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Stochastic models of cellular circadian rhythms in plants
help to understand the impact of noise on robustness and
clock structure
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Rhythmic behavior is essential for plants; for example, daily (circadian) rhythms control
photosynthesis and seasonal rhythms regulate their life cycle.The core of the circadian clock
is a genetic network that coordinates the expression of specific clock genes in a circadian
rhythm reflecting the 24-h day/night cycle. Circadian clocks exhibit stochastic noise due to
the low copy numbers of clock genes and the consequent cell-to-cell variation: this intrinsic
noise plays a major role in circadian clocks by inducing more robust oscillatory behavior.
Another source of noise is the environment, which causes variation in temperature and light
intensity: this extrinsic noise is part of the requirement for the structural complexity of clock
networks. Advances in experimental techniques now permit single-cell measurements
and the development of single-cell models. Here we present some modeling studies
showing the importance of considering both types of noise in understanding how plants
adapt to regular and irregular light variations. Stochastic models have proven useful for
understanding the effect of regular variations. By contrast, the impact of irregular variations
and the interaction of different noise sources are less well studied.
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MATHEMATICAL MODELS OF THE PLANT CIRCADIAN CLOCK
The rotation of planet Earth around its axis generates predictable
daily oscillations in sunlight. Plants require sunlight to derive
energy via photosynthesis, and have therefore evolved intricate
molecular clocks to link growth and cellular metabolism to the
appropriate phase of the solar cycle (Harmer, 2009). Creating an
internal cellular rhythm to match the rhythmic external environ-
ment confers a major fitness benefit to the plant (Dodd et al.,
2005; Graf et al., 2010). The circadian clock regulatory network
generates oscillations in gene expression and is able to adapt
to environmental conditions by synchronizing (or entraining)
to light/dark (LD) cycles (Dunlap et al., 2003). Such oscilla-
tions persist under conditions of constant light (LL) or constant
darkness. Hallmark features of the circadian clock are the abil-
ity to function both with and without entrainment, robustness
against perturbations, and the flexibility to adapt to environmen-
tal changes resulting from weather and seasons (Akman et al.,
2008, 2010b; Troein et al., 2009; Edwards et al., 2010; Gould et al.,
2013).

The most studied plant circadian clock is that of the model
species Arabidopsis thaliana (Harmer, 2009). The heart of the
Arabidopsis transcriptional clock network is a double nega-
tive feedback loop between the morning-phased heterodimeric
transcription factor complex of LHY/CCA1 and the evening-
expressed pseudoresponse regulator TOC1. Additional feedback
loops exist between LHY/CCA1 and PRR7/9, and LHY/CCA1 and
the Evening Complex (Nusinow et al., 2011; Huang et al., 2012).

Several mathematical models of the Arabidopsis clock network
have been developed, starting from a minimal model com-
prising one negative–positive feedback loop (Locke et al., 2005),
through models of intermediate complexity which include mul-
tiple loops and light inputs (Locke et al., 2006; Pokhilko et al.,
2010), to the most recent models that incorporate more detailed
biochemical mechanisms such as post-translational modification
(Pokhilko et al., 2012). Most published models of the circadian
clock in Arabidopsis are continuous deterministic models based on
ordinary differential equations (ODEs). An alternative approach
adopts linear time invariant (LTI) models (Dalchau et al., 2010;
Herrero et al., 2012). These models, which have the advantage of
being computationally more tractable than kinetic ODE models,
have been used to investigate how the Arabidopsis clock combines
timing information from the central rhythm generator and light-
signaling pathways to control output rhythms such as cytosolic
calcium oscillations (Dalchau et al., 2010), and to infer regu-
latory interactions between clock components, thereby yielding
new predicted clock architectures (Herrero et al., 2012). How-
ever, LTI models fail to represent the system’s behavior when
nonlinearity is fundamental: in particular, they cannot simulate
sustained oscillations in constant conditions. For a comprehen-
sive review on Arabidopsis clock modeling see (Bujdoso and Davis,
2013).

