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The tricarboxylic acid (TCA) cycle intermediate 2-oxoglutarate (2-OG) is used as an
obligatory substrate in a range of oxidative reactions catalyzed by 2-OG-dependent
dioxygenases.These enzymes are widespread in nature being involved in several important
biochemical processes. We have recently demonstrated that tomato plants in which
the TCA cycle enzyme 2-OG dehydrogenase (2-ODD) was antisense inhibited were
characterized by early senescence and modified fruit ripening associated with differences in
the levels of bioactive gibberellin (GA). Accordingly, there is now compelling evidence that
theTCA cycle plays an important role in modulating the rate of flux from 2-OG to amino acid
metabolism. Here we discuss recent advances in the biochemistry and molecular biology
of 2-OG metabolism occurring in different biological systems indicating the importance of
2-OG and 2-OG dependent dioxygenases not only in glucosinolate, flavonoid and alkaloid
metabolism but also in GA and amino acid metabolism. We additionally summarize recent
findings regarding the impact of modification of 2-OG metabolism on biosynthetic pathways
involving 2-ODDs.
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INTRODUCTION
2-Oxoglutarate (2-OG), a key organic acid of the tricarboxylic acid
(TCA) cycle (Lancien et al., 2000; Scheible et al., 2000), is also an
obligatory substrate for 2-OG-dependent dioxygenases (2-ODDs),
as depicted in Reaction 1. Briefly, dioxygenases can be defined as
enzymes catalyzing reactions in which both atoms of molecular
oxygen are incorporated into substrates (Figure 1). In the hydrox-
ylation reaction catalyzed by dioxygenases, one atom of molecular
oxygen is incorporated into the substrate, while the other atom
of oxygen is incorporated into 2-OG resulting in the subsequent
formation of succinate and the release of carbon dioxide.

The 2-ODDs are considered the largest known family of non-
heme oxidizing enzymes (Prescott and John, 1996; Ozer and
Bruick, 2007; Kawai et al., 2014). Members of this family are
found throughout biology catalyzing a number of oxidation reac-
tions and have been identified in many organisms ranging from
prokaryotes to eukaryotes. Furthermore, oxidative reactions cat-
alyzed by 2-ODD are involved in biosynthetic processes leading
to materials of medicinal or agrochemical importance includ-
ing collagen or other modified polypeptides and amino acids,
plant secondary metabolites, phytohormones such as ethylene
and gibberellins (GAs) as well as β-lactam antibiotics, i.e., peni-
cillins and cephalosporins (Vaillancourt et al., 2006; Loenarz and
Schofield, 2008; Martens et al., 2010 and references therein). Alto-
gether this indicates that 2-ODD and its substrate, 2-OG, are
highly important in plant metabolism as a whole and thus a mas-
sive impact of their genetic modification on plant metabolism in
different plant tissues is expected. It is worth mentioning that

a difficulty impeding metabolic engineering within this enzyme
family is the fact that multiple pathways within the metabolic net-
work could be affected, linking the enzymes to the specific target
metabolites.

Here we discuss recent advances in the biochemistry and molec-
ular biology of 2-OG metabolism occurring in different biological
systems indicating the importance of 2-OG and 2-ODDs not only
in glucosinolate, flavonoid, and alkaloid metabolism but also in
GA and amino acid metabolism.

THE IMPORTANCE OF 2-OXOGLUTARATE METABOLISM IN
HIGHER PLANTS
2-Oxoglutarate participates in a range of reactions in distinct plant
cell compartments (Weber and Flügge, 2002; Foyer et al., 2003),
also being a key metabolite at the crossroads of carbon/nitrogen
metabolism as it is required for ammonia assimilation (Hodges,
2002). Despite this fact, it still remains rather unclear where
the major site of production of 2-OG resides. This organic acid
can be produced from either sugar respiration or amino acid
transamination following the concerted action of isocitrate dehy-
drogenases, aminotransaminases, and glutamate dehydrogenases
(Lancien et al., 2000). We have previously demonstrated that
the mitochondrial enzyme 2-OG dehydrogenase (OGDH) has an
important role in 2-OG production and metabolism, controlling
the levels of this important organic acid in plant cells (Araújo
et al., 2008, 2012a,b). These results in conjunction with others
in which similar reduction in the TCA cycle activity was also
demonstrated (Sienkiewicz-Porzucek et al., 2008, 2010) indicates
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FIGURE 1 |The general reaction mechanism catalyzed by a

