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Quantitative proteomics reveals the effect of protein
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Flooding stress has a negative impact on soybean cultivation because it severely impairs
growth and development. To understand the flooding responsive mechanism in early
stage soybeans, a glycoproteomic technique was used. Two-day-old soybeans were
treated with flooding for 2 days and roots were collected. Globally, the accumulation
level of glycoproteins, as revealed by cross-reaction with concanavalin A decreased
by 2 days of flooding stress. Glycoproteins were enriched from total protein extracts
using concanavalin A lectin resin and analyzed using a gel-free proteomic technique.
One-hundred eleven and 69 glycoproteins were identified without and with 2 days of
flooding stress, respectively. Functional categorization of these identified glycoproteins
indicated that the accumulation level of proteins related to protein degradation, cell
wall, and glycolysis increased, while stress-related proteins decreased under flooding
stress. Also the accumulation level of glycoproteins localized in the secretory pathway
decreased under flooding stress. Out of 23 common glycoproteins between control and
flooding conditions, peroxidases and glycosyl hydrolases were decreased by 2 days of
flooding stress. mRNA expression levels of proteins in the endoplasmic reticulum and
N-glycosylation related proteins were downregulated by flooding stress. These results
suggest that flooding might negatively affect the process of N-glycosylation of proteins
related to stress and protein degradation; however glycoproteins involved in glycolysis are
activated.
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INTRODUCTION
Climate change is potentially the greatest threat to biodiversity
(Eigenbrod et al., 2014). The industrial revolution has resulted
in elevated levels of carbon dioxide and other greenhouse gases
that induce global warming and change precipitation patterns
(Hao et al., 2010). Increasing climatological extremes lead to
catastrophic loss of crop productivity (Bita and Greats, 2013). In
these changing conditions, plants are under the effects of vari-
ous abiotic stresses like drought (Manavalan et al., 2009), salinity
(Parvaiz and Satyawati, 2008), cold (Beck et al., 2004, 2007), and
high temperature (Bita and Greats, 2013). Flooding has devastat-
ing effects on crop growth and ultimately causes a reduction in
crop production (Normile, 2008).

Soybean is an important legume crop due to its high pro-
tein content. Soybean is susceptible to flooding stress (Hou and
Thseng, 1991), a major problem that affects its growth and yield
around the world. The grain yield of this crop is particularly
affected by this stress, notably during seed germination and early
vegetative stages (Githiri et al., 2006). Early exposure of soy-
bean plants to flooding stress causes severe damage due to rapid

Abbreviations: CBB, Coomassie brilliant blue; ConA, concanavalin A; LC, liquid
chromatography; MS, mass spectrometry; ER, endoplasmic reticulum; qRT-PCR,
quantitative reverse transcription polymerase chain reaction.

imbibition of water by the cotyledons and destruction to the root
systems (Nakayama et al., 2004). Its yield was estimated to be
reduced to 25% due to flooding injuries in Asia, North America,
and other regions of the world where soybean is rotated with rice
in paddy fields. Oosterhuis et al. (1990) reported a reduction in
soybean yield of 17–43% at the vegetative stage and 50–56% at
the reproductive stage due to flooding stress. This stress leads to
a shift to alternative pathways of energy generation. The shortage
of oxygen under flooding stress results in a shift from aerobic to
anaerobic respiration. A low diffusion rate of oxygen under flood-
ing stress is a limiting factor for plant survival, and most plants die
under limited oxygen supply (Voesenek et al., 2006).

The process of glycosylation is a complicated and highly
important post-translational modification occurring in natural
proteins. Protein glycosylation results from the covalent linkage
of an oligosaccharide side chain to a protein moiety (Spiro, 2002).
The vast majority of eukaryotic proteins are glycosylated. This
protein modification plays an important role in protein folding,
interaction, stability, and mobility, as well as in signal transduc-
tion (Roth et al., 2012). Glycosylated proteins are involved in
many physiological functions and biological pathways (Pan et al.,
2011; Ruiz-May et al., 2012). In plants, N-linked glycans have var-
ious roles including the prevention of proteolytic degradation,
induction of correct folding, and biological activity of a protein.
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Along with this, they also contain targeting information and are
involved in the protein recognition or cell-cell adhesion processes
(Rayon et al., 1998). In animals, oligosaccharide-side chains act
as targeting signal for lysosomal glycoproteins (Sly and Fischer,
1982). In plants, complex N-glycans confer important functions
to secreted/secretory glycoproteins, such as protection of root
growth from osmotic stress (von Schaewen et al., 2008).

