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Genome-scale metabolic models (GEMs) are increasingly applied to investigate the
physiology not only of simple prokaryotes, but also eukaryotes, such as plants,
characterized with compartmentalized cells of multiple types. While genome-scale models
aim at including the entirety of known metabolic reactions, mounting evidence has
indicated that only a subset of these reactions is active in a given context, including:
developmental stage, cell type, or environment. As a result, several methods have been
proposed to reconstruct context-specific models from existing genome-scale models
by integrating various types of high-throughput data. Here we present a mathematical
framework that puts all existing methods under one umbrella and provides the means to
better understand their functioning, highlight similarities and differences, and to help users
in selecting a most suitable method for an application.
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INTRODUCTION
Genome-scale metabolic models (GEMs) have become a useful
tool to investigate metabolism. They present numerous appli-
cations, from basic research on metabolic functioning and cell
physiology (Bordbar et al., 2014) to the design of novel strains for
improving biotechnological processes to the analysis of metabolic
diseases and the quest for novel drug targets (Milne et al., 2009;
Garcia-Albornoz and Nielsen, 2013; Agren et al., 2014). Although
historically biased toward microorganisms, a number of GEMs
have recently been reconstructed for several plant species, includ-
ing: Arabidopsis thaliana (Poolman et al., 2009; De Oliveira
Dal’Molin et al., 2010; Saha et al., 2011; Arnold and Nikoloski,
2014), maize (Saha et al., 2011), maize and other C4 plants
(Dal’Molin et al., 2010), rice (Dharmawardhana et al., 2013;
Poolman et al., 2013) and algae (Chang et al., 2011; Gomes de
Oliveira Dal’Molin et al., 2011). This late development of plant
GEMs is largely due to the particular challenges of modeling
plant metabolism, (in general more complex and characterized
by cellular compartmentalization and an extensive secondary
metabolism) and a lower coverage of annotated metabolic genes
in plants in comparison with, much simpler and more exper-
imentally accessible, microorganisms. The development plant
GEMs and particular challenges are summarized in De Oliveira
Dal’Molin and Nielsen (2013) and Sweetlove and Ratcliffe (2011).

The success of GEMs is largely due to their integrative nature,
representing the whole known network of biochemical reactions
of a given organism, and the possibility to readily use them in
a mathematical model. This mathematical model can be fur-
ther interrogated with powerful methods from constraint-based
analysis (Lewis et al., 2012), whereby a system of mass balance
equations at steady state, with additional thermodynamic and
capacity constraints, define a solution space of feasible metabolic

flux values. The imposed constraints may also lead to inconsis-
tencies in the original metabolic model; for instance, by enforcing
blocked reactions, i.e., reactions incapable of carrying nonzero
flux at steady state. Flux balance analysis (Orth et al., 2010) repre-
sents a prominent method within constraint-based analysis, and
has been widely applied to explore cell physiology. It assumes that
cells adapt metabolic fluxes to optimize a certain objective func-
tion (i.e., a linear combination of metabolic fluxes). Although
GEMs and constraint-based methods are convenient when mod-
eling the entirety of known metabolism, mainly due to the smaller
number of parameters to be measured (e.g., external fluxes), other
available methods, such as stochastic (Wilkinson, 2009; Ullah and
Wolkenhauer, 2010) or deterministic (Link et al., 2014), kinetic
models may offer an alternative strategy, particularly for mod-
eling smaller cellular subsystems. The latter is particularly the
case when the focus is modeling of the dynamics of metabolite
concentrations and/or of regulatory mechanisms. However, due
to the dependence on a large number of (not readily measur-
able) parameters and the computational demand, these methods
usually are not scalable. Interestingly, some hybrid approaches
have been proposed merging constraint-based and kinetic meth-
ods, which may overcome individual limitations of both methods,
ultimately resulting in better predictions (Jamshidi and Palsson,
2010; Soh et al., 2012; Chakrabarti et al., 2013; Chowdhury et al.,
2014).

The recent advent of high-throughput technologies has pro-
pelled the GEM community to develop new methods for inte-
grating high-throughput data into existing metabolic models. In
general, these methods employ data to (1) improve flux predic-
tions through further constraining of the solution space (Colijn
et al., 2009; Chandrasekaran and Price, 2010; Jensen and Papin,
2011; Collins et al., 2012; Lee et al., 2012), and/or (2) extract
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context-specific metabolic models, which are a subset of the orig-
inal GEM (Becker and Palsson, 2008; Shlomi et al., 2008; Jerby
et al., 2010; Agren et al., 2012; Wang et al., 2012; Schmidt et al.,
2013; Vlassis et al., 2014). In the first case, the metabolic model
serves as a scaffold to analyze complex data sets from different
sources, e.g., transcript, protein or metabolite profiles. The sec-
ond case is motivated by the mounting evidence suggesting that
the structure of a given metabolic network changes across differ-
ent conditions, e.g., environmental changes, developmental stages
as well as different cell-types or tissues. Therefore, in context-
specific metabolic models only a subset of the reactions from
the original GEM carry flux, and are considered active. This is
of particular importance when tackling multicellular organisms,
like plants, where multiple cell types with specialized metabolic
functions coexist and cooperate. Following this line, a number
of tissue-specific models have been reconstructed in Mintz-Oron
et al. (2012) using one of such methods (the MBA, discussed
below) together with a genome-scale model of Arabidopsis and
publicly available tissue-specific expression profiles. However,
other, manual, approaches have been used to take into account
cell and tissue type in plant GEMs; for instance, in C4GEM, two
cell types are modeled: bundle sheath and mesophyll cells, to cap-
ture the typical C4 carbon fixation physiology (Dal’Molin et al.,
2010). In Grafahrend-Belau et al. (2013) authors go further in
scope to model the metabolism of a whole barley plant, using four
organ-specific models (leaf, stem, seed, and root) that are inter-
connected through two exchange compartments (the phloem and
external environment). Here, we will use the generic term context
for any of the particular conditions that may occur.