2-oxoglutarate-dependent dioxygenase (2-ODD; A) and a schematic

overview of reaction and function of 2-ODD in plant (B). (S) is a
substrate and (SO) is the hydroxylated product. 2-OG, 2-oxoglutarate;
OGDH, 2-oxoglutarate dehydrogenase, GA, gibberellins; 2-ODD,
2-oxoglutarate-dependent dioxygenase.

that mitochondrial TCA cycle enzymes contribute considerably
to the regulation of nitrogen assimilation in leaves and that a
substantial portion of 2-OG production occurs in the mitochon-
dria itself. It is worth mentioning that the exact balance between
the use of cytosolic versus mitochondrial routes for synthesis of
2-OG remains rather unknown. Thus the discovery that the car-
bon for nitrogen assimilation in leaves comes from carbon stored
from the previous night (most likely organic acids such as cit-
rate stored in the vacuole and released to the cytosol; Gauthier
et al., 2010) raises the possibility that 2-OG for nitrogen assim-
ilation is generated predominantly in the cytosol and therefore
mitochondrial enzymes make only a quantitatively minor contri-
bution. It is important to note that 2-OG is also a direct regulator
of several enzymes (e.g., cytosolic pyruvate kinase and PEP car-
boxylase, mitochondrial citrate synthase, and alternative oxidase)
associated with sugar and/or organic acid flux and redox con-
trol between cytosol and mitochondria (for a review see Hodges,
2002).

In addition to this, 2-OG has itself been suggested to play
a role as a signal metabolite in plants (Lancien et al., 2000;
Ferrario-Mery et al., 2001; Feria Bourrellier et al., 2009). This
role is, however, largely based on analogy to the important role
it plays in conjuncture with the plastidial PII protein in plants
(Uhrig et al., 2009). Reports to date suggest that whilst PII may
regulates a small number of enzyme systems in plants includ-
ing N-acetyl-glutamate kinase (Ferrario-Mery et al., 2006; Feria
Bourrellier et al., 2009) and plastidial acetyl-CoA carboxylase
(Feria Bourrellier et al., 2010) its role is unlikely to be as piv-
otal in plants as in non-plant systems(Araujo et al., 2012). That
said it is clear that the production of 2-OG in the mitochon-
dria or cytosol is an important determinant of some plastidial
activities.

ON THE CONNECTIONS BETWEEN 2-OXOGLUTARATE
METABOLISM AND GIBBERELLIN IN HIGHER PLANTS
Much effort has been expended on elucidating the physiologi-
cal functions of the various genes regulated by GA (Yamaguchi,
2008). However, studies concerning the associated effects of GA
on energy metabolism and growth are rare. This fact notwith-
standing, characterization of the pyruvate dehydrogenase kinase
1 (PDK1) has demonstrated that GA modulates the activity of
the mitochondrial pyruvate dehydrogenase by regulating PDK1
expression and controlling growth in rice (Yazaki et al., 2003; Jan
et al., 2006). Collectively it also indicates that GA might modify
primary metabolism at the entry point of TCA cycle. In addition
it has been demonstrated by the overexpression of genes associated
with GA biosynthesis or catabolism that GA levels play key roles on
transcriptional programs influencing plant growth (Biemelt et al.,
2004; Dayan et al., 2010). Furthermore, reduction of TCA cycle
enzymatic activity has led to reduction of GA levels in tomato
roots (van der Merwe et al., 2009).

