectance and reducing the heat load. Many plants
accumulate also UV-absorbing compounds such as flavonols in
trichomes which further protect the underlying photosynthetic
tissues from damaging amount of UV-A and UV-B radiations
(Karabourniotis et al., 1995, 1998; Karabourniotis and Bornman,
1999; Tattini et al., 2000, 2007; Morales et al., 2002; Liakopou-
los et al., 2006; Yan et al., 2012). Evidence that trichomes are
structural adaptations to low temperature and enhance tolerance
to freezing came from studies on birch where frost increased
rapidly the density of glandular trichomes (Prozherina et al.,

2003). Some heavy metal tolerant plants accumulate heavy metals
in trichomes serving for detoxification purposes (Choi et al., 2001,
2004; Marmiroli et al., 2004; Freeman et al., 2006; Harada and
Choi, 2008; Sarret et al., 2009; Quinn et al., 2010). Heavy metal
loaded trichomes might contribute to elemental defense strate-
gies (Boyd, 2012; Cheruiyot et al., 2013; Kazemi-Dinan et al.,
2014).

TRICHOMES AND BIOTIC CHALLENGES
Many studies show that trichomes serve as physical barrier against
biotic stressors such as insects, herbivores, fungal infections, and
even parasitic plants (Peiffer et al., 2009; Runyon et al., 2010;
Tian et al., 2012). Solanaceous species such as tomato and related
species produce a variety of trichomes. The long multicellular
type I trichomes that have a small glandular vesicle at the tip on
hypocotyls for example effectively hinder the infection of tomato
(Solanum lycopersicum) with its parasite Cuscuta pentagona (Run-
yon et al., 2010). Recent studies in several tomato wild relatives
found that the presence, density, longevity and size of type I and the
shorter multicellular type IV glandular trichomes correlates with
resistance against whitefly (Firdaus et al., 2012, 2013). Oviposition
and feeding experiments with the specialist moth Plutella xylostella
on different Arabidopsis thaliana accessions showed that ovipo-
sition varied significantly among populations and could partly
be explained by a negative relationship between trichome den-
sity and egg number, and a positive relationship between plant
size and egg number (Handley et al., 2005). Experiment with
glabrous and hairy Arabidopsis lyrata morphs and larvae of Plutella
xylostella show that trichomes increased resistance to leaf damage
and reduced oviposition in adult plants (Sletvold et al., 2010).
However, in young plants that develop fewer trichomes this effect
was not significant (Puentes and Ågren, 2013). The larvae of the
crucifer-feeding beetle, Phaedon brassicae, grew slower on hairy
leaves of Arabidopsis halleri. Hairy leaves were less damaged when
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glabrous leaves were abundant in free choice experiments (Sato
et al., 2014).

While non-glandular trichomes can be seen as structural
defenses, glandular trichomes are also a source of highly inter-
esting biomolecules (Shepherd et al., 2005; Liu et al., 2006;
Kang et al., 2010). Apart from the above mentioned flavonols,
glandular trichomes synthesize and/or store other highly valu-
able secondary metabolites such as terpenoids, phenylpropenes,
methyl ketones (Fridman et al., 2005; Ben-Israel et al., 2009),
acyl sugars (Schilmiller et al., 2012; Stout et al., 2012; Xu
et al., 2013), and proteinase inhibitors (Tian et al., 2012)
and thus contribute to the chemical repertoire of defense
strategies. Given that trichomes provide both structural and
chemical defense systems against herbivores and pathogens
they are appealing targets for breeding (Gruber et al., 2006;
Glas et al., 2012).

Controversial is the effect of trichomes for fungal infections:
While damaged trichomes are often the starting point for colo-
nialization with powdery mildew (Erysiphe necator) on grapevine
buds (Rumbolz and Gubler, 2005), Botrytis cinerea on harvested
tomato (Charles et al., 2008), Phoma clematidina on clematis (Van
De Graaf et al., 2002) or Beauveria bassiana on poppy (Landa et al.,
2013), glandular trichomes are often able to secrete exudates with
antifungal activity as shown in a wild potato species (Solanum
berthaultii) and its resistance to Phytophthora infestans (Lai et al.,
2000). The disease incidence correlated negatively with the den-
sity and polyphenol-oxidase activity of short type A trichomes
that have a four-lobed membrane-bound gland at their tips (Lai
et al., 2000). In the infection of chickpea (Cicer arietinum) with
Ascochyta rabiei the concentration of a highly acidic trichome
exudate is crucial. At low concentrations the exudate promotes
germination of Ascochyta rabiei conidia while at high concen-
trations germination is inhibited (Armstrong-Cho and Gossen,
2005). Also glandular trichomes of tobacco (Nicotiana tabacum)
produce a potent inhibitor, T-phylloplanin, which inhibits germi-
nation of the oomycete Peronospora tabacina (Kroumova et al.,
2007). The effect of trichomes is specific for the resistance to
fungi. For example, while in Arabidopsis thaliana the infection
with the soil-borne pathogen Rhizoctonia solani is not affected
by trichome density, gl1 mutants were more resistant and the try
mutant with clustered trichomes had an enhance colonialization
with Botrytis cinerea (Calo et al., 2006). However, Arabidop-
sis thaliana transgenes expressing the antifungal α-1,3-glucanase
of Trichoderma harzianum in trichomes were more resistant
to Botrytis cinerea demonstrating that trichomes can be engi-
neered to increase resistance to fungal pathogens (Calo et al.,
2006).