High-throughput data sets can be divided in hierarchical cat-
egories that correspond to different cellular processes. On one
hand, transcript profiles capture the instantaneous expression
state of a given genome under a particular condition. They have
the greatest coverage, since usually all known genes are consid-
ered. They are also the most accessible in terms of experimental
tractability, due to the availability of classical technologies (e.g.,
microarray) as well as modern developments (i.e., RNAseq).
However, gene expression is also at the top of the hierarchical
chain of events that govern metabolic fluxes, which may explain
the relatively low correlation values between these two quanti-
ties, as reported in previous works (Yang et al., 2002; Rossell
et al., 2006; Daran-Lapujade et al., 2007; Moxley et al., 2009).
Protein levels may be more concordant to metabolic fluxes, and
hence several methods have aimed to incorporate this source of
evidence (Jerby et al., 2010; Agren et al., 2012, 2014; Bordbar
et al., 2012). However, existing measurement techniques, mainly
based on the combination of chromatography and mass spec-
trometry (Schulze and Usadel, 2010), do not offer an extensive
coverage of the proteome. Finally, metabolites directly relate to
metabolic fluxes, since they play the role of substrates and prod-
ucts of metabolic reactions. Therefore, metabolite levels may bet-
ter reflect the actual state of a metabolic network. Unfortunately,
current measurement methods do not permit full coverage of the
metabolome to describe the metabolic state of the entire net-
work (Fernie, 2007). Despite this shortcoming, integration of
metabolite levels can substantially improve flux predictions or
the extraction of context-specific models, especially when they

are combined with protein and/or gene expression levels (Yizhak
et al., 2010; Kleessen et al., 2012).

Several recent comprehensive reviews provide extensive cov-
erage of computational methods for integrating high-throughput
data in GEMs (Joyce and Palsson, 2006; Blazier and Papin, 2012;
Lewis et al., 2012; Hyduke et al., 2013), with a recent study offer-
ing a critical systematic evaluation and performance comparison
(Machado and Herrgård, 2014). Here we propose a mathemati-
cal framework that groups existing methods for context-specific
model extraction in three families. This framework provides not
only a mere classification but also the means to better under-
stand the rationale behind methods and highlight their common
principles and differences. We also propose a flowchart to guide
interested users in selecting a method to apply in a particu-
lar setting. In the following, for each family of methods, we
present its general functioning and mathematical objective, dis-
cuss its advantages and disadvantages, and we also highlight
particularities of each method.

GENERALIZATION OF METHODS FOR EXTRACTION OF
CONTEXT-SPECIFIC MODELS
Our framework for classification of the existing methods for
extraction of context-specific models simultaneously offers a gen-
eralization of the mathematical and algorithmic formulation.
With respect to the employed objective, these methods can be
divided into three main families, namely: GIMME-, iMAT-, and
MBA-like families, termed after the first representative method
in each class (Figure 1). The objective employed by the GIMME-
like family corresponds to the similarity of the flux phenotype
to data, which is to be maximized while guaranteeing a given
Required Metabolic Functionality (RMF), such as: growth or ATP
production. In contrast, the iMAT-like family of methods aims at
maximizing the similarity of the flux phenotype to data without
imposing any RMF. Finally, the MBA-like family uses model con-
sistency as objective, which refers to a final context-specific model
without any blocked reaction. The mathematical generalization
of each family of methods captures these principles, highlights
the similarities, and serves as a scaffold to frame particularities
of each method.