Glycosylation is of two main types: N-glycosylation and
O-glycosylation. N-linked glycan biosynthesis starts at the
cytosolic face of the endoplasmic reticulum (ER) where two
N-acetylglucosamine and five mannose residues are added sugar
by sugar onto a dolichol carrier (Kornfeld and Kornfeld, 1985).
In eukaryotes, several protein modifications, including the gly-
cosylation reaction, occur in the ER (Abeijon and Hirscnberg,
1992). The ER is also responsible for various other cellular
functions like protein folding, degradation, protein synthesis,
lipid synthesis, and transfer (Coe and Michalak, 2010). Flooding
has severe effects on ER function due to changes in the lev-
els of calnexin, heat shock protein 70, and luminal binding
protein (Nanjo et al., 2010). But the specific nature of these
effects is still not clear. It has been reported that flooding stress
causes damage to the ER and to the process of glycosylation
(Komatsu et al., 2012). However, the relationships and interac-
tions between different glycosylated proteins have not been fully
characterized.

Because of its importance to cell functions, a comprehensive
understanding of glycoproteins is of great importance to elaborate
their roles and to understand plant responses to flooding stress. In
this study, to understand the early responses of soybean roots to
flooding stress, glycoproteins were analyzed from young soybean
roots. For this purpose, the concanavalin A (ConA) lectin affinity
method was used to target the glycoproteins (Yang and Hancock,
2004), and gel-free proteomics with liquid chromatography (LC)
mass spectrometry (MS) was performed. ConA affinity chro-
matography was previously used to characterize the glycopro-
teome of tomato fruit (Catala et al., 2011) and in proteomic
characterization of plant secreted proteins (Minic et al., 2007;
Ligat et al., 2011). Furthermore, the mRNA expression levels of
proteins in the ER and N-glycosylation related proteins were ana-
lyzed using quantitative reverse transcription-polymerase chain
reaction (qRT-PCR).

MATERIALS AND METHODS
PLANT MATERIAL
Seeds of soybean (Glycine max L. cv. Enrei) were sterilized with
1% sodium hypochlorite solution, rinsed in water, and sown on
500 mL silica sand with 150 mL water in a plastic case (180 ×
140 × 45 mm). Soybean was grown in a growth chamber illu-
minated with white fluorescent light (160 μmol m−2 s−1, 16 h
light period/day) at 25◦C and 70% relative humidity. For ConA
blotting, 2-day-old soybeans were flooded with water (Komatsu
et al., 2010), for 1–4 days. For proteomics, 2-day-old soybeans
were flooded for 2 days. For qRT-PCR, 2-day-old soybeans were
flooded for 1 and 2 days. After treatments, roots were col-
lected. Untreated plants were used as controls. Three indepen-
dent experiments were performed as biological replicates for all
experiments.

PROTEIN EXTRACTION
A portion (500 mg) of samples was homogenized on ice using a
mortar and pestle in buffer containing 20 mM HEPES (pH 7.5),
150 mM NaCl, 1% Nonidet P-40, 0.25% sodium deoxycholate,
and 10% glycerol. The homogenate was centrifuged at 20,000 × g
for 10 min at 4◦C. The supernatant was collected and centrifuged
at 20,000 × g for 10 min at 4◦C again. The supernatant was used
as the total protein extract. Protein concentration was determined
using the Bradford method (Bradford, 1976) with bovine serum
albumin as the standard. For MS analysis, this total protein extract
was purified as described below in the paragraph “Preparation
of Proteins for Mass Spectrometry.” For SDS-PAGE, 2x SDS
sample buffer containing 120 mM Tris-HCl (pH 6.8), 4% SDS,
20% glycerol, and 10% 2-mercaptoethanol was added in equal
volume.

GLYCOPROTEIN ENRICHMENT
The extracted proteins were submitted to glycoprotein enrich-
ment by using the glycoprotein isolation kit-ConA (Thermo
Fisher Scientific, San Jose, CA, USA). All steps were performed at
25◦C. ConA resin was added to the spin column and centrifuged
at 1000 × g. Resin was rinsed three times with binding buffer pro-
vided in the kit. Before being applied to the ConA resin column,
the protein samples were equilibrated with binding buffer. After
10 min of mixing, the resin was centrifuged at 1000 × g. Resin
was washed four times with binding buffer and then glycoproteins
were eluted in SDS sample buffer containing 60 mM Tris-HCl
(pH 6.8), 2% SDS, 10% glycerol, and 5% 2-mercaptoethanol.
Protein concentration was determined using the Pierce 660 nm
Protein Assay Reagent (Thermo Fisher Scientific) with bovine
serum albumin as the standard.