REGULATION OF TRICHOME DENSITY IN Arabidopsis AND
OTHER BRASSICACEAE
Classical molecular genetic approaches of the model plant
Arabidopsis thaliana identified major regulators of trichome devel-
opment on leaves, stems and petiols. They fall into two classes:
positive (mutants develop less trichomes) and negative regula-
tors (mutants develop more and/or clusters of trichomes; for
reviews see Balkunde et al., 2010). The positive regulators belong
to three protein classes: a WD40 protein TRANSPARENT TESTA

GLABRA1 (TGG1; Galway et al., 1994; Walker et al., 1999), three
R2R3 MYB-related transcription factors GLABRA1 (GL1, MYB23,
MYB5; Oppenheimer et al., 1991; Kirik et al., 2005; Song et al.,
2009; Tominaga-Wada et al., 2012) and four basic helix-loop-
helix (bHLH)-like transcription factors GLABRA3 (GL3; Payne
et al., 2000), ENHANCER OF GLABRA3 (EGL3), TRANSPAR-
ENT TESTA (TT8; Zhang et al., 2003), and MYC-1 (Zhao et al.,
2012). They act partially redundantly and form a multimeric
activator complex, also known as MYB-bHLH-WD40 (MBW)
complex which binds the promoter of GLABRA2 (GL2). GL2
encodes a homeodomain protein required for subsequent phases
of trichome morphogenesis such as endoreduplication, branch-
ing, and maturation of the cell wall. The negative regulators are
seven partially redundant single-repeat MYBs such as CAPRICE
(CPC), TRIPTYCHON (TRY), ENHANCER OF TRY AND CPC
1, 2, 3 (ETC1, ETC2, ETC3), and TRICHOMELESS1 and 2
(TCL1, TCL2; Wester et al., 2009; Edgar et al., 2014; Wang and
Chen, 2014). For most of them it has been shown that they
act in a non-cell-autonomous manner. The single-repeat MYBs
lack the C-terminal activation domain and inhibit the activa-
tor complex by replacing the R2R3 MYB-related transcription
factors and thereby suppress trichome initiation in adjacent cells.
While some of the positive and negative regulators are spe-
cific for trichome patterning others are also involved in root
hair development, anthocyanin biosynthesis (Nemie-Feyissa et al.,
2014), and seed coat mucilage production (Zhang et al., 2003; Song
et al., 2009).

HETEROBLASTY AND HORMONAL CONTROL OF TRICHOME
DENSITY
Trichome density is developmentally regulated. For example,
Arabidopsis rosette leaves have trichomes only on the adaxial side
and the number increases with the age of plants so that early
leaves develop fewer and later more trichomes. On the other hand
cauline leaves develop mainly abaxial and lack adaxial trichomes.
This heteroblasty varies in different accessions (Larkin et al., 1996;
Telfer et al., 1997; Gan et al., 2006; Hilscher et al., 2009) and is
influenced by the photoperiod (Chien and Sussex, 1996).

Moreover hormones such as gibberellin (GA) promote
trichome initiation and morphogenesis (Telfer et al., 1997; Per-
azza et al., 1998; Gan et al., 2006) by inducing GL1 expression. The
original observation was that the GA biosynthesis mutant, ga1-
3, develops less adaxial trichomes on leaves (Chien and Sussex,
1996) and application of GA restored and induces trichome pro-
duction. Furthermore GA regulates also later stages in trichome
development since mutants of the SPINDLY repressor of GA sig-
naling not only develop glabrous sepals but also over-branched
leaf trichomes (Perazza et al., 1998; Silverstone et al., 2007). For the
effect of GA on trichome initiation on inflorescence organs four
redundantly acting C2H2 transcription factors have been identi-
fied: GLABROUS INFLORESCENCE STEMS (GIS, GIS2), ZINC
FINGER PROTEIN 8 and 5 (ZFP8, ZFP5). They act upstream
of GL1 and are involved in the action of cytokinin on trichome
initiation (Gan et al., 2006, 2007a,b; Zhou et al., 2013).

As mentioned above trichomes can be induced by wound-
ing and insect attack (Larkin et al., 1996; Yoshida et al., 2009)
and the plant hormones involved in signaling these stresses
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are jasmonic acid (JA) and salicylic acid (Traw and Bergel-
son, 2003). Recently is has been shown that the JA receptor,
CORONATINE-INSENSITVE1 (COI1), is involved in JA induced
trichome production in tomato and Arabidopsis (Li et al., 2004;
Qi et al., 2011) and that several repressors of JA signaling, JAZ1,
2, 5, 6, 8, 9, 10, 11 are able to interact with components of
the activator complex such as EGL3, GL3, TT8, MYB75, GL1
(Qi et al., 2011).

The positive effect of JA on trichome production is antagonized
by salicylic acid. Reduced trichome development was observed
after salicylic acid treatment or on mutants with elevated salicylic
acid levels such as the CONSTITUTIVE EXPRESSION OF PR
GENE (cpr) mutants (Bowling et al., 1997; Traw and Bergelson,
2003; An et al., 2011).

NATURAL VARIATIONS AS SOURCE OF NOVEL TRICHOME
REGULATORS
Molecular analyses of natural variations of morphological and
developmental traits have been a powerful approach to identify
new genes important for adaptation to different environments
(Assmann, 2013). For example the analyses of natural sequence
variations of GL1 show that in particular the 3′ end is responsible
for the glabrous phenotype of the Arabidopsis thaliana accession
Mir-0, Br-0, Fran-3, PHW-2, 9354, Wil-2, Est as well as for hairless
Arabidopsis lyrata, Arabidopsis halleri, Brassica rapa, Brassica
oleracea, Brassica napus, and radish (Raphanus sativus) lines
(Hauser et al., 2001; Kärkkäinen and Ågren, 2002; Kawagoe et al.,
2011; Li et al., 2011, 2013; Bloomer et al., 2012). Larkin et al. (1993)
has experimentally tested the importance of the non-coding 3′

FIGURE 1 | Schematic representation of the loci influencing trichome

density and number on rosette leaves from QTL analyses with different

accessions (green; Mauricio, 2005), (blue; Symonds et al., 2005), (orange;

Hilscher et al., 2009), and GWAS (red; Atwell et al., 2010). Indicated are the
candidate genes that have been shown to influence trichome pattering and as
bars the position of the QTL and GWAS loci. For GWAS only regions are
indicated that contain the 200 most significant SNPs. AT3G27920 GL1;