GIMME-LIKE FAMILY
The GIMME-like family encompasses the GIMME method
(Becker and Palsson, 2008) and GIM3E, as an extension (Schmidt
et al., 2013). This family reconstructs a context-specific model in
two steps: First, it optimizes an objective function, the RMF, by
using the classical linear programming (LP) formulation of flux
balance analysis which imposes mass balance and thermodynamic
constraints. This objective function is assumed to be the main cel-
lular task in the investigated condition. It then involves solving a
second LP that minimizes a penalty function, corresponding to
the discrepancies between flux values and the respective transcript
levels, with the additional constraint that the flux through the pre-
vious RMF must be above a given lower bound (e.g., a fraction of
the optimum value found by flux balance analysis). The methods
included in this family mainly differ in the way the discrepancies
are minimized in the second step, the type of high-throughput
data used, and in the treatment of reversible reactions, as
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FIGURE 1 | Existing methods for context-specific model extraction can

be classified in three families: GIMME-, iMAT-, and MBA-like. This
classification is based on the mathematical objective followed by the methods,
i.e., similarity and operability, similarity or consistency. Moreover, methods

can perform a model extraction and a flux prediction (GIMME- and iMAT-like
families) or only a model extraction (MBA-like family). Although similar in
formulation to INIT, the metabolic task constraint imposed by tINIT renders
this algorithm close to the objective of the GIMME-like family (see main text).

detailed below. Box 1 displays the formulations and the gener-
alization of this family (consult Table 1 for a glossary of used
symbols).

GIMME
In GIMME, the penalty function is termed inconsistency score.
This function penalizes flux values of reactions whose associated
expression levels are below a user-defined cut-off (i.e., threshold).
More specifically, the inconsistency score is given by the dot prod-
uct of the flux distribution and the reaction penalty, defined as
the vector difference of the associated expression values from the
threshold. The reaction associated expression level is obtained
following the standard GPR rules (Becker and Palsson, 2008),
which take into account the presence of isoenzymes and protein
complexes. Although transcript profiles were used in the original
formulation, a variant called GIMMEp allows for the integration
of proteomic data (Bordbar et al., 2012). The result of applying
this algorithm is a flux distribution which ensures that a given
RMF can be carried out and is as consistent as possible to the
employed data.

GIM 3E
GIM3E introduces several modifications to the original GIMME.
First, it allows integration of metabolomics data, imposing a
nonzero flux value to reactions involving a metabolite for which
there is evidence of being synthesized in an investigated condi-
tion. Second, it modifies the definition of the reaction penalty;
here, the penalties for all reaction-associated genes are deter-
mined separately and are then mapped to the reaction following
the GPR rules. Moreover, the penalties are calculated as the dis-
tance between each transcript and the maximum expression level

of the set. Consequently, after mapping transcript penalties all
reactions obtain a penalty value, rather than only the set below
the threshold which is the case in GIMME. Finally, GIM3E takes
into account directionality of reversible reactions by constrain-
ing them to operate in only one direction, which is modeled by
introducing a binary variable for the direction of choice. As a
result, GIM3E is formulated as a mixed integer linear program
(MILP), which is more computationally challenging than the LP
formulation of GIMME.

Advantages and disadvantages of the GIMME-like family
When a given RMF operates in different contexts, the operabil-
ity constraint may lead to more accurate context-specific model
reconstructions and flux distributions. This issue has been evalu-
ated in a recent review (Machado and Herrgård, 2014), demon-
strating that methods which do not impose network operability
were incapable of predicting growth using a yeast metabolic
model. Furthermore, the total sum of the inconsistency score
also quantifies the correspondence of the RMF to the set of
expression data, which may provide further insights into cellular
functionality.

Nevertheless, while the selection of a RMF can be a relatively
easy task for prokaryotes, whereby experimental evidence sup-
ports the choice of cellular growth or biomass maximization as
a plausible RMF, this task is much more challenging for eukary-
otic organisms, especially the multicellular. In this case, choosing
a RMF for a given tissue or cellular type is a complicated task,
as each cell type is specialized in certain biochemical functions,
modulated on the level of the entire organism. Therefore, meth-
ods that do not require a RMF may be applied easier to models of
multicellular organisms.
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Box 1 | Mathematical formulations of the GIMME-like family: (A) generalization of the family, (B) GIMME and (C) GIM3E. In (B,C)

only the second LP is represented (see main text). In (C) individual reaction-associated gene penalties are first calculated and

then mapped to the corresponding reaction to obtain the reaction penalty, here represented by the function: gpr
(
Imax−Id i

)
(see

main text). Consult the Glossary of symbols for notation.

(A) GIMME-like family (B) GIMME (C) GIM3E

1. function GIMME-like (S,RMF,k) min
v

∑
i ∈ {i:di < c}

(
di − c

) ∗ vi min
v

∑
i ∈RG

gpr
(
Imax − Id i

) ∗ vi

2. maxv RMF
s.t.

s.t.
s.t.

SV = 0
vmin ≤ v ≤ vmax SV = 0 SV = 0

3. minv IS
vmin ≤ v ≤ vmax

vmin ≤ v ≤ vmax

s.t.
SV = 0 RMF = k ∗ RMF RMF = k ∗ RMF
vmin ≤ v ≤ vmax vi ≥∈, i ∈ KeyMetSink
RMF = k*RMFopt vi = y ∗ vfor(i) − (1− y) ∗ vrev(i), i ∈ Rev
k∈ [0,1]

4. end function y ∈ {0,1}

There are existing implementations for both methods:
GIMME can be executed using the createTissueSpecificModel
function built in the COBRA toolbox within the
Matlab environment (Schellenberger et al., 2011). The
GIM3E implementation is however built under Python
(“The OpenCOBRA Project1,” n.d.).