In this vein tomato plants with reduced levels of the TCA
cycle enzyme 2-OGDH were recently characterized by early leaf
senescence and a modified fruit ripening most likely due to differ-
ences in the levels of bioactive GAs (Araújo et al., 2012b). Given
that the reduction in the activity of this enzyme was associated
to a higher impact on respiration rates than observed previ-
ously in other TCA enzyme it seems reasonable to suggest that
2-OG might be of critical importance in the regulation of res-
piration rates in higher plants. It should be mentioned that
both the chemical (Araújo et al., 2008) and molecular (Araújo
et al., 2012b) inhibition of 2-OGDH was characterized by sig-
nificant alterations in both sugars and TCA cycle intermediates.
Notably, a compensatory augmentation in the flux of the GABA
shunt was clearly observed most likely in an attempt to restore
the TCA cycle. In addition, the changes in the GABA shunt
suggest that its up regulation is needed to maintain succinate
supply to the mitochondrial electron transport chain. This find-
ing highlights the metabolic importance of the GABA shunt in
plants (Fait et al., 2008) and is similar to findings observed fol-
lowing neuronal OGDH inhibition (Sá Santos et al., 2006; Shi
et al., 2009). Remarkably this compensatory up regulation of the
GABA shunt was coupled with significant shifts in cellular pools
of both nitrate and amino acids in general. Specifically, metabolite
profiling of the OGDH antisense lines demonstrated that steady
state levels of photorespiratory intermediates, namely glycerate,
and glycine, were reduced, coupled with a significant reduction
in the label redistribution to glycine and serine (Araújo et al.,
2012b). These results suggest that the down-regulation of the
TCA cycle activity was integrated with an up-regulation in the
flux through the photorespiration pathway as part of a repro-
gramming to maintain either mitochondrial NADH homeostasis
and/or the glutamate pool size. NADH and NADPH levels play
an important role in mitochondrial respiratory metabolism and
it can explain the maintenance of the levels of both NAD and
NADPH in OGDH antisense plants (Araújo et al., 2012b). Alto-
gether the results of this work coupled with others described above
have clearly demonstrated that the alteration of the mitochon-
drial 2-OG metabolism has greater impacts in plant respiration
and its connections than previously expected. It is important
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to mention that the precise nature of this interaction between
2-OG metabolism and hormone-mediated control of growth and
senescence by GA remains an exciting topic for future research.
For the purposes of this review perhaps most important is to
outline the key role of 2-OG and by extension 2-ODD in GA
metabolism.

It also presents metabolic evidence for a key role of 2-OG and
2-ODD in both GA metabolism. The synthetic enzymes involved
in GAs biosynthesis have been well-characterized (Graebe, 1987).
In GA biosynthesis, several types of oxidation enzymes are
involved in GA biosynthesis, such as ent-kaurene oxidase (AtKO,
CYP701A1) and ent-kaurenoic acid oxidase (AtKAO, CYP88A3,

and CYP88A4) types, GA-β-hydroxylase and GA20-oxidase (2-
ODD) types (Yamaguchi, 2008; Kawai et al., 2014). By great efforts
of former works in GA metabolism, several 2-ODDs involved
in GA biosynthesis have been found in several plant species
(Prescott, 1993; Figure 2A); for example, 2β-hydoxylase(s) from
Phaseolus vulgaris (Griggs et al., 1991) and from Pisum sativum
(Smith and Macmillan, 1986), 2β-hydoxylase(s) from P. vulgaris
(Smith et al., 1990), GA20-hydroxylase from P. sativum (Lange and
Graebe, 1989) and from Cucurbita maxima (Lange and Graebe,
1989). Half of the reactions in GA biosynthesis are mainly con-
verted by 2-ODDs (Hedden et al., 1982; Prescott, 1993). The
identification and characterization of the 2-ODDs involved in

FIGURE 2 | Major enzymatic reactions of 2-ODD involved in GA

and plant secondary metabolism. 2-ODDs involved in (A) GA,
(B) glucosinolate, (C) flavonoid, (D) tropan alkaloid, (E) isoquinorine
biosynthesis are described. GA20ox, GA20-oxidase; GA3ox,
GA3β-hydroxylase; GA2ox, GA 2-oxidase; AOP, alkenyl/hydroxy (OH) alkyl

producing enzymes; GSL-OH, glucosinolate 2-oxoacid-dependant
dioxygenase gene; FS-I, flavone synthase I; FLS, flavonol synthase,
F3H, flavanone 3-hydroxylase, ANS, anthocyanin synthase; H6H,
hyoscyamine 6 -hydroxylase; T6ODM, 6-demethylase; CODM, codeine
O-demehtylase.
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GA biosynthesis has also led to major advances in the elu-
cidation of the pathway including understanding of chemical
diversity of GAs. Furthermore, it seems reasonable to consider
that a part of GA biosynthesis is controlled by 2-OG content in
plant.