AT5G40330 MYB23; AT3G13540 MYB5 ; At5g41315 GL3; At1g63650
EGL3/MYC-2; At4g00480 MYC-1; At5g24520 TGG1; At2g37260 TTG2;
At1g79840 GL2; AT2G30420 ETC2; AT2G30424 TCL2; AT2G30432 TCL1;
AT2G46410 CPC ; AT5G53200 TRY ; AT1G01380 ETC1; AT4G01060 ETC3;
AT3G58070 GIS; AT5G06650 GIS2; AT2G41940 ZFP8 ; AT2G31660 SAD2;
AT1G10480 ZFP5 ; AT4G09820 TT8 ; AT1G66350 RGL1; AT1G70700 JAZ9;
AT1G74950 JAZ2; AT2G39940 COI.
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end and postulated that an enhancer downstream of the coding
region is essential for the precise expression and function of GL1
in Arabidopsis. However, major phenotypic variations are rarely
the effect of only one gene and its natural alleles, more frequently
phenotypic variations in natural accessions depend on several par-
tially interacting loci with quite small contributions. Their analysis
needs statistical approaches such as quantitative trait locus (QTL)
mapping. The first QTL analysis discovered a major locus, named
REDUCED TRICHOME NUMBER (RTN) in Arabidopsis thaliana
and used recombinant inbred lines (RIL) derived from a cross
between the low trichome density Ler and the medium density
Col-accessions (Larkin et al., 1996). This locus was identified in
all further QTL analyses with combination of different accessions
(Mauricio, 2005; Symonds et al., 2005; Bloomer et al., 2014) and
even in a genome wide association study (GWAS; Atwell et al.,
2010) as major regulator of trichome density. Hilscher et al. (2009)
finally revealed RTN as ETC2 and the K19E amino acid substi-
tution to be responsible for low trichome densities in natural
Arabidopsis thaliana accessions. However, ETC2 is not the only
gene responsible for trichome density variations. Mauricio (2005)
and Symonds et al. (2005) identified each nine QTLs for trichome
density in four recombinant inbred mapping populations of Ara-
bidopsis thaliana. Most of the identified QTLs regions contain
or are in close proximity of known trichome initiation regula-
tors such as GL2, ETC2, TCL2, TCL1, SENSITIVE TO ABA AND
DROUGHT2 (SAD2; Gao et al., 2008), TTG2, CPC, GL1, MYC-1,
ETC3, GA1, TT8, GIS, TTG1, MYB23 and GL3. For MYC-1 a non-
synonymous substitution was identified in few accession which
however did not correlate with trichome density (Symonds et al.,
2011). While the sequence variation of ETC2, TCL2, TCL1, and
GL1 have been studied the other candidate genes as well as genomic
regions without candidate genes such as the loci TLD1 on chro-
mosome 1, TLD6 and TLD7 in the middle of chromosome 3 and
others identified with GWAS await closer examinations (Figure 1).
With the availability of the 1001 Arabidopsis genomes association
studies of the remaining candidate genes are now straight forward
(Ossowski et al., 2008; Cao et al., 2011).

OUTLOOK AND POTENTIAL OF UNDERSTANDING THE BASIS
OF NATURAL VARIATIONS AND ENVIRONMENTAL
INFLUENCES ON TRICHOME DENSITY REGULATION
Although the major players of trichome density regulation have
been identified in the model plant Arabidopsis they are still not
sufficient to explain all the naturally occurring variations in this
plants species. Great potential for the identification of still missing
regulators will come from next generation sequencing possibili-
ties in combination with classical genetic, population genetic and
comparative approaches using different plant species. There are
already several examples where trichome patterning regulators
from wild relatives or even crops and distantly related species such
as cotton, tomato and hop have been successfully and functionally
studied in the model plant Arabidopsis (Wang et al., 2004; Guan
et al., 2011; Kocábek and Matoušek, 2013; Tominaga-Wada et al.,
2013). However, there are further needs for research determining
the molecular basis of the patterning of different types of glandular
trichomes and in particular of pharmaceutical and agronomically
interesting plant species. Since trichomes serve as morphological,

and in cases of glandular trichomes as chemical defense barriers
against many abiotic stresses and biotic attacks, increasing their
density has great potential to improve broad-spectrum pest and
pathogen resistance in crops.

ACKNOWLEDGMENTS
Funding for this work was provided by grants from the Austrian
Science Fund (FWF). The author thanks the anonymous reviewers
for helpful comments.

REFERENCES
An, L., Zhou, Z., Yan, A., and Gan, Y. (2011). Progress on trichome development

regulated by phytohormone signaling. Plant Signal. Behav. 6, 1959–1962. doi:
10.4161/psb.6.12.18120

Armstrong-Cho, C., and Gossen, B. D. (2005). Impact of glandular hair exudates on
infection of chickpea by Ascochyta rabiei. Can. J. Bot. 83, 22–27. doi: 10.1139/b04-
147

Assmann, S. M. (2013). Natural variation in abiotic stress and climate change
responses in Arabidopsis: implications for twenty-first-century agriculture. Int.
J. Plant Sci. 174, 3–26. doi: 10.1086/667798

Atwell, S., Huang, Y. S., Vilhjálmsson, B. J., Willems, G., Horton, M., Li, Y., et al.
(2010). Genome-wide association study of 107 phenotypes in Arabidopsis thaliana
inbred lines. Nature 465, 627–631. doi: 10.1038/nature08800

Balkunde, R., Pesch, M., and Hülskamp, M. (2010). Trichome patterning in Ara-
bidopsis thaliana: from genetic to molecular models. Curr. Top. Dev. Biol. 91,
299–321. doi: 10.1016/S0070-2153(10)91010-7

Beilstein, M. A., Al-Shehbaz, I. A., and Kellogg, E. A. (2006). Brassicaceae phylogeny
and trichome evolution. Am. J. Bot. 93, 607–619. doi: 10.3732/ajb.93.4.607

Beilstein, M. A., Al-Shehbaz, I. A., Mathews, S., and Kellogg, E. A. (2008). Bras-
sicaceae phylogeny inferred from phytochrome A and ndhF sequence data:
tribes and trichomes revisited. Am. J. Bot. 95, 1307–1327. doi: 10.3732/ajb.
0800065

Ben-Israel, I., Yu, G., Austin, M. B., Bhuiyan, N., Auldridge, M., Nguyen, T., et al.
(2009). Multiple biochemical and morphological factors underlie the produc-
tion of methylketones in tomato trichomes. Plant Physiol. 151, 1952–1964. doi:
10.1104/pp.109.146415

Benz, B. W., and Martin, C. E. (2006). Foliar trichomes, boundary layers, and gas
exchange in 12 species of epiphytic Tillandsia (Bromeliaceae). J. Plant Physiol.
163, 648–656. doi: 10.1016/j.jplph.2005.05.008