Ordinary differential equation models provide a good repre-
sentation of the dynamical behavior of a population of cells, or a
whole organism, but represent the dynamics of a single-cell less
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accurately. This is due to the underlying assumption that discrete
variables representing molecule copy numbers can be approxi-
mated by continuous ones representing concentrations when the
number of molecules is large. This assumption is generally valid
in a cell population but not in single-cells, particularly in gene
regulatory networks where genes can be present in low copy
numbers.

The discrete stochastic modeling paradigm differs from the
ODE approach in two main ways: firstly, model variables rep-
resent discrete molecule numbers rather than continuous con-
centrations, and secondly, the time evolution of the model is
obtained by taking into account the probability of each reaction
to occur, computed assuming the mass action law or other kinet-
ics (Michaelis-Menten, Hill, etc.). Stochastic models are generally
simulated using a stochastic simulation algorithm (SSA; Gillespie,
1977; Gibson and Bruck, 2000; Cao et al., 2007). The time course
of a model variable obtained from a single stochastic simulation
is considered to represent the dynamic behavior of a molecular
species in a single-cell, while the average of multiple stochastic
simulation time courses is taken to represent its behavior in a cell
population.

Until recently, experimental techniques were focused on mea-
suring large populations of cells, meaning that single-cell com-
putational results did not have an experimental counterpart.
Recent advances in experimental techniques and high-resolution
imaging have allowed for measurements of smaller cell popula-
tions. Indeed, even single-cell measurements are becoming feasible
(Wang and Bodovitz, 2010; Yang et al., 2010; Lee et al., 2011;
Enoki et al., 2012), generating an interesting avenue for single-cell
stochastic modeling to assist future studies into cell-autonomous
timekeeping mechanisms. In this article, we will address recent
advances and future perspectives on stochastic plant circadian
clock modeling.

INTRINSIC NOISE IN THE PLANT CIRCADIAN CLOCK
The importance of stochasticity in genetic networks is well known
(McAdams and Arkin, 1999), and arises from the fact that the
molecules involved are generally present in very low concentra-
tions. This kind of stochasticity, referred to as intrinsic noise, has
been observed in circadian clock networks of animal, plant, and
fungal species, and has been shown to increase the robustness of
oscillations in the concentrations of network components (Gonze
et al., 2002a,b; Forger and Peskin, 2005; Akman et al., 2009, 2010a).

The role of intrinsic noise in the Arabidopsis circadian clock
was previously investigated using a stochastic model (Guerriero
et al., 2012). A key finding was that the fluctuations in protein
and gene expression induced by intrinsic noise caused desyn-
chronization between single-cell oscillations (i.e., in individual
stochastic simulations) under LL conditions. This desynchro-
nization, and resulting phase diffusion, caused damping of the
oscillations simulated at the cell population level by averaging mul-
tiple stochastic simulations. The predicted damping of circadian
rhythms was consistent with the experimentally observed oscilla-
tions in LL. Additionally, moderate intrinsic noise was shown to
accelerate the re-entrainment of the plant clock to experimentally
imposed sudden changes to the LD cycle. These results indicate
that a certain level of intrinsic noise may be essential for the

Arabidopsis clock to properly adapt to a noisy environment, imply-
ing a need for average clock molecule expression levels to be tuned
appropriately.

An additional and useful model organism in this context is the
alga Ostreococcus tauri, as it is naturally unicellular and contains
a plant-like circadian clock that includes a feedback loop between
TOC1 and a single ortholog of Arabidopsis CCA1 and LHY, named
CCA1 (Corellou et al., 2009). Ostreococcus offers a cellular model
system of minimal genomic complexity, with a genome roughly
the size of yeast (Derelle et al., 2006), as well as minimal cellu-
lar complexity, with only one chloroplast and mitochondrion per
cell (Henderson et al., 2007). Many of the components of addi-
tional loops found in the transcriptional oscillator of higher plants
are absent, yet Ostreococcus cells exhibit all the cellular circadian
behaviors observed in higher plants, both in free-running and
entrained conditions (Corellou et al., 2009). Both an ODE model
(Troein et al., 2011) and a stochastic model (Akman et al., 2010a)
have been developed for this reduced plant clock. Comparing these
models yields identical predictions for oscillations of large cell
populations (Akman et al., 2010a). By contrast, when simulating
rhythms in single cells assuming a daily average of 50 molecules
per cell, the high intrinsic noise yields significant departures from
the corresponding deterministic formulation. In particular, sin-
gle stochastic simulations show persistent oscillations both under
entrainment and in LL (Figure 1). However, without entrain-
ment, the oscillations are not synchronized across different cells,
causing the mean behavior of the system to dampen. This result
suggests that when copy numbers of clock components are low,
stochasticity promotes oscillations, and helps cells to keep time
autonomously.