SDS-POLYACRYLAMIDE GEL ELECTROPHORESIS
The proteins resulting from the total protein extract or
from glycoprotein enrichment were separated by 17% SDS-
polyacrylamide gel electrophoresis. The electrophoresis was per-
formed at a constant current of 20 mA. After electrophoresis, the
gels were stained for 1 h with Coomassie brilliant blue (CBB)
(PhastGel™ Blue R; GE Healthcare, Piscataway, NJ, USA) con-
taining 30% methanol and 10% acetic acid, and then destained
for 2 h in destaining solution containing 36% methanol and 10%
acetic acid.

CONCANAVALIN A BLOTTING
For immunoblot analysis, proteins were separated by 17% SDS-
PAGE. After separation, proteins were transferred to a polyvinyli-
dene difluoride membrane using a semidry transfer blotter.
Blotted membrane was blocked overnight at 4◦C in a buffer con-
taining 20 mM Tris-HCl (pH 7.5), 500 mM NaCl, and 5% nonfat
milk (skim milk; Difco, Sparks, MD, USA) and incubated with a
1:2000 dilution of peroxidase-ConA antibody (Seikagaku, Tokyo,
Japan), for 1 h at 25◦C. Glycoproteins were detected using an ECL
plus Western blotting detection kit (GE Healthcare) following the
manufacturer’s protocol, and visualized by a luminescent image
analyzer (Las-3000; Fujifilm, Tokyo, Japan). The relative band
intensities were calculated using ImageJ software (http://imagej.
nih.gov/ij/).
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PREPARATION OF PROTEINS FOR MASS SPECTROMETRY
For MS analysis, proteins (100 μg) were purified by phase sep-
aration in the organic layer. In 100 μL protein sample, 400 μL
methanol was added, and the resulting solution was mixed. After
this, 100 μL chloroform was added and mixed by vortexing. Then
300 μL water was added to induce phase separation, mixed, and
then centrifuged at 20,000 × g for 10 min. The upper aque-
ous layer was discarded and 300 μL methanol was added to the
organic phase. The samples were centrifuged at 20,000 × g for
10 min. The resulting supernatant was discarded and the pellet
was allowed to dry at 25◦C. The dried pellets were resuspended
in 50 mM ammonium bicarbonate and then reduced with 0.25 M
dithiothreitol for 1 h at 56◦C and alkylated with 0.3 M iodoac-
etamide for 1 h at 37◦C in the dark. Alkylated proteins were
digested with trypsin and lysyl endopeptidase (sequencing grade;
Wako, Osaka, Japan) at 1:100 enzyme/protein concentration at
37◦C for 16 h. The resulting tryptic peptides were acidified with
10 μL of 20% formic acid to pH < 3, desalted with a C18-pipette
tip (NikkyoTechnos, Tokyo, Japan), and subjected to nanoLC
MS/MS.

DATA ACQUISITION BY MASS SPECTROMETRY
Using an Ultimate 3000 nanoLC system (Dionex, Germering,
Germany), peptides in 0.1% formic acid were loaded onto a C18
PepMap trap column (300 μm ID × 5 mm, Dionex). The pep-
tides were eluted from the trap column and were separated using
0.1% formic acid in acetonitrile at a flow rate of 200 nL/min on a
C18 Tip column (75 μm 1D × 120 mm, NTTC-360/75-3, nanoLC
capillary column (Nikkyo Technos) with a spray voltage of 1.5 kV.
Peptides were analyzed on a nanospray LTQ XL Orbitrap MS
(Thermo Fisher Scientific) operated in data-dependent acquisi-
tion mode with the installed Xcalibur software (version 2.0.7;
Thermo Fisher Scientific). Elution was performed with a linear
acetonitrile gradient (15–40% in 115 min) in 0.1% formic acid.
Full-scan mass spectra were acquired in the Orbitrap MS over a
mass range of 400–15,000 m/z with a resolution of 30,000. A lock
mass function was used to obtain high mass accuracy (Olsen et al.,
2005). The top 10 most intense precursor ions were selected for
collision-induced fragmentation in the linear ion trap at normal-
ized collision energy of 35%. Dynamic exclusion was employed
within 90 s (Zhang et al., 2009) to prevent repetitive selection of
peptides.