Bloomer, R., Lloyd, A., and Symonds, V. (2014). The genetic architecture of consti-
tutive and induced trichome density in two new recombinant inbred line popu-
lations of Arabidopsis thaliana: phenotypic plasticity, epistasis, and bidirectional
leaf damage response. BMC Plant Biol. 14:119. doi: 10.1186/1471-2229-14-119

Bloomer, R. H., Juenger, T. E., and Symonds, V. V. (2012). Natural variation in
GL1 and its effects on trichome density in Arabidopsis thaliana. Mol. Ecol. 21,
3501–3515. doi: 10.1111/j.1365-294X.2012.05630.x

Bowling, S. A., Clarke, J. D., Liu, Y., Klessig, D. F., and Dong, X. (1997). The cpr5
mutant of Arabidopsis expresses both NPR1-dependent and NPR1-independent
resistance. Plant Cell 9, 1573–1584. doi: 10.1105/tpc.9.9.1573

Boyd, R. S. (2012). Plant defense using toxic inorganic ions: conceptual models of
the defensive enhancement and joint effects hypotheses. Plant Sci. 195, 88–95.
doi: 10.1016/j.plantsci.2012.06.012

Calo, L., García, I., Gotor, C., and Romero, L. C. (2006). Leaf hairs influ-
ence phytopathogenic fungus infection and confer an increased resistance when
expressing a Trichoderma α-1,3-glucanase. J. Exp. Bot. 57, 3911–3920. doi:
10.1093/jxb/erl155

Cao, J., Schneeberger, K., Ossowski, S., Günther, T., Bender, S., Fitz, J., et al. (2011).
Whole-genome sequencing of multiple Arabidopsis thaliana populations. Nat.
Genet. 43, 956–965. doi: 10.1038/ng.911

Charles, M. T., Makhlouf, J., and Arul, J. (2008). Physiological basis of UV-C
induced resistance to Botrytis cinerea in tomato fruit. II. Modification of fruit
surface and changes in fungal colonization. Postharvest Biol. Technol. 47, 21–26.
doi: 10.1016/j.postharvbio.2007.05.014

Cheruiyot, D. J., Boyd, R. S., and Moar, W. J. (2013). Exploring lower limits of plant
elemental defense by cobalt, copper, nickel, and zinc. J. Chem. Ecol. 39, 666–674.
doi: 10.1007/s10886-013-0279-y

Frontiers in Plant Science | Plant Cell Biology July 2014 | Volume 5 | Article 320 | 4

http://www.frontiersin.org/Plant_Cell_Biology/
http://www.frontiersin.org/Plant_Cell_Biology/archive


Hauser Endo-exogenous control of trichome density

Chien, J. C., and Sussex, I. M. (1996). Differential regulation of trichome
formation on the adaxial and abaxial leaf surfaces by gibberellins and photope-
riod in Arabidopsis thaliana (L.) Heynh. Plant Physiol. 111, 1321–1328. doi:
10.1104/pp.111.4.1321

Choi, Y. E., Harada, E., Kim, G. H., Yoon, E. S., and Sano, H. (2004). Distribution of
elements on tobacco trichomes and leaves under cadmium and sodium stresses.
J. Plant Biol. 47, 75–82. doi: 10.1007/BF03030635

Choi, Y. E., Harada, E., Wada, M., Tsuboi, H., Morita, Y., Kusano, T., et al. (2001).
Detoxification of cadmium in tobacco plants: formation and active excretion of
crystals containing cadmium and calcium through trichomes. Planta 213, 45–50.
doi: 10.1007/s004250000487

Choinski, J. S. Jr., and Wise, R. R. (1999). Leaf growth and development in relation
to gas exchange in Quercus marilandica Muenchh. J. Plant Physiol. 154, 302–309.
doi: 10.1016/S0176-1617(99)80172-2

Edgar, B. A., Zielke, N., and Gutierrez, C. (2014). Endocycles: a recurrent evolution-
ary innovation for post-mitotic cell growth. Nat. Rev. Mol. Cell Biol. 15, 197–210.
doi: 10.1038/nrm3756

Ehleringer, J., Björkman, O., and Mooney, H. A. (1976). Leaf pubescence: effects
on absorptance and photosynthesis in a desert shrub. Science 191, 376–377. doi:
10.1126/science.192.4237.376

Firdaus, S., Van Heusden, A. W., Hidayati, N., Supena, E. D. J., Mumm, R., De Vos,
R. C. H., et al. (2013). Identification and QTL mapping of whitefly resistance
components in Solanum galapagense. Theor. Appl. Genet. 126, 1487–1501. doi:
10.1007/s00122-013-2067-z

Firdaus, S., Van Heusden, A. W., Hidayati, N., Supena, E. D. J., Visser, R. G. F.,
and Vosman, B. (2012). Resistance to Bemisia tabaci in tomato wild relatives.
Euphytica 187, 31–45. doi: 10.1007/s10681-012-0704-2

Freeman, J. L., Zhang, L. H., Marcus, M. A., Fakra, S., Mcgrath, S. P.,
and Pilon-Smits, E. A. H. (2006). Spatial imaging, speciation, and quan-
tification of selenium in the hyperaccumulator plants Astragalus bisulcatus
and Stanleya pinnata. Plant Physiol. 142, 124–134. doi: 10.1104/pp.106.
081158

Fridman, E., Wang, J., Iijima, Y., Froehlich, J. E., Gang, D. R., Ohlrogge, J.,
et al. (2005). Metabolic, genomic, and biochemical analyses of glandular tri-
chomes from the wild tomato species Lycopersicon hirsutum identify a key
enzyme in the biosynthesis of methylketones. Plant Cell 17, 1252–1267. doi:
10.1105/tpc.104.029736

Galmés, J., Medrano, H., and Flexas, J. (2007). Photosynthesis and photoin-
hibition in response to drought in a pubescent (var. minor) and a glabrous
(var. palaui) variety of Digitalis minor. Environ. Exp. Bot. 60, 105–111. doi:
10.1016/j.envexpbot.2006.08.001

Galway, M. E., Masucci, J. D., Lloyd, A. M., Walbot, V., Davis, R. W., and
Schiefelbein, J. W. (1994). The TTG gene is required to specify epidermal cell
fate and cell patterning in the Arabidopsis root. Dev. Biol. 166, 740–754. doi:
10.1006/dbio.1994.1352