iMAT-LIKE FAMILY
The iMAT-like family comprises three methods, iMAT (Shlomi
et al., 2008), INIT (Agren et al., 2012) and its extension, tINIT
(Agren et al., 2014), which also aim at extracting a context-
specific model compatible with a given data set. However, in
contrast to the GIMME-like family of methods, the iMAT-like
family does not assume a RMF achieved by the cell. More
specifically, these methods maximize the number of matches
between reaction states (i.e., active or inactive) and corresponding
data states (i.e., expressed or not non-expressed). The math-
ematical formulation results in a MILP, in which the value
of the binary variable denotes the most concordant reaction
state for a given (data) context. Although sharing the general
strategy, iMAT, INIT and tINIT differ considerably respect-
ing to how they deal with data: iMAT integrates data in the
constraints, INIT and tINIT do so directly in the objective
function. See Box 2 for mathematical formulations and gen-
eralization of the family, and Table 1 for a glossary of used
symbols.

iMAT
The algorithm first classifies reactions into two groups based
on a previously defined threshold for the corresponding expres-
sion data; this results in the groups of reactions with a high
and low associated expression values. It then maximizes the

1Retrieved from http://opencobra.sourceforge.net/openCOBRA/Welcome.
html

number of matches between a reaction state, defined through
a minimum flux value, and the group to which the reac-
tion belongs. Thus, if a reaction is included in the highly
expressed group, the aim is to obtain a flux value over
the minimum, which is performed by solving the MILP in
Box 2.

Several network states can yield the same overall similarity
to expression data, i.e., multiple flux distributions may yield the
same objective function value. iMAT tackles this issue through an
adapted flux variability analysis (FVA): First, it forces each reac-
tion to be active and evaluates the similarity, and then repeats
the process in a similar way by forcing each reaction to be
inactive. The final outcome is computed by comparing the two
obtained similarities. A reaction is termed active if its inclusion
results in higher similarity to data, and it is termed as inac-
tive, if its inclusion decreases this similarity. In the case that
both similarities are equal, iMAT categorizes the reaction as
undetermined.

INIT
INIT was optimized to integrate evidences from the Human
Protein Atlas, although expression data are integrated when pro-
teomic evidences are missing. In this case, INIT does not group
reactions in categories in contrast to iMAT. Instead, it adopts
experimental data to weight the binary variable of the corre-
sponding reaction, whereby the weight is a function of experi-
mental data (e.g., gene expression profiles) or a set of arbitrary
numbers that quantify the color code of the entries of the Human
Protein Atlas. In addition, INIT imposes a positive net produc-
tion of metabolites for which there is experimental support for
that context or tissue. Hence, when a metabolite is experimentally
determined to be present, its net production is forced to comply
with a given lower bound. As a result, INIT allows the integra-
tion of metabolomics data in a qualitative way. This method has
been applied to generate a human metabolic reaction database
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Table 1 | Glossary of symbols.

Symbol Definition

RG Set of reactions of the generic model

RP Set of reactions of the (partial) context-specific model

C Core set of reactions

CH Core set of reactions with high likelihood

CM Core set of reactions with moderate likelihood

NC Non-core set of reactions

RNc Subset of reactions from NC

KeyMet Set of key metabolites (holding positive evidence)

KeyMetProd Set of reactions producing a key metabolite (with
positive evidence)

KeyMetSink Set of sink reactions for a metabolite with positive
evidence

MetTask Set of reactions participating in a given metabolic task (a
linear combination of a subset of the generic model)

Negative Set of reactions whose associated transcript/s hold/s
negative evidence (non-expressed in any condition)

Rev Set of reversible reactions of the generic model

RH Set of reactions with high associated expression value

RL Set of reactions with low associated expression value

K Weighting factor (scalar), typically k∈[0,1]

C User-defined threshold for expression values

ε, δ User-defined small positive value

W Vector of weighting factors (arbitrary function of
experimental evidence)

S Stoichiometric matrix

V Vector of flux values

vmax , vmin Boundary conditions for V (physiologically maximal and
minimal flux capacity)

vfor , vrev Forward and reverse senses of reversible reactions

B Vector of concentration rates

D Vector of data values

IS Inconsistency score

FVA Flux Variability Analysis

RMF, RMFopt Required Metabolic Functionality, RMF optimum value as
calculated by FBA

Imax , Id Gene expression measured intensities, maximum gene
intensity (for a given sample) and intensity value for a
particular gene, respectively

(“Human Metabolic Atlas2 ,” n.d.) where several tissue-specific
model reconstructions can be examined.

tINIT
tINIT, an extension of INIT, has been recently proposed (Agren
et al., 2014). Here, the main innovation comes with the definition
of a set of metabolic tasks that the final context-specific model
must perform. These tasks can represent production or consump-
tion of a certain metabolite or the activation of entire path-
ways that are known to occur in a given context. Furthermore,
reversible reactions are constrained to operate in only one direc-
tion, which introduces an extra binary variable. The user can

2Retrieved from http://www.metabolicatlas.com/

choose between establishing a net production of certain metabo-
lites, as in INIT, or maintaining the steady state. Finally, the
task-driven strategy of tINIT renders this algorithm close to the
principles of the GIMME-like family, since it aims to obtain oper-
ational context-specific models in coherence with experimental
data.