IDENTIFICATION OF PROTEINS OBTAINED BY MASS SPECTROMETRY
Identification of proteins was performed by the MASCOT
search engine (version 2.4.1) (Matrix Science, London, UK)
and Proteome Discoverer (version 1.4.0.288; Thermo Fischer
Scientific) against a soybean peptide database (54,175 sequences)
(Phytozome version 9.0, http://www.phytozome.net/soybean)
(Schmutz et al., 2010). Parameters used in MASCOT searches
were as follows: Carbamidomethylation of cysteine was set as
a fixed modification, and oxidation of methionine was set as a
variable modification. Trypsin was specified as the proteolytic
enzyme and one missed cleavage was allowed. Peptide mass tol-
erance was set at 5 ppm, fragment mass tolerance was set at 0.8
Da, and peptide charge was set at +2, +3, and +4. An automatic
decoy database search was also performed. MASCOT results were

filtered with MASCOT percolator to improve accuracy and sen-
sitivity in the peptide identification (Brosch et al., 2009). False
discovery rates for peptide identification of all searches were less
than 1.0%. Peptides with a more than 13 peptide probability and
percolator q-value 0.01 were used for protein identification. The
MASCOT results generated msf files were used for SIEVE (version
2.0; Thermo Fisher Scientific) analysis.

To compare protein and peptide contents between different
groups, extracted ion chromatograms (XIC) based comparison
approach was used in the SIEVE software. For differential analy-
sis of the relative abundance of peptides and proteins between the
control and treatment groups, the commercial label-free quan-
tification package SIEVE was used. The chromatographic peaks
obtained from MS were aligned and the peptide peaks were
detected as frames using the following settings: frame time width
(5 min); frame m/z width (10 ppm); produce frames on all par-
ent ions subjected to MS/MS scan. The frames with MS/MS scan
were matched to imported MASCOT results. The ratio of peptides
between samples was determined from the variance-weighted
average of the ratios in frames, which matched the peptides in
the MS/MS spectrum. The ratios of peptides were further inte-
grated to determine the ratio of the corresponding protein. In
the differential analysis of protein abundance, total ion current
was used for normalization. The requirement for the identifica-
tion of a protein was a minimum of two matched peptides and
two unique peptides. Significant changes in the abundance of
proteins between the control and treated samples were analyzed
(p < 0.05).

ANALYSIS OF PROTEIN FUNCTION AND SUBCELLULAR LOCALIZATION
Protein functions were categorized using MapMan bin code
(Usadel et al., 2005). NetNGlyc (http://www.cbs.dtu.dk/
services/NetNGlyc/) (Gupta and Brunak, 2002) and N-Glycosite
(http://www.hiv.lanl.gov/content/sequence/GLYCOSITE/glycosite.
html) (Zhang et al., 2004) were used to predict the N-
glycosylation consensus sequence within the protein moiety of
identified proteins. The identified proteins were predicted for the
presence of N-terminal ER targeting signal peptide with SignalP
(http://www.cbs.dtu.dk/services/SignalP/), as this is essential
for co-translational translocation of N-glycosylation in the ER
(Emanuelsson et al., 2007). Wolf PSORT (http://wolfpsort.org/)
and TargetP (http://www.cbs.dtu.dk/services/TargetP/) were
used to determine the predicted subcellular locations of the
proteins.

RNA EXTRACTION AND QUANTITATIVE REVERSE TRANSCRIPTION
POLYMERASE CHAIN REACTION ANALYSIS
A portion (100 mg) of samples was ground into powder in liq-
uid nitrogen with a sterilized mortar and pestle. Total RNA was
extracted from the tissue powder using an RNeasy Plant Mini
kit (Qiagen, Valencia, CA, USA). RNA was reverse-transcribed
using an iScript cDNA Synthesis kit (Bio-Rad, Hercules, CA,
USA) according to the manufacturer’s instructions. qRT-PCR was
performed in a 10 μL reaction assay using SsoAdvanced SYBR
Green Universal Supermix (Bio-Rad) and a MyiQ single-color
real-time PCR detection system (Bio-Rad). The PCR conditions
were as follows: 95◦C for 210 s, then 45 cycles of 95◦C for 30 s,
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60◦C for 30 s, and 72◦C for 30 s. Gene expression was normal-
ized using 18S rRNA as an internal control. The primers were
designed using the Primer3 web interface (http://frodo.wi.mit.
edu). Specificity of primers used for the analysis was checked by
the BLASTN search against the Phytozome-G.max database with
the designed primers sequences as queries (Supplemental Table 1)
and by melting curve analysis.