Gan, Y., Kumimoto, R., Liu, C., Ratcliffe, O., Yu, H., and Broun, P. (2006).
GLABROUS INFLORESCENCE STEMS modulates the regulation by gibberellins
of epidermal differentiation and shoot maturation in Arabidopsis. Plant Cell 18,
1383–1395. doi: 10.1105/tpc.106.041533

Gan, Y., Liu, C., Yu, H., and Broun, P. (2007a). Integration of cytokinin and
gibberellin signalling by Arabidopsis transcription factors GIS, ZFP8 and GIS2
in the regulations of epidermal cell fate. Development 134, 2073–2081. doi:
10.1242/dev.005017

Gan, Y., Yu, H., Peng, J., and Broun, P. (2007b). Genetic and molecular regulation
by DELLA proteins of trichome development in Arabidopsis. Plant Physiol. 145,
1031–1042. doi: 10.1104/pp.107.104794

Gao, Y., Gong, X., Cao, W., Zhao, J., Fu, L., Wang, X., et al. (2008). SAD2 in
Arabidopsis functions in trichome initiation through mediating GL3 function
and regulating GL1, TTG1 and GL2 expression. J. Integr. Plant Biol. 50, 906–917.
doi: 10.1111/j.1744-7909.2008.00695.x

Glas, J. J., Schimmel, B. C. J., Alba, J. M., Escobar-Bravo, R., Schuurink, R. C.,
and Kant, M. R. (2012). Plant glandular trichomes as targets for breeding or
engineering of resistance to herbivores. Int. J. Mol. Sci. 13, 17077–17103. doi:
10.3390/ijms131217077

Gruber, M. Y., Wang, S., Ethier, S., Holowachuk, J., Bonham-Smith, P. C., Soroka,
J., et al. (2006). “HAIRY CANOLA” – Arabidopsis GL3 induces a dense covering
of trichomes on Brassica napus seedlings. Plant Mol. Biol. 60, 679–698. doi:
10.1007/s11103-005-5472-0

Guan, X., Lee, J. J., Pang, M., Shi, X., Stelly, D. M., and Chen, Z. J. (2011). Activation
of Arabidopsis seed hair development by cotton fiber-related genes. PLoS ONE
6:e21301. doi: 10.1371/journal.pone.0021301

Handley, R., Ekbom, B., and Ågren, J. (2005). Variation in trichome density and resis-
tance against a specialist insect herbivore in natural populations of Arabidopsis
thaliana. Ecol. Entomol. 30, 284–292. doi: 10.1111/j.0307-6946.2005.00699.x

Harada, E., and Choi, Y. E. (2008). Investigation of metal exudates from
tobacco glandular trichomes under heavy metal stresses using a variable pres-
sure scanning electron microscopy system. Plant Biotechnol. 25, 407–411. doi:
10.5511/plantbiotechnology.25.407

Hauser, M., Harr, B., and Schlotterer, C. (2001). Trichome distribution in Ara-
bidopsis thaliana and its close relative Arabidopsis lyrata: molecular analysis
of the candidate gene GLABROUS1. Mol. Biol. Evol. 18, 1754–1763. doi:
10.1093/oxfordjournals.molbev.a003963

Hilscher, J., Schlotterer, C., and Hauser, M. T. (2009). A single amino acid replace-
ment in ETC2 shapes trichome patterning in natural Arabidopsis populations.
Curr. Biol. 19, 1747–1751. doi: 10.1016/j.cub.2009.08.057

Kang, J. H., Liu, G., Shi, F., Jones, A. D., Beaudry, R. M., and Howe, G. A. (2010). The
tomato odorless-2 mutant is defective in trichome-based production of diverse
specialized metabolites and broad-spectrum resistance to insect herbivores. Plant
Physiol. 154, 262–272. doi: 10.1104/pp.110.160192

Karabourniotis, G., and Bornman, J. F. (1999). Penetration of UV-A, UV-B and
blue light through the leaf trichome layers of two xeromorphic plants, olive and
oak, measured by optical fibre microprobes. Physiol. Plant. 105, 655–661. doi:
10.1034/j.1399-3054.1999.105409.x

Karabourniotis, G., Kofidis, G., Fasseas, C., Liakoura, V., and Drossopoulos, I.
(1998). Polyphenol deposition in leaf hairs of Olea europaea (Oleaceae) and
Quercus ilex (Fagaceae). Am. J. Bot. 85, 1007–1012. doi: 10.2307/2446367

Karabourniotis, G., Kotsabassidis, D., and Manetas, Y. (1995). Trichome density
and its protective potential against ultraviolet-B radiation damage during leaf
development. Can. J. Bot. 73, 376–383. doi: 10.1139/b95-039

Kärkkäinen, K., and Ågren, J. (2002). Genetic basis of trichome production in Ara-
bidopsis lyrata. Hereditas 136, 219–226. doi: 10.1034/j.1601-5223.2002.1360307.x

Kawagoe, T., Shimizu, K. K., Kakutani, T., and Kudoh, H. (2011). Coexis-
tence of trichome variation in a natural plant population: a combined study
using ecological and candidate gene approaches. PLoS ONE 6:e22184. doi:
10.1371/journal.pone.0022184

Kazemi-Dinan, A., Thomaschky, S., Stein, R. J., Krämer, U., and Müller, C. (2014).
Zinc and cadmium hyperaccumulation act as deterrents towards specialist her-
bivores and impede the performance of a generalist herbivore. New Phytol. 202,
628–639. doi: 10.1111/nph.12663

Kirik, V., Lee, M. M., Wester, K., Herrmann, U., Zheng, Z., Oppenheimer,
D., et al. (2005). Functional diversification of MYB23 and GL1 genes in
trichome morphogenesis and initiation. Development 132, 1477–1485. doi:
10.1242/dev.01708

Kocábek, T., and Matoušek, J. (2013). Functional and complementation analysis of
hop genes in heterologous systems. Acta Hortic. 1010, 77–84.