Advantages and disadvantages of the iMAT-like family
The main advantage of this family of methods is the independence
of a RMF; therefore, these methods are convenient for extract-
ing context-specific models when no specific RMF is known to
dominate the context, which is often the case for tissue-specific
models of multicellular organisms. However, MILP problems are
computationally more challenging in comparison to LP prob-
lems, and may, in general, require longer computation time. This
is particularly the case of iMAT, in which two MILPs have to
be solved in the modified FVA per reaction. iMAT can be eas-
ily implemented using the createTissueSpecificModel function of
the COBRA toolbox, although only one MILP is solved in this
implementation, ultimately reducing the computation time at the
expense of neglecting the exhaustive search through the space
of possible multiple optima. The INIT and tINIT methods are
integrated within the RAVEN toolbox (Agren et al., 2013) for
Matlab, and the user can define a set of metabolic tasks to be per-
formed (tINIT) or run the algorithm without any (INIT). Note
that selection of direction in reversible reactions is disabled by
default.

MBA-LIKE FAMILY
The MBA-like family is composed of MBA (Jerby et al., 2010),
mCADRE (Wang et al., 2012) and FastCORE (Vlassis et al., 2014).
While previous methods perform both a flux prediction and a
context-specific model reconstruction, MBA-like methods only
return a context-specific model as output. This family a priori cat-
egorizes reactions in two sets, the core and the non-core. The core
set includes those reactions with positive evidences (e.g., high-
throughput data and/or well-curated biochemical knowledge) of
being active in a certain context. Once these sets are defined, the
MBA-like methods prune the GEM by eliminating non-core reac-
tions that are unnecessary to ensure consistency in the core set,
i.e., no blocked reaction is allowed in the final model. Thereby, all
reactions must carry non-zero flux in at least one feasible solu-
tion. As a result, checking model consistency is a crucial part
of these methods and also the main difference in comparison
to the other methods. FVA have been used to pinpoint blocked
reactions, but it is computationally expensive since it requires
solving two optimization problems per reaction (Mahadevan and
Schilling, 2003). Thus, the major changes in formulation are due
to finding faster alternatives to perform the same task. However,
other differences arise when defining the core set and during the
pruning process. Box 3 shows the three MBA-like algorithms in
pseudocode, as well as the generalization of the family (consult
Table 1 for a glossary of used symbols).

MBA
MBA divides the core set in two subcores: a set with high likeli-
hood to be present in the context-specific model (CH), if evidence
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Box 2 | Mathematical formulations of the iMAT-like family: (A) generalization of the family, (B) iMAT, and (C) INIT. In (C), the tINIT

extension is displayed in blue. Consult the Glossary of symbols for notation.

(A) iMAT-like family (B) iMAT (C) INIT

max
y,v

∑
i ∈D

f (yi , di ) max
v,y

∑
i ∈RG

yi max
v,x,y

∑
i∈R

wi ∗ yi

s.t. s.t. s.t. tINIT (continued)
SV = 0 SV = 0 SV = b vi ≥ ε, i ∈MetTask
y ∗ vmin ≤ v ≤ y ∗ vmax vi + yi ∗ (vmin(i) − ε) ≥ vmin(i), i ∈ RH y ∗ vmin ≤ v ≤ y ∗ vmax vi = xi ∗ vfor(i)

− (1− xi ) ∗ vrev(i),

y ∈ {0, 1} vi + yi ∗ (vmax(i) + ε) ≤ vmax(i), i ∈ RHURev bj ≥ δ, j ∈ KeyMet i ∈ Rev

where f
(
yi , Di

) {
= 1, if match
= 0, if mismatch

(1− yi ) ∗ vmin(i) ≤ vi ≤ (1− yi ) ∗ vmax(i), i ∈ RL bj = 0, j /∈ KeyMet x ∈ {0, 1}
vmin ≤ v ≤ vmax y ∈ {0, 1}
y ∈ {0, 1}

Box 3 | Pseudocode describing algorithms of the MBA-like family corresponding to: (A) the generalization of the family, (B) MBA,

(C) FastCORE, (D) mCADRE. The CheckModelConsistency function (E) of MBA and FindSparseMode (F) of FastCORE are presented separately.

Consult the Glossary of symbols for notation.