STATISTICAL ANALYSIS
The statistical significance of the results was evaluated with
the Student’s t-test. All calculations were performed by using
Graphpad software (version 5.0). A p < 0.05 was considered to
be statistically significant.

RESULTS AND DISCUSSION
GLYCOPROTEIN PURIFICATION
To characterize the glycoproteome of soybean roots submitted to
a flooding stress, we have in the present work used a protocol
previously described in our studies (Komatsu et al., 2013, 2014;
Nanjo et al., 2013; Yin et al., 2014). In this protocol, soybean seeds
were germinated under optimal control conditions for 2 days
and growth is then continued either in control conditions or in
flooding stress conditions. Proteomic analysis of the total protein
extracts confirm the presence of flooding stress protein mark-
ers in the stressed roots, as alcohol dehydrogenase and HSP70
(Komatsu et al., 2013, 2014; Nanjo et al., 2013; Yin et al., 2014).
Thereby this protocol was further used to characterize impact
of the flooding stress on the glycoproteome of soybean roots.
In order to understand the soybean response toward flooding
stress, glycoproteomic analysis was performed according to the
protocol depicted in Supplemental Figure 1. Proteins extracted
from the soybean roots were separated by SDS-PAGE and cross-
reacted with ConA antibody (Supplemental Figure 2). The rel-
ative band intensities were calculated. The accumulation level
of the extracted glycoproteins decreased slightly but significantly
under flooding stress as compared to the controls (Figure 1). As
the 4-day-old soybeans flooded for 2 days exhibited a signifi-
cantly decreased accumulation of glycoproteins as compared to
controls, this plant sample was further used for glycoproteomic
analysis, which was performed using the enriched glycoprotein
fraction, as described under materials and methods. The extent
of glycoproteins present in the total protein extracts and in the
glycoprotein-enriched extracts was compared by Western blotting
using ConA antibody (Supplemental Figure 2). It is clear that the
intensities of glycoprotein bands were higher in the glycoprotein-
enriched protein extracts than in corresponding total protein
extracts, testifying the efficiency of the presently used proto-
col. ConA lectin has broad specificity for high mannose, hybrid,
and biantennary complex-type N-glycan (Madera et al., 2008).
The present results indicated that glycoproteins were selectively
enriched using the ConA lectin resin (Supplemental Figure 2).
However, to reduce the false discovery rate for the glycoprotein
enrichment, specific glycan-binding lectin could be used. Indeed,
in mammals, the combination of lectins enriched different pro-
tein subsets (Lee et al., 2010). Therefore, in future work, specific
glycan-binding lectin could be used to improve the glycoprotein
in soybean roots.
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FIGURE 1 | Effects of flooding stress on glycoproteins stained by ConA.

Two-day-old soybeans were flooded for 1, 2, 3, and 4 days (white columns).
Untreated plants served as controls (black columns). Proteins were reacted
with ConA antibody. The pattern of CBB staining was used as a loading
control. The relative band intensities were calculated using ImageJ
software. The analyzed protein samples are shown in Supplemental
Figure 1.

IDENTIFICATION OF ENRICHED GLYCOPROTEINS USING A GEL-FREE
PROTEOMICS TECHNIQUE
To understand role of the glycoproteins whose accumulation
levels changed under flooding stress in soybean roots, glycopro-
teomics was performed as described in Supplemental Figure 1.
In the differential analysis of the glycoproteins, the accumulation
levels of 149 proteins were significantly changed in 4-day-old
soybean roots compared to the 2-day-old roots under control
conditions (Supplemental Table 2). These identified proteins
were analyzed for the presence of N-glycosylation sites within
the protein moiety using NetNGlyc software, and 111 proteins
were found to contain the putative N-glycosylation site. Out
of these 111 proteins, the accumulation level of 51 glycopro-
teins increased and that of 60 glycoproteins were decreased
significantly (Supplemental Table 2). SIEVE software was used
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FIGURE 2 | Functional categorization of the identified glycoproteins. (A)