Low molecule numbers per cell have been experimentally veri-
fied in Ostreococcus (van Ooijen et al., 2011). Throughout the day,
TOC1 cycled between 10 and 150 molecules per cell and CCA1
between 80 and 400 molecules per cell. Additionally, degrada-
tion rates of both clock proteins were observed to fluctuate over
a 24-h period. TOC1 degradation rates were phase-dependent in
response to LD transitions and depended on photoperiods (i.e.,
seasons). By contrast, CCA1 degradation rates were truly circadian
and rhythmic at the same phase, regardless of the entrainment con-
ditions. Given that properly phased protein degradation appears
to be even more important to timekeeping (van Ooijen et al.,
2011) than rhythmic protein synthesis (O’Neill et al., 2011), it
might prove revealing to incorporate degradation rate rhythms
into future stochastic models.

Phase-dependent changes in degradation rates of Arabidopsis
LHY and TOC1 have been observed in cell extracts (Mas et al.,
2003; Song and Carré, 2005), but accurately tracing degradation
in vivo to establish the peak phase of clock protein degradation is
much more challenging in Arabidopsis than in Ostreococcus. Sim-
ilarly, clock protein molecule numbers in Arabidopsis are hard
to measure directly, but have been estimated from gene expres-
sion measurements to be of the order of a few 100 proteins
per cell (Guerriero et al., 2012; Supplementary data). Compar-
ing the wealth of available experimental luminescence results to
stochastic simulations generated by models with different sys-
tem sizes (i.e., different average molecule counts) confirmed this
estimate computationally. These results mean that, in principle,
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FIGURE 1 | Effect of intrinsic noise on oscillation robustness in

Ostreococcus tauri in entrained and constant conditions.

(A) 12 h:12 h light/dark (LD) cycles. (B) Constant light (LL). For each light
condition, three independent realizations of the system’s dynamics
obtained using the stochastic simulation algorithm (SSA) are shown,
together with the deterministic behavior (dotted pink lines) and the mean
stochastic behavior obtained by averaging over 10000 independent runs
(dotted black lines). Note how the greater variability between the
independent runs observed in LL compared to LD causes the mean
population behavior to exhibit damped oscillations in LL (B) and
sustained oscillations in LD (A). Interestingly, some individual cells can
drift out of phase even in LD; however, the light entrainment is able to
limit these occurrences so that, as a population, the cells oscillate
regularly.

clock components are sufficiently lowly expressed for intrinsic
noise to exist at significant levels in the higher plant clock. It
certainly would be a valuable exercise to ascertain experimentally,
as well as theoretically, whether the key role of intrinsic noise
for cell-autonomous rhythms observed in Ostreococcus trans-
lates over to the more elaborately regulated higher plant system.
However, an important difference between unicellular organisms
such as Ostreococcus and higher plants such as Arabidopsis is the
impact of intercellular interactions and spatial structure, which
potentially introduce an extra level of complexity when study-
ing the plant circadian clock. In animals, the master clock in the
suprachiasmatic nucleus (SCN) is characterized by strong inter-
cellular coupling, yielding a timing mechanism that is robust to
environmental noise, whilst weaker coupling is observed in the
peripheral clocks, enabling them to respond flexibly to signals
from the SCN and other systems (e.g., hormonal and metabolic
signals; Abraham et al., 2010). Plants appear to have a different
architecture, in which a heterogeneous network of weakly cou-
pled oscillators achieves accurate timing through strong coupling
to the external light/dark cycle in leaves (Wenden et al., 2012).
By analogy to the mammalian system, it has been proposed
that the clock in Arabidopsis roots is a peripheral clock slaved
to a photosynthesis-generated metabolic signal from a master
oscillator in green tissues (James et al., 2008). In a recent break-
through paper, photosynthetically derived sugars were proven to