(A) MBA-like family (B) MBA (C) FastCORE

1. function MBA-like (RG,C)
2. RP ← C
3. NC ← RG\ C
4. blockedReactions←

CheckModelConsistency (RP)
5. if blockedReactions = ∅
6. return RP
7. end if
8. while blockedReactions �= ∅
9. RP ← RP

⋃
RNc

10. NC ← NC\ RNc
11. blockedReactions←CheckModel

Consistency (RP)
12. end while
13. return RP
14. end function

(D) mCADRE

1. function mCADRE (RG,C)
2. RP ← RG
3. NC ← RG\ C
4. for each reaction r∈NC,
5. RP ← RP\ r
6. blockedReactions←

CheckModelConsistency (RP)
7. eC ← blockedReactions

⋂
C

8. eMet ← blockedReactions
⋂

KeyMetProd
9. eNC ← blockedReactions

⋂
NC

10. if r/∈Negative,
11. if (|eC| = 0) AND (|eMet| = 0),
12. RP ← RP\ r

⋃
eNc

13. end if
14. else if r∈Negative,
15. if (|eMet| =0) AND (|eC| < k*|eNc|),
16. RP ← RP\ r

⋃
eNc

⋃
eC

17. end if
18. end if
19. end for
20. end function

1. function MBA (RG,CH,CM)
2. RP ← RG
3. NC ← RG\ (CH

⋃
CM)

4. choose random permutation, P, from NC
5. for each reaction r∈P,
6. RP ← RP\ r
7. blockedReactions←

CheckModelConsistency (RP)
8. eH ← blockedReactions

⋂
CH

9. eM ← blockedReactions
⋂

CM
10. eNc ← blockedReactions\ (CH

⋃
CM)

11. if (|eH| = 0) AND (|eM| < k*|eNc|),
12. RP ← RP\ (eM

⋃
eNc)

13. end if
14. end for
15. end function

(E) CheckModelConsistency (MBA)

1. function CheckModelConsistency (RP)
2. maxv

∑
i∈RP

vi
s.t.
SV = 0
vmin ≤ v ≤ vmax

3. RP ← RP\ {i∈RP: vi ≥ ε}
4. minv

∑
i ∈RP

⋂
Rev vi

s.t.
SV = 0
vmin ≤ v ≤ vmax

5. RP ← RP\ {i∈RP: vi ≥ ε}
6. if {i∈RP: vi ≥ ε} = ∅,
7. select random reaction, i, and solve FVA
8. RP ← RP\ {i : |vi| ≥ ε}
9. end if
10. end function

1. function FastCORE(RG,C)
2. RP ← ∅
3. J← C
4. P← RG\ C
5. while J �= ∅
6. RP ←

RP
⋃

FindSparseMode(J,P)
7. J← J\ RP
8. P← P\ RP
9. end while
10. end function

(F) FindSparseMode (FastCORE)

1. function FindSparseMode (J,P)
2. maxv,z

∑
i ∈ J zi

s.t.
zi ∈ [0,ε], ∀i∈ J, zi ∈ R+
vi ≥ zi, ∀i∈J
SV = 0
vmin ≤ v ≤= vmax

3. K← {i∈J :vi ≥ ε}
4. minv,z

∑
i ∈P vi

s.t.
vi ∈[−zi,zi], ∀i∈P, zi ∈ R+
vi ≥ ε, ∀i∈K
SV = 0
vmin ≤ v ≤ vmax

5. end function
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comes from well-curated biochemical knowledge in that particu-
lar context, and a set with moderate likelihood (CM) if evidence
comes from context-specific high-throughput data. The algo-
rithm performs the pruning iteratively and randomly by selecting
a non-core (NC) reaction to be eliminated, and checking consis-
tency at each step: if CH and a user-defined fraction of CM remain
unblocked, MBA removes the reaction out of the model along
with CM and NC corresponding blocked reactions. This routine is
repeated until no reaction is left in NC . The topology of the final
model clearly depends on the order in which non-core reactions
are eliminated. Therefore, to remove artifacts due to the order,
the algorithm is repeated a number of times (1000 in Jerby et al.,
2010) to obtain a population of context-specific models. Later,
reactions are ranked according to their occurrence in the popula-
tion and added up to CH until a consistent model is obtained.
MBA proposes an alternative to FVA to check consistency in a
more efficient way: First, it solves a LP problem which maximizes
the total sum of fluxes. It then removes active reactions (i.e., car-
rying non-zero flux) and repeats the LP over the remaining set of
reactions. If no reaction is found to be active, FVA is applied to
each reaction to determine whether it is blocked. The process is
repeated until all reactions have been classified either as blocked
or unblocked.

mCADRE
A prominent characteristic of mCADRE lies in ranking reactions
of the genome-scale reconstruction according to three scores:
expression-, connectivity-, and confidence-level-based. In addi-
tion, this ranking determines the core set of reactions as well
as the order by which non-core reactions are eliminated. The
core is determined by fixing a threshold value to the expression-
based score; therefore, reactions whose values are above the
threshold are included in the core, and the rest constitute the
non-core reactions. Unlike other methods, the expression-based
score does not directly consider the levels of expression. Instead,
it calculates the frequency of expressed states over a battery of
transcript profiles in the same context, and, thus, requires a
previous binarization of the expression data. Reactions outside
the core are then ranked according to the connectivity-based
score, which assesses the connectedness of adjacent reactions,
and the confidence level-based score, which accounts for the
type of evidences supporting a reaction in the genome-scale
reconstruction.