Kroumova, A. B., Shepherd, R. W., and Wagner, G. J. (2007). Impacts of
T-phylloplanin gene knockdown and of Helianthus and Datura phylloplanins
on Peronospora tabacina spore germination and disease potential. Plant Physiol.
144, 1843–1851. doi: 10.1104/pp.107.097584

Lai, A., Cianciolo, V., Chiavarini, S., and Sonnino, A. (2000). Effects of glandular
trichomes on the development of Phytophthora infestans infection in potato (S.
tuberosum). Euphytica 114, 165–174. doi: 10.1023/A:1003924318577

Landa, B. B., López-Díaz, C., Jiménez-Fernández, D., Montes-Borrego, M.,
Muñoz-Ledesma, F. J., Ortiz-Urquiza, A., et al. (2013). In-planta detec-
tion and monitorization of endophytic colonization by a Beauveria bassiana
strain using a new-developed nested and quantitative PCR-based assay and
confocal laser scanning microscopy. J. Invertebr. Pathol. 114, 128–138. doi:
10.1016/j.jip.2013.06.007

Larkin, J. C., Oppenheimer, D. G., Pollock, S., and Marks, M. D. (1993). Arabidopsis
GLABROUS1 gene requires downstream sequences for function. Plant Cell 5,
1739–1748. doi: 10.1105/tpc.5.12.1739

Larkin, J. C., Young, N., Prigge, M., and Marks, M. D. (1996). The control of
trichome spacing and number in Arabidopsis. Development 122, 997–1005.

Li, F., Kitashiba, H., and Nishio, T. (2011). Association of sequence variation in
Brassica GLABRA1 orthologs with leaf hairiness. Mol. Breed. 28, 577–584. doi:
10.1007/s11032-010-9508-z

www.frontiersin.org July 2014 | Volume 5 | Article 320 | 5

http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Cell_Biology/archive


Hauser Endo-exogenous control of trichome density

Li, F., Zou, Z., Yong, H. Y., Kitashiba, H., and Nishio, T. (2013). Nucleotide sequence
variation of GLABRA1 contributing to phenotypic variation of leaf hairiness in
Brassicaceae vegetables. Theor. Appl. Genet. 126, 1227–1236. doi: 10.1007/s00122-
013-2049-1

Li, L., Zhao, Y., Mccaig, B. C., Wingerd, B. A., Wang, J., Whalon, M. E., et al. (2004).
The tomato homolog of CORONATINE-INSENSITIVE1 is required for the
maternal control of seed maturation, jasmonate-signaled defense responses, and
glandular trichome development. Plant Cell 16, 126–143. doi: 10.1105/tpc.017954

Liakopoulos, G., Stavrianakou, S., and Karabourniotis, G. (2006). Trichome layers
versus dehaired lamina of Olea europaea leaves: differences in flavonoid distribu-
tion, UV-absorbing capacity, and wax yield. Environ. Exp. Bot. 55, 294–304. doi:
10.1016/j.envexpbot.2004.11.008

Liu, J., Xia, K. F., Zhu, J. C., Deng, Y. G., Huang, X. L., Hu, B. L., et al. (2006). The
nightshade proteinase inhibitor IIb gene is constitutively expressed in glandular
trichomes. Plant Cell Physiol. 47, 1274–1284. doi: 10.1093/pcp/pcj097

Luckwill, L. C. (1943). The Genus Lycopersicon: An Historical, Biological, and Taxo-
nomic Survey of the Wild and Cultivated Tomatoes. Aberdeen: Aberdeen University
Press.

Marmiroli, M., Gonnelli, C., Maestri, E., Gabbrielli, R., and Marmiroli, N. (2004).
Localisation of nickel and mineral nutrients Ca, K, Fe, Mg by Scanning Elec-
tron Microscopy microanalysis in tissues of the nickel-hyperaccumulator Alyssum
bertolonii Desv. and the non-accumulator Alyssum montanum L. Plant Biosyst.
138, 231–243. doi: 10.1080/11263500400011126

Mauricio, R. (2005). Ontogenetics of QTL: the genetic architecture of tri-
chome density over time in Arabidopsis thaliana. Genetica 123, 75–85. doi:
10.1007/s10709-002-2714-9

Morales, F., Abadía, A., Abadía, J., Montserrat, G., and Gil-Pelegrín, E. (2002). Tri-
chomes and photosynthetic pigment composition changes: responses of Quercus
ilex subsp. ballota (Desf.) Samp. and Quercus coccifera L. to Mediterranean stress
conditions. Trees 16, 504–510. doi: 10.1007/s00468-002-0195-1

Nemie-Feyissa, D., Olafsdottir, S. M., Heidari, B., and Lillo, C. (2014).
Nitrogen depletion and small R3-MYB transcription factors affecting antho-
cyanin accumulation in Arabidopsis leaves. Phytochemistry 98, 34–40. doi:
10.1016/j.phytochem.2013.12.006

Oppenheimer, D. G., Herman, P. L., Sivakumaran, S., Esch, J., and Marks, M. D.
(1991). A myb gene required for leaf trichome differentiation in Arabidopsis is
expressed in stipules. Cell 67, 483–493. doi: 10.1016/0092-8674(91)90523-2

Ossowski, S., Schneeberger, K., Clark, R. M., Lanz, C., Warthmann, N., and Weigel,
D. (2008). Sequencing of natural strains of Arabidopsis thaliana with short reads.
Genome Res. 18, 2024–2033. doi: 10.1101/gr.080200.108

Payne, C. T., Zhang, F., and Lloyd, A. M. (2000). GL3 encodes a bHLH protein that
regulates trichome development in Arabidopsis through interaction with GL1 and
TTG1. Genetics 156, 1349–1362.