provide key metabolic input to the circadian oscillator in a process
involving the clock protein PRR7 (Haydon et al., 2013), and it
is likely that this signal could contribute to the orchestration of
rhythmic transcripts in photosynthetically inactive parts of the
plant.

EXTRINSIC NOISE IN THE PLANT CIRCADIAN CLOCK
In addition to intrinsic molecular noise, circadian clocks are also
subject to extrinsic noise; weather and seasons generate fluctua-
tions in environmental factors like photoperiod, light intensity,
and temperature. This type of noise is particularly relevant to
plants, which have to be more robust to environmental changes
compared to animals due to their immobility and lack of tem-
perature regulation (Figure 2). The obvious need for sunlight in
photosynthesis directly links environmental conditions to cellu-
lar metabolism and survival; it is therefore of great importance to
plants to accurately trace the timing of dusk and dawn throughout
the seasons. This timekeeping allows anticipation of predictable
daily changes, and proper alignment of cellular metabolism to the
most efficient phase of the day. Weather is intrinsically unpre-
dictable, however, and therefore clocks have to be buffered against
fluctuations in light level and temperature. Models have been
increasingly used to understand the molecular mechanisms by
which clocks buffer circadian-regulated processes against varia-
tions in these environmental time cues (Ruoff et al., 2007; Domijan
and Rand, 2011). In plants, quantifying how circadian home-
ostasis is achieved despite the significant effect of temperature
on many biological rate constants (the temperature compensa-
tion effect) is an increasingly active research area, with critical
implications for crop viability under climate change (Resco et al.,
2009).

It has been suggested that the observed complexity in clock
transcriptional feedback systems across rhythmic life is essen-
tial to buffer timing against noisy environments (Merrow et al.,
2005). All rhythmic organisms employ gene regulatory networks

FIGURE 2 | Some of the sources of extrinsic noise particularly relevant

to plants. Primary physical variations depending on weather and seasons
are in red font, and translated physiologically relevant factors for a plant
system are in black. Peak expression phase of the Arabidopsis clock
components are provided on a 24-h circular clock diagram.
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to drive circadian output rhythms and all these gene networks
share the presence of multiple light inputs and multiple feedback
loops, despite the fact that the genes involved are phylogeneti-
cally unrelated across higher taxa. These observations suggest that
network feedback structure, rather than the precise identity of
network components, might be the prominent factor in negating
extrinsic noise. The feedback loop structure of clock transcrip-
tional networks has been shown to provide efficient buffering
against noisy environmental variables. For example, the circa-
dian clock network of the model fungal species Neurospora crassa
is built around a central negative feedback loop augmented by
an interlocking positive loop (Baker et al., 2012). It has been
shown experimentally that the positive loop reduces the variabil-
ity in the free-running period of the clock (Cheng et al., 2001;
Smolen et al., 2001), thereby promoting its robust synchroniza-
tion to the external LD cycle. Subsequent ODE modeling of the
Neurospora clock has demonstrated that this interlocked feed-
back structure also imparts the flexibility necessary to tune the
dependence of oscillator phase on both day length (Akman et al.,
2008) and ambient temperature (Akman et al., 2010b), yielding
a potentially generic mechanism by which temperature compen-
sation can be achieved in a clock network (Akman et al., 2010b).
Furthermore, in silico evolution studies have suggested that the
complex structures emerging from multiple feedback loops and
light inputs are an essential property of clock transcriptional
networks that enable them to function when subjected to noisy
light patterns (Troein et al., 2009). Using a genetic algorithm to
evolve a population of random networks into networks that opti-
mally predicted the timing of dawn and dusk, the authors showed
that extrinsic noise (daily environmental noise as well as seasonal
changes to the photoperiod) is the strongest driver in the selec-
tion of complex network structures similar to those observed in
nature. These observations, combined with the lack of sequence
homology between the actual components of the clock networks,
could suggest that the evolving prototype clock systems in the last
common ancestor have diverged across taxa by incorporating pre-
existing complex structures most suitable for robust timekeeping
mechanisms.