Non-core reactions are in turn sequentially removed accord-
ing to the previous ranking, and consistency is evaluated. Here,
mCADRE presents two other innovations: it defines a set of key
metabolites, with positive evidences of appearing in the context-
specific model reconstruction, and relaxes the stringent condition
of including all core reactions in the final model. More specifically,
a reaction can only be eliminated if it does not prevent the pro-
duction of a key metabolite and if it is unnecessary to ensure core
consistency. However, if evidence exists for the respective tran-
script to be unexpressed in any of the context-specific samples,
mCADRE allows the elimination of the reaction even if it blocks
some of the core reactions. To this end, two conditions have to be
satisfied: (1) production of key metabolites is not impaired and
(2) the relation between the number of blocked core and non-core

reactions matches a predefined ratio. To check model consistency,
mCADRE maintains the procedure proposed in MBA, although
adapted to use FastFVA (Gudmundsson and Thiele, 2010)
instead of maximizing the total sum of flux values. mCADRE
has been used to create the Tissue-Specific Encyclopedia of
Metabolism (“Tissue-Specific Encyclopedia of Metabolism3 ,”
n.d.) using the Recon1 human metabolic reconstruction (Duarte
et al., 2007) and data from the Gene Expression Barcode
Project (McCall et al., 2014) to extract 126 tissue-specific model
reconstructions.

FastCORE
While FastCORE aims also at obtaining a minimal consistent
model containing all core reactions, typical for this family of
methods, it differs principally from MBA and mCADRE in the
algorithmic strategy. Instead of eliminating one non-core reac-
tion followed by consistency evaluation at each step, FastCORE
solves two LPs: The first LP maximizes the cardinality of the
core set of reactions, computed as the number of reaction values
above a small positive constant. On the other hand, the second
LP minimizes the cardinality outside the core set by minimiz-
ing the L1-norm of the flux vector, under the constraint that the
entire core set must remain active. These two LPs are repeat-
edly applied in alternating fashion until the core set is consistent,
whereby activation of all core reactions is ensured while includ-
ing a minimum set of non-core reactions in the final model. To
deal with reversible reactions, FastCORE evaluates both direc-
tions by changing the sign of the corresponding column of the
stoichiometric matrix.

Advantages and disadvantages of MBA-like methods
One of the main advantages of this family over other methods is
the possibility to integrate multiple data sets of different nature
together with well-curated biochemical knowledge. Defining a
core set of reactions from such a diverse collection of experimen-
tal evidence may increase the confidence for a particular set of
reactions to appear in a certain context (e.g., tissue), as missing
information on one data set can be complemented by another.
Moreover, imposing the whole core set inclusion can be highly
advantageous, as reactions with overwhelming evidence would
always be included in the context-specific model. Moreover, like
the iMAT-like family, MBA-like methods are independent of a
RMF and, hence, appropriate to be employed if no RMF is known
to operate in a given context. Nevertheless, we would like to
emphasize that MBA-like methods provide only a context-specific
model reconstruction, in contrast to the iMAT-like methods
which generate both a context-specific reconstruction and a flux
distribution.

MBA-like methods follow two ways to define the core set
of reactions: MBA takes into account well-curated biochemical
knowledge and a variety of experimental data (e.g., transcript,
protein, metabolite, and/or metabolic flux profiles). While this
approach to define the core set of reactions may be more accu-
rate, it is also time-consuming due its manual nature. On the

3Retrieved from https://price.systemsbiology.net/tissue-specific-encyclopedia-
metabolism-tsem
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other hand, the definition of the core set in mCADRE allows for
full automation, since it relies only on determining a threshold to
expression-based evidence.

In terms of computation time, FastCORE outperforms the
contending alternatives. Therefore, it has advantages over other
methods when computing time is the limiting resource, provided
that a properly defined core set is given (note that FastCORE does
not provide an operational definition of a core set). The good
time-related performance of FastCORE is due to two main inno-
vations: First, the maximization of the cardinality represents a
softer objective than the maximization of the total sum of flux
values (used in MBA), since fluxes are only required to be above
a small positive value. Consequently, solving this optimization
problem usually results in more active reactions per iteration than
the MBA counterpart. Second, the computation of the L1-norm
to prune non-core reactions renders the pruning step more effi-
cient due to the possibility to remove a once more than one reac-
tion. These modifications make FastCORE the fastest algorithm
in this family of methods, as it is able to extract a context-specific
model in a computational time two to three orders of magnitude
smaller than that expended by mCADRE and MBA (Vlassis et al.,
2014). Finally, both mCADRE and FastCORE can be run under

the Matlab environment (“FastCORE in COBRA toolbox4,” n.d.,
“mCADRE source code5,” n.d.).

CONCLUSIONS
Here we presented a classification of the existing approaches
for extracting context-specific metabolic models. We classified
the methods into three families according to their mathematical
formulation. Furthermore, we also proposed a mathematical gen-
eralization for each family, which summarizes the fundamental
principles shared by its members.