MapMan bin code was used to predict the functional categorization of the
identified glycoproteins. The X-axis indicates the number of identified proteins.
Filled bars and open bars indicate increased and decreased glycoproteins in
soybean roots under flooding stress, respectively. (B) Categorization of the
proteins related to protein synthesis, degradation, and post-translational

modifications. Abbreviations: Protein, Protein synthesis/degradation/
post-translational modification/targeting; A.A. metabolism, amino acid
metabolism; RNA, RNA processing/transcription/binding; C1-metabolism,
Carbon 1-metabolism; CHO-metabolism, carbohydrate metabolism; DNA, DNA
synthesis; PS, photosynthesis; Sec. metabolism, secondary metabolism;
Misc., miscellaneous.

for the comparison of relative abundance of proteins under
control unstressed conditions from three biological replicates
(Supplemental Table 3). From this analysis, 87 proteins differ-
entially accumulated following 2 days of flooding stress, with 41
and 46 proteins showing increased and decreased abundance,
respectively. From these, 69 proteins contained the putative
N-glycosylation site with 34 and 35 proteins exhibiting increased
and decreased accumulation levels, respectively (Supplemental

Table 4). Peptide sequences and the SIEVE data for three biologi-
cal replicates were also listed (Supplemental Table 5) highlighting
the changes in protein abundance occurring under flooding
conditions. Out of the glycoproteins exhibiting changes in accu-
mulation levels under 2 days of flooding stress, concanavalin A
like lectin kinase protein (Glyma09g27700.1), polygalacturonase
inhibiting protein 1 (Glyma05g25370.1), and SNF1 related
protein kinase regulatory subunit gamma 1 (Glyma17g13880.2)
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accumulated more than 10-fold under flooding stress com-
pared to control conditions, while peroxidase superfamily
protein (Glyma12g32160.1), evolutionarily conserved C terminal
region (Glyma08g13130.1), and nucleolin (Glyma11g10790.1)
showed decreased abundance under the flooding stress
conditions.

Among the identified glycoproteins, most of them have already
been reported in response to flooding stress in soybean. This
was, for example, the case for the polygalacturonase inhibiting
proteins, peroxidase, and glyceraldehyde 3 phosphate dehydroge-
nase (Komatsu et al., 2012; Nanjo et al., 2013). In other species,
the homologs of these proteins were shown to display relatively
similar behavior under stress conditions. For example, glyceralde-
hyde 3 phosphate dehydrogenase displayed increased accumu-
lation in Solanum tuberosum (Laxalt et al., 1996) and in maize
(Chalivendra and Martin, 2003). Also, in rice glycosyl hydrolases
were reported to be upregulated under submergence stress condi-
tions (Opassiri et al., 2007). While clathrin heavy chain homologs
have been shown to accumulate under salt stress (McLoughlin
et al., 2013).

Polygalacturonase inhibiting proteins have been reported to
be involved in impairing seed germination by inhibiting pectin
degradation, which in turn is regulated by the transcription factor
AB15 (Kanai et al., 2010). Under water deficit conditions, abscisic
acid accumulation is greater in soybean seedling root tips as com-
pared to other tissues. Komatsu et al. (2013) reported that abscisic
acid, through the control of energy conservation via the glycolytic
system, enhances the flooding tolerance of soybean root. Ahsan
et al. (2005) reported that polygalacturonase is upregulated in
response to various abiotic stresses like cold and salinity. In
soybean, two polygalacturonase inhibiting protein members
have been reported to be upregulated in response to pathogenic
infection (Ovidio et al., 2004), one of which was found to show
increased accumulation under drought and flooding stress in
Lathyrus sativus (Tamburino et al., 2012). In agreement with this,
Komatsu et al. (2009) reported an increase of these polygalactur-
onase inhibiting proteins under flooding stress in soybean roots.
In the present study, we observed increased accumulation

of polygalacturonas inhibiting proteins under flooding
stress.

In this study, the accumulation level of glyceraldehyde
3 phosphate dehydrogenase increased under flooding stress
(Supplemental Table 4). Previous reports have indicated that
under low oxygen conditions, glycolysis and carbohydrate
metabolism related proteins are activated, which might be
related to the response under energy deprived conditions
(Huang and Johnson, 1995). In soybean root, the glyceralde-
hyde 3 phosphate dehydrogenase protein has been reported
to show increased accumulation under flooding stress (Nanjo
et al., 2010). Altogether, these results lend further support
for the role of the presently characterized glycoproteins in
flooding stress response and suggest that plants remodel
their glycoproteome to cope with unfavorable environmental
conditions.