Peiffer, M., Tooker, J. F., Luthe, D. S., and Felton, G. W. (2009). Plants on early alert:
glandular trichomes as sensors for insect herbivores. New Phytol. 184, 644–656.
doi: 10.1111/j.1469-8137.2009.03002.x

Perazza, D., Vachon, G., and Herzog, M. (1998). Gibberellins promote trichome
formation by up-regulating GLABROUS1 in Arabidopsis. Plant Physiol. 117, 375–
383. doi: 10.1104/pp.117.2.375

Prozherina, N., Freiwald, V., Rousi, M., and Oksanen, E. (2003). Interactive
effect of springtime frost and elevated ozone on early growth, foliar injuries
and leaf structure of birch (Betula pendula). New Phytol. 159, 623–636. doi:
10.1046/j.1469-8137.2003.00828.x

Puentes, A., and Ågren, J. (2013). Trichome production and variation in young
plant resistance to the specialist insect herbivore Plutella xylostella among nat-
ural populations of Arabidopsis lyrata. Entomol. Exp. Appl. 149, 166–176. doi:
10.1111/eea.12120

Qi, T., Song, S., Ren, Q., Wu, D., Huang, H., Chen, Y., et al. (2011). The jasmonate-
ZIM-domain proteins interact with the WD-repeat/bHLH/MYB complexes to
regulate jasmonate-mediated anthocyanin accumulation and trichome initia-
tion in Arabidopsis thaliana. Plant Cell 23, 1795–1814. doi: 10.1105/tpc.111.
083261

Quinn, C. F., Freeman, J. L., Reynolds, R. J., Cappa, J. J., Fakra, S. C., Marcus, M. A.,
et al. (2010). Selenium hyperaccumulation offers protection from cell disruptor
herbivores. BMC Ecol. 10:19. doi: 10.1186/1472-6785-10-19

Rumbolz, J., and Gubler, W. D. (2005). Susceptibility of grapevine buds to infec-
tion by powdery mildew Erysiphe necator. Plant Pathol. 54, 535–548. doi:
10.1111/j.1365-3059.2005.01212.x

Runyon, J. B., Mescher, M. C., and De Moraes, C. M. (2010). Plant defenses against
parasitic plants show similarities to those induced by herbivores and pathogens.
Plant Signal. Behav. 5, 929–931. doi: 10.4161/psb.5.8.11772

Sarret, G., Willems, G., Isaure, M. P., Marcus, M. A., Fakra, S. C., Frérot, H.,
et al. (2009). Zinc distribution and speciation in Arabidopsis halleri × Arabidopsis
lyrata progenies presenting various zinc accumulation capacities. New Phytol.
184, 581–595. doi: 10.1111/j.1469-8137.2009.02996.x

Sato, Y., Kawagoe, T., Sawada, Y., Hirai, M. Y., and Kudoh, H. (2014). Frequency-
dependent herbivory by a leaf beetle, Phaedon brassicae, on hairy and glabrous
plants of Arabidopsis halleri subsp. gemmifera. Evol. Ecol. 28, 545–559. doi:
10.1007/s10682-013-9686-3

Schilmiller, A. L., Charbonneau, A. L., and Last, R. L. (2012). Identification of a
BAHD acetyltransferase that produces protective acyl sugars in tomato trichomes.
Proc. Natl. Acad. Sci. U.S.A. 109, 16377–16382. doi: 10.1073/pnas.1207906109

Shepherd, R. W., Bass, W. T., Houtz, R. L., and Wagner, G. J. (2005). Phylloplanins
of tobacco are defensive proteins deployed on aerial surfaces by short glandular
trichomes. Plant Cell 17, 1851–1861. doi: 10.1105/tpc.105.031559

Silverstone, A. L., Tseng, T. S., Swain, S. M., Dill, A., Sun, Y. J., Olszewski, N. E., et al.
(2007). Functional analysis of SPINDLY in gibberellin signaling in Arabidopsis.
Plant Physiol. 143, 987–1000. doi: 10.1104/pp.106.091025

Sletvold, N., Huttunen, P., Handley, R., Kärkkäinen, K., and Ågren, J. (2010). Cost of
trichome production and resistance to a specialist insect herbivore in Arabidopsis
lyrata. Evol. Ecol. 24, 1307–1319. doi: 10.1007/s10682-010-9381-6

Song, F. L., Milliken, O. N., Pham, H., Seyit, R., Napoli, R., Preston, J., et al.
(2009). The Arabidopsis MYB5 transcription factor regulates mucilage synthesis,
seed coat development, and trichome morphogenesis. Plant Cell 21, 72–89. doi:
10.1105/tpc.108.063503

Stout, J. M., Boubakir, Z., Ambrose, S. J., Purves, R. W., and Page, J. E. (2012).
The hexanoyl-CoA precursor for cannabinoid biosynthesis is formed by an
acyl-activating enzyme in Cannabis sativa trichomes. Plant J. 71, 353–365. doi:
10.1111/j.1365-313X.2012.04949.x

Symonds, V. V., Godoy, A. V., Alconada, T., Botto, J. F., Juenger, T. E., Casal, J. J., et al.
(2005). Mapping quantitative trait loci in multiple populations of Arabidopsis
thaliana identifies natural allelic variation for trichome density. Genetics 169,
1649–1658. doi: 10.1534/genetics.104.031948

Symonds, V. V., Hatlestad, G., and Lloyd, A. M. (2011). Natural allelic varia-
tion defines a role for ATMYC1: trichome cell fate determination. PLoS Genet.
7:e1002069. doi: 10.1371/journal.pgen.1002069

Tattini, M., Gravano, E., Pinelli, P., Mulinacci, N., and Romani, A. (2000).
Flavonoids accumulate in leaves and glandular trichomes of Phillyrea latifolia
exposed to excess solar radiation. New Phytol. 148, 69–77. doi: 10.1046/j.1469-
8137.2000.00743.x

Tattini, M., Matteini, P., Saracini, E., Traversi, M. L., Giordano, C., and Agati,
G. (2007). Morphology and biochemistry of non-glandular trichomes in Cistus
salvifolius L. leaves growing in extreme habitats of the Mediterranean basin. Plant
Biol. 9, 411–419. doi: 10.1055/s-2006-924662

Telfer, A., Bollman, K. M., and Poethig, R. S. (1997). Phase change and the regulation
of trichome distribution in Arabidopsis thaliana. Development 124, 645–654.