Ostreococcus could be considered a snapshot of plant evolution
around 1.5 billion years ago, before multi-cellularity and terres-
trial plants, but after symbiosis with cyanobacteria gave rise to
the evolution of the green lineage. Although deep sea ecotypes
of Ostreococcus exist (Schaum et al., 2013), the sequenced strain
of Ostreococcus (oth95) used for most laboratory experiments was
isolated at the surface of the Thau lagoon in France (Courties et al.,
1994). This shallow habitat plus clear waters means that the alga is
exposed to extrinsic noise in light intensity at a similar level to that
acting on land plants. Temperature fluctuations due to weather
are limited, given the substantial body of water. However, there is
significant variation in seasonal temperature, as the surface tem-
perature of the lagoon fluctuates between 4 and 29◦C (Collos et al.,
2009). Ostreococcus strain oth95 is thus a suitable model organ-
ism to study extrinsic noise in both light and temperature, and it
would be interesting to compare the extent of these extrinsic noise
effects on the circadian clocks of strains isolated from a range
of depths. From limited genetic resources (Corellou et al., 2009),
both the experimental system and the mathematical model still

exhibit remarkably flexible and robust oscillations when exposed
to external noisy light conditions (Troein et al., 2011). However,
modeling predicts that this flexibility strictly relies on no less than
five independent light inputs, suggesting that in a clock consist-
ing of a few components linked in a simple circuit, a degree of
flexibility can be achieved by the added complexity of multi-
ple light inputs. This hypothesis that flexibility can be obtained
from complexity in both feedback loop structure and light inputs
is further supported by a recent study in which network flexi-
bility was computed using a precise mathematical measure for
a range of clock models possessing different network architec-
tures (Dixon et al., 2014). Despite our earlier considerations, it
is tempting to speculate that the external noise encountered in a
terrestrial multicellular organism would require additional buffer-
ing against noise, beyond what can be achieved with multiple
light inputs, and has therefore driven the incorporation of addi-
tional feedback into the transcriptional clock system. Sustained
modeling efforts will be key to systematically analyzing the abil-
ity of different network configurations to buffer against external
noise.

CONCLUSION
The studies reviewed here clearly show how introducing intrinsic
or extrinsic noise into mathematical models of the plant circadian
clock can lead to increased support for experimental studies via the
systems biology cycle of iterative model construction/refinement
and experimental validation.

An important next step in this field would be to introduce both
intrinsic and extrinsic noise into a single computational model of
a cellular circadian network to study the interaction of these two
types of noise and the effects of noise from a structural as well as
functional point of view: i.e., both on clock size and architecture
and on precision and robustness.

Another interesting line of work would be the integration of
other sources of variability (Figure 2), such as humidity changes,
and heat and cold stress. Moreover, most circadian models devel-
oped to date have focused on the central oscillator network. The
introduction of post-translational modifications and the interac-
tion of the clock network with signal transduction and metabolic
pathways are also important (Zhang and Kay, 2010; Haydon et al.,
2013).

Possibly the most exciting future direction is the develop-
ment of single-cell mathematical models. Recent advances in
experimental techniques now permit single-cell measurements,
making it possible to develop, and individually parameterize,
models at this scale. Single-cell work has already been car-
ried out in cyanobacteria (Locke and Elowitz, 2009; Yang et al.,
2010), and once the technology is available for plants, quan-
titative single-cell models of the Arabidopsis circadian clock
could be developed. These could help to establish, for instance,
whether coupling contributes to the organ specific properties
of the Arabidopsis clock (James et al., 2008). Single-cell models
would require significant computational resources, as the param-
eter fitting would have to be applied to a large ensemble of
noisy time series datasets, thus making their construction an
interesting avenue of research from a computational perspective
also.
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