FUNCTIONAL ANALYSIS AND SUBCELLULAR LOCALIZATION OF
GLYCOPROTEINS
To get a better understanding of the biological processes that
were altered by flooding stress, the identified glycoproteins were
functionally classified. Functional categorization was performed
using MapMan bin code (Usadel et al., 2005). Functional cat-
egorization showed that the 69 flooding stress responsive gly-
coproteins are involved in protein synthesis/degradation (19%),
glycolysis (15%), cell organization (9%), development (8%), and
RNA (7%) (Figure 2A). Proteins related to protein degradation
showed significant increased accumulation under flooding stress
(Figure 2B). Quantitative proteomics analysis indicated that gly-
coproteins related to protein degradation, cell wall, and glycolysis
display increased abundance under flooding stress, while stress
related proteins showed decreased abundance, which is consis-
tent with previous findings (Nanjo et al., 2010, 2011). Among
the proteins involved in protein synthesis and degradation, more
proteins involved in protein degradation were increased under
flooding stress. Under flooding stress, Rorippa amphibia shows
upregulated genes involved in glycolysis and fermentation that
indicate a higher demand for energy production under stress

0 10 20 30 40 50

Decreased
Increased

Secreted Pathway

Nucleus

Mitochondrion

Cytoplasm

Chloroplast

01020304050
Number of proteins Number of proteins

Glycoprotein (69)
4(2)/2(0)

Glycoprotein (111)
4(0)/2(0)

FIGURE 3 | Subcellular localization of the identified glycoproteins. Wolf
PSORT and TargetP were used to predict the subcellular localization of the
identified glycoproteins. The X-axis indicates the number of identified

proteins. Filled bars and open bars indicate glycoproteins whose
accumulation levels increased and decreased in soybean roots under flooding
stress, respectively.
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1.

conditions (Akman et al., 2014). In soybean seedlings, an increase
in glycolysis related proteins has been reported under flooding
stress (Nanjo et al., 2010, 2011). These results suggest that changes
in glycolysis related proteins contribute to energy production,
and that this could be an acclimation response of soybean roots
toward flooding stress.

To further decipher the role of the presently identified flood-
ing responsive glycoproteins, a subcellular localization anal-
ysis of these identified glycoproteins was performed using
Wolf PSORT (Horton et al., 2007) and TargetP (Emanuelsson
et al., 2007) (Figure 3). Out of the presently identified 69
glycoproteins, 31 were predicted to be localized in the cyto-
plasm (45%), while 14 and 12 glycoproteins were localized
in the nucleus (20%) and secretory pathway (17%), respec-
tively (Figure 3). Proteins related to the secretory pathway
showed significant decreased abundance under flooding stress.
Secretory pathway related proteins like peroxidase superfamily
proteins and glycosyl hydrolases displayed decreased accumu-
lation levels in soybean roots under flooding stress (Figure 4,
Table 1).

Plant peroxidases are secreted glycoproteins involved in
numerous mechanisms, like cell elongation, cell wall construc-
tion, and defense against pathogens (Kukavica et al., 2012).
Peroxidase super family proteins are induced by drought in
wild watermelons (Yoshimura et al., 2008) and maize roots
(Degenhardt and Gimmler, 2000), suggesting enhanced lignin
production. Peroxidases have been reported to be in lower abun-
dance under flooding stress (Shi et al., 2008; Komatsu et al., 2010,
2012). In soybean root, peroxidase genes have been reported to
be downregulated under flooding stress (Nishizawa et al., 2013).
Under flooding stress, the soybean seedlings show reduced growth
(Hashiguchi et al., 2009). This growth inhibition functions to
conserve energy under stress conditions and promotes survival by
anaerobic respiration (Nanjo et al., 2011). The observed decreased
abundance of peroxidase superfamily proteins under flooding
stress (Table 1, Supplemental Table 6), suggesting decreased
lignin synthesis and ultimately a reduction in cell wall forma-
tion. In agreement, a proteomic analysis of soybean root cell
wall proteins disclosed the suppression of the lignification pro-
cess under flooding stress conditions (Komatsu et al., 2010).
This could be a plant strategy to conserve energy under stress
conditions.