Tian, D., Tooker, J., Peiffer, M., Chung, S. H., and Felton, G. W. (2012). Role of
trichomes in defense against herbivores: comparison of herbivore response to
woolly and hairless trichome mutants in tomato (Solanum lycopersicum). Planta
236, 1053–1066. doi: 10.1007/s00425-012-1651-9

Tominaga-Wada, R., Nukumizu, Y., Sato, S., Kato, T., Tabata, S., and Wada, T.
(2012). Functional divergence of MYB-related genes, WEREWOLF and AtMYB23
in Arabidopsis. Biosci. Biotechnol. Biochem. 76, 883–887. doi: 10.1271/bbb.110811

Tominaga-Wada, R., Nukumizu, Y., Sato, S., and Wada, T. (2013). Control
of plant trichome and root-hair development by a tomato (Solanum lycoper-
sicum) R3 MYB transcription factor. PLoS ONE 8:e54019. doi: 10.1371/jour-
nal.pone.0054019

Traw, M. B., and Bergelson, J. (2003). Interactive effects of jasmonic acid, salicylic
acid, and gibberellin on induction of trichomes in Arabidopsis. Plant Physiol. 133,
1367–1375. doi: 10.1104/pp.103.027086

Van De Graaf, P., Joseph, M. E., Chartier-Hollis, J. M., and O’Neill, T. M. (2002).
Prepenetration stages in infection of clematis by Phoma clematidina. Plant Pathol.
51, 331–337. doi: 10.1046/j.1365-3059.2002.00727.x

Walker, A. R., Davison, P. A., Bolognesi-Winfield, A. C., James, C. M., Srini-
vasan, N., Blundell, T. L., et al. (1999). The TRANSPARENT TESTA GLABRA1
locus, which regulates trichome differentiation and anthocyanin biosynthesis

Frontiers in Plant Science | Plant Cell Biology July 2014 | Volume 5 | Article 320 | 6

http://www.frontiersin.org/Plant_Cell_Biology/
http://www.frontiersin.org/Plant_Cell_Biology/archive


Hauser Endo-exogenous control of trichome density

in Arabidopsis, encodes a WD40 repeat protein. Plant Cell 11, 1337–1349. doi:
10.1105/tpc.11.7.1337

Wang, S., and Chen, J.-G. (2014). Regulation of cell fate determination by single-
repeat R3 MYB transcription factors in Arabidopsis. Front. Plant Sci. 5:133. doi:
10.3389/fpls.2014.00133

Wang, S., Wang, J.-W., Yu, N., Li, C.-H., Luo, B., Gou, J.-Y., et al. (2004). Control
of plant trichome development by a cotton fiber MYB gene. Plant Cell 16, 2323–
2334. doi: 10.1105/tpc.104.024844

Wester, K., Digiuni, S., Geier, F., Timmer, J., Fleck, C., and Hülskamp, M.
(2009). Functional diversity of R3 single-repeat genes in trichome development.
Development 136, 1487–1496. doi: 10.1242/dev.021733

Wilkens, R. T., Shea, G. O., Halbreich, S., and Stamp, N. E. (1996). Resource
availability and the trichome defenses of tomato plants. Oecologia 106, 181–191.
doi: 10.1007/BF00328597

Xu, H., Zhang, F., Liu, B., Huhman, D. V., Sumner, L. W., Dixon, R. A., et al. (2013).
Characterization of the formation of branched short-chain fatty acid:CoAs for
bitter acid biosynthesis in hop glandular trichomes. Mol. Plant 6, 1301–1317. doi:
10.1093/mp/sst004

Yan, A., Pan, J., An, L., Gan, Y., and Feng, H. (2012). The responses of trichome
mutants to enhanced ultraviolet-B radiation in Arabidopsis thaliana. J. Photochem.
Photobiol. B Biol. 113, 29–35. doi: 10.1016/j.jphotobiol.2012.04.011

Yoshida, Y., Sano, R., Wada, T., Takabayashi, J., and Okada, K. (2009). Jasmonic
acid control of GLABRA3 links inducible defense and trichome patterning in
Arabidopsis. Development 136, 1039–1048. doi: 10.1242/dev.030585

Zhang, F., Gonzalez, A., Zhao, M., Payne, C. T., and Lloyd, A. (2003). A net-
work of redundant bHLH proteins functions in all TTG1-dependent pathways of
Arabidopsis. Development 130, 4859–4869. doi: 10.1242/dev.00681

Zhao, H., Wang, X., Zhu, D., Cui, S., Li, X., Cao, Y., et al. (2012). A single amino
acid substitution in IIIf subfamily of basic helix-loop-helix transcription factor
AtMYC1 leads to trichome and root hair patterning defects by abolishing its
interaction with partner proteins in Arabidopsis. J. Biol. Chem. 287, 14109–14121.
doi: 10.1074/jbc.M111.280735

Zhou, Z., Sun, L., Zhao, Y., An, L., Yan, A., Meng, X., et al. (2013). Zinc Fin-
ger Protein 6 (ZFP6) regulates trichome initiation by integrating gibberellin
and cytokinin signaling in Arabidopsis thaliana. New Phytol. 198, 699–708. doi:
10.1111/nph.12211

Conflict of Interest Statement: The author declares that the research was conducted
in the absence of any commercial or financial relationships that could be construed
as a potential conflict of interest.

Received: 04 May 2014; paper pending published: 06 June 2014; accepted: 17 June 2014;
published online: 03 July 2014.
Citation: Hauser M-T (2014) Molecular basis of natural variation and environmen-
tal control of trichome patterning. Front. Plant Sci. 5:320. doi: 10.3389/fpls.2014.
00320
This article was submitted to Plant Cell Biology, a section of the journal Frontiers in
Plant Science.
Copyright © 2014 Hauser. This is an open-access article distributed under the terms
of the Creative Commons Attribution License (CC BY). The use, distribution or repro-
duction in other forums is permitted, provided the original author(s) or licensor are
credited and that the original publication in this journal is cited, in accordance with
accepted academic practice. No use, distribution or reproduction is permitted which
does not comply with these terms.

www.frontiersin.org July 2014 | Volume 5 | Article 320 | 7

http://dx.doi.org/10.3389/fpls.2014.00320
http://dx.doi.org/10.3389/fpls.2014.00320
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Cell_Biology/archive

	Molecular basis of natural variation and environmental control of trichome patterning
	Introduction
	Trichomes and abiotic factors
	Trichomes and biotic challenges
	Regulation of trichome density in arabidopsis and other brassicaceae
	Heteroblasty and hormonal control of trichome density
	Natural variations as source of novel trichome regulators
	Outlook and potential of understanding the basis of natural variations and environmental influences on trichome density regulation
	Acknowledgments
	References