Altogether, the classification and generalization constitutes a
mathematical framework that aims to fulfill three main purposes:
First, it provides a better understanding of the rationale behind
methods, allowing an easy inspection of its main characteristics
as well as highlighting the advantages and shortcomings. Second,
such structured knowledge may facilitate the envisioning of novel
approaches to extract context-specific models. Third, it may help

4Retrieved from https://github.com/opencobra/cobratoolbox/tree/
cd4368bda07ef4d63486a3683865f4d9f3bc53fe
5Retrieved from https://price.systemsbiology.net/tissue-specific-encyclopedia-
metabolism-tsem

FIGURE 2 | Optimal choice of methodologies when tackling a

context-specific reconstruction problem. The choice can be made by
answering a few questions, in a flowchart manner, related to: demand of

model extraction and flux prediction, knowledge on a required metabolic
functionality, the type of experimental data available or the computational
platform.
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Table 2 | Summary of methods for context-specific metabolic model extraction.

Parameters Formulation Implementation Omics data RMF Flux distribution

GIMME c, k, vmax, vmin LP COBRA (Matlab) Transcripts Required Yes

GIM3E k, vmax, vmin MILP COBRA (Python) Transcripts, metabolites Required Yes

iMAT Data discretization*, vmax, vmin

�

MILP COBRA (Matlab) Transcripts, proteins Unrequired Yes

INIT/tINIT Data discretization*,ε, δ, vmax, vmin MILP RAVEN (Matlab) Transcripts, proteins,
metabolites

Optional Yes

MBA Data discretization*,k, ε, vmax, vmin

�

LP - Curated biochemical
knowledge, transcripts,
proteins, metabolites,
fluxes

Unrequired No

mCADRE Data discretization*,k, ε, vmax, vmin

�

LP Matlab Transcripts, metabolites Unrequired No

FastCORE ε, vmax, vmin

�

LP COBRA(Matlab) - Unrequired No

*These methods discretize data following a heuristic approach without any concrete parameter.

�

stands for iteratively repeated.

users in choosing a best suited method for their particular prob-
lem, since the classification outlines the differences in the data and
knowledge requirements as input to the particular methods.

The flow-chart on Figure 2 demonstrates that an optimal
choice with respect to the parameters and available data (Table 2)
may be executed in a simple and concise manner by answering few
questions. Initially, one may select between methods that perform
both, a model extraction and a flux prediction (GIMME-and
iMAT-like families), or methods which only provide a context-
specific model (MBA-like families). To further select between the
GIMME- and the iMAT-like families, one can take into account
if a RMF is known to operate in the context under consideration.
In that case the GIMME-like family may provide the method of
choice, since the resulting model would be guaranteed to include
the RMF. Selection of GIMME or GIM3E may depend on the
interest to integrate metabolomics data along with transcripts
profiles, the computational platform of the current implemen-
tations, or the difference in computing time. For instance, the
choice is between the COBRA toolbox in Matlab, for GIMME,
or its version in Python, for GIM3E (“The OpenCOBRA Project,”
n.d.), or between the LP formulation of GIMME, vs. the more
computationally demanding MILP of GIM3E.

Without the information about the operability of a particu-
lar RMF in a given context, the iMAT-like family may provide
the method of choice. To select between iMAT and INIT one
could take into account the flexibility on integrating different
types of experimental data, since iMAT was developed to integrate
transcript profiles, whereas INIT can integrate semi-quantitative
proteomic data, transcript profiles and metabolic evidences. In
addition, one could consider the possibility of the method to dis-
criminate between multiple optima with same similarity score,
together with the computational cost for performing this task.

In contrast, if only a context-specific model extraction is
required, one may opt for any of the presented method. However,
the methods in the MBA-like family have some advantageous
properties, namely, the integration of a variety of experimental
data sources and the inclusion of reactions for which there is
strong experimental evidence in the context-specific reconstruc-
tion. One may then choose based on the core set definition of
each method as well as on the total computational time required.

The MBA-like family proposes two ways to define the core: the
MBA semi-automated procedure, whereby reactions are included
in the core set if there is sufficient positive evidence across differ-
ent databases, and the mCADRE automated procedure, whereby
reactions are included if the expression value of the respective
transcript is larger than a given threshold. Thus, if an appropri-
ate number of databases contain experiments about the context of
interest and the computation time is not a primary limitation, the
MBA core definition may be a suitable alternative. As previously
commented, this procedure can cross-validate the confidence on
a reaction to belong to a certain context, due to the simulta-
neous usage of several databases. Subsequently, one can readily
employ MBA to extract the context-specific model, or can opt for
FastCORE, which can perform the extraction, using the previ-
ously defined core, in a more efficient way. On the other hand,
mCADRE could be preferentially applied when an automated
core definition is preferred. Moreover, the mCADRE relaxation of
whole core inclusion can improve accuracy when a core reaction
diminishes the overall coherence with respect to the data, through
the inclusion of non-core reactions with negative evidences to
ensure consistency. Finally, one can also apply FastCORE to a core
set defined in an automated way to benefit of its rapid computa-
tion. However, neglecting the characteristic core relaxation and
ranking of non-core reactions of mCADRE.

Development of new approaches for extraction of context-
specific metabolic models can further expand on the advantages
of the existing methods, while facilitating efficient computation
accounting for the shortcomings. This will allow rapid devising of
context-specific models and their interconnection in larger mul-
tilevel models, typical for complex eukaryotes, to allow for more
realistic simulation scenarios.
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