THE METABOLIC IMPORTANCE OF 2-ODD IN THE
REGULATION OF SECONDARY METABOLISM
The oxygenase which leads to the incorporation of oxygen
atoms from molecular oxygen is one of the most important
enzymes in terms of conferring variation within plant secondary
metabolism. Two functionally different classes of oxygenases,
namely cytochrome P450 enzymes and 2-ODD, are involved in
several pathways of plant secondary metabolism namely hydrox-
ycinnamates, flavonoids and alkaloids (Tohge et al., 2013). As for
GA biosynthesis, almost half of the oxidation reactions which are
involved in late steps of their biosynthesis are catalyzed by 2-ODD
(Tohge et al., 2013). In the biosynthesis of glucosinolates which are
nitrogen/sulfur-containing secondary metabolites mostly found
in Brassica species, three 2-ODDs, namely alkenyl /hydroxy (OH)
alkyl producing enzymes (AOP1, AOP2, AOP3; Kliebenstein et al.,
2001) and glucosinolate 2-oxoacid-dependent dioxygenase gene
(GSL-OH; Hansen et al., 2008) have been found in Arabidopsis
(Figure 2B). Since GSL-OH is evolutionarily highly distant from
AOP2, it has been suggested that GSL-OH represents an inde-
pendent recruitment from a different 2-ODD clade to the same
metabolism (Kawai et al., 2014).

In flavonoid biosynthesis, four types of 2-ODDs; flavonol
synthase (FLS), flavanone 3-hydroxylase (F3H), anthocyanin syn-
thase (ANS also known as LDOX), and flavone synthase I (FS-I)
are characterized as key enzymes in late steps of flavonoid
aglycone formations resulting to in species specific flavonoid
profiles (Figure 2C; Martens et al., 2001; Turnbull et al., 2004;
Tohge et al., 2013). Flavonols are catalyzed from flavanone by
hydroxylation of carbon-3 and 2,3-dehydration by F3H and FLS,
respectively. On the other hand, ANS which catalyses the for-
mation of dihydroflavonols from leucoanthocyanidins is known
to be one of as one of the key enzymes involved in red pig-
mentation via anthocyanin and proanthocyanidin biosynthesis.
FS-I which is found mainly in monocot and Apiaceae species
uses flavanone as the substrate for flavone backbone formation.
Given that F3H provides the precursor of substrates for FLS
and ANS, it has been suggested that the evolution of FLS and
ANS occurred after the emergence of F3H during 2-ODD evo-
lution in seed plants (Stafford, 1991). Phylogenetic tree analysis
using gene family of FLS, F3H, and ANS from several plant
species revealed clear separation between FLS, F3H, and ANS
as well as monocots, dicots and leguminous species as subclade
of FLS, F3H, and ANS. This fact may suggest that FLS, F3H,
and ANS have evolved in early stages of evolution (Tohge et al.,
2013). In the other branches of phenolic secondary metabolism
such as coumarin and 2,4-di-hydroxy-2H-1,4-benzoxazin-3(4H)-
one (DIBOA) biosynthesis, several 2-ODDs have been found
as key enzymes in their biosynthesis namely, p-coumaroyl-
CoA 2′-hydroxylase (C2′H; Vialart et al., 2012), feruloyl-CoA
6′-hydroxylase (F6′H; Kai et al., 2008), and DIBOA-7-hydroxylase
(BX6; Frey et al., 2003).

Several 2-ODDs are also involved in the synthesis of differ-
ent alkaloids, which is the second largest class of plant sec-
ondary metabolism, have been characterized in several plant
species. In the biosynthesis of tropane alkaloid, hyoscyamine
6-hydroxylase (H6H) in scoporamine biosynthesis of Hyoscya-
mus niger (Figure 2D; Matsuda et al., 1991), Anisodus tanguticus
(Liu et al., 2005), and Atropa belladonna (Suzuki et al., 1999),
2′-deoxymugineic-acid 2′-dioxygenase (IDS3) in mugineic acid
biosynthesis of Hordeum vulgare (Nakanishi et al., 2000) have been
characterized. In addition, two 2-ODDs involved the biosynthe-
sis of morphine namely thebaine 6-demethylase (T6ODM) and
codeine O-demethylase (CODM) have been found form Papaver
somniferum (Figure 2E; Hagel and Facchini, 2010).

SUMMARY
In summary, 2-OG is not only a TCA cycle intermediate but also
a co-factor for a diverse range of enzymes involved in amino acid,
glucosinolate, flavonoid, alkaloid, and GA metabolism. Specifi-
cally in the case of GA and amino acid, recent evidence indicates
that 2-OG levels control the rate of their biosynthesis. Further
work is, however, needed to establish it also for glucosinolate,
flavonoid, and alkaloid biosynthesis. Moreover, whilst preliminary
studies have been attempted to understand evolutionary origins of
the 2-ODD, more comprehensive analysis of this will be required
to deepen our understanding of this important gene family.
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