Glycosyl hydrolase proteins are involved in the biosynthesis
of glycans and plant defense. Glycosyl hydrolases family 32 pro-
teins have been reported to be of the acid invertase type that
functions as cell wall invertases (Lammens et al., 2009). In the
cell, glycosyl hydrolases are responsible for the cleavage of gly-
cosidic linkages and play a role in glycan processing (Trincone
and Giordano, 2006). These proteins catalyze the hydrolysis of
glycosidic bonds between sugars and other moieties (Henrissat
and Davies, 1997). In rice, glycosyl hydrolases are induced under
stress conditions (Opassiri et al., 2007). In this study, glycosyl
hydrolases showed decreased abundance in soybean roots sub-
mitted to flooding stress (Table 1). These results suggest that
flooding stress might cause a reduction in glycan synthesis that
ultimately leads to decreased glycoprotein synthesis in soybean
roots.
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FIGURE 4 | Comparison of the proteins identified from soybean root.

(A) Total proteins identified from 4-day-old soybean roots compared to the
glycoproteins in the control. Total proteins identified from 2-day-old soybean
roots flooded for 2 days were compared to the glycoproteins. (B)

Glycoproteins identified from 4-day-old flooded for 2 days soybean roots
compared to glycoproteins identified from 4-days-old soybean roots.

EFFECT OF FLOODING STRESS ON N-GLYCOSYLATION AND
ER-RELATED GENES
To understand the effect of flooding stress on the process
of N-glycosylation, the mRNA expression levels of four N-
glycosylation-related genes (Figure 5) and three ER-related
genes (Figure 6) were analyzed using qRT-PCR. Among
N-glycosylation-related genes, glucosaminephosphotrans-
ferase (Glyma02g34640.1), alpha-1, 2 glucosyltransferase
(Glyma07g15720.1), STT3 subunit of oligosaccharyltransferase
(Glyma01g01270.1), and mannosyl-oligosaccharide glucosidase

(Glyma05g27890.1) were analyzed. Among ER-related genes,
protein disulfide isomerase (Glyma01g25050.1), luminal
binding protein 5 (Glyma08g02940.1), and calreticulin
(Glyma20g23080.1) were analyzed. In these experiments, 2-
day-old soybeans were flooded for 1 and 2 days. Total RNA was
extracted and analyzed. Untreated plants served as controls.

The mRNA expression levels of glucosaminephosphotrans-
ferase, an enzyme that is involved in starting the process of
N-glycan synthesis at the cytoplasmic face of the ER (Koizumi
et al., 1999), alpha-1, 2 glucosyltransferase, and STT3 subunit
of oligosaccharyltransferase were downregulated under 1 day of
flooding stress (Figure 5). Mannosyl-oligosaccharide glucosidase,
which is involved in N-glycan trimming (Gillmor et al., 2002),
was downregulated under flooding stress for 1 day and upreg-
ulated under flooding stress for 2 days (Figure 5). These results
indicated that the process of N-glycosylation and ultimately gly-
coprotein synthesis was significantly downregulated under 1-day
flooding stress. The mRNA expression level of protein disulfide
isomerase, was upregulated under flooding stress conducted for 2
days (Figure 6). Luminal binding protein 5, which interacts with
polypeptide folding intermediates (Morris et al., 1997) and cal-
reticulin, which is responsible for the folding of newly synthesized
polypeptide chains and glycoproteins (Michalak et al., 2002), were
downregulated under 1 day of flooding stress. Protein disulfide
isomerase inserts disulfides into proteins and provides mecha-
nism to correct errors in disulfide pairing (Gilbert, 1997). In pea
roots, protein disulfide isomerase was detected in relatively high
abundance under stress conditions. The observed downregula-
tion of luminal binding protein and calreticulin under flooding
stress indicates that the protein folding process in the ER had
been disrupted because these are important for protein folding.
These results indicated that protein folding was disrupted in the
ER.

Alpha-1, 2 glucosyltransferase, which is involved in the process
of glycan extension (Farid et al., 2011), was downregulated under
flooding stress. Farid et al. (2011) reported that alpha-1, 2 gluco-
syltransferase in Arabidopsis is required for lipid-linked oligosac-
charide biosynthesis and the abiotic stress response. Furthermore,
inactivation of alpha-1, 2 glucosyltransferase results in the activa-
tion of the unfolded protein response and increased sensitivity
to salt stress. Burda and Aebi (1998) reported that mutants lack-
ing this gene experience decreased glycosylation in Saccharomyces
cerevisiae. These results suggest that downregulation of the mRNA
expression level of alpha-1, 2 glucosyltransferase in soybean root
under flooding stress leads to decreased glycosylation.

The mRNA expression level of the STT3 subunit of oligosac-
charyltransferase, which is involved in glycan transfer to
asparagine residues in target proteins (Koiwa et al., 2003), was
downregulated in soybean root under flooding stress (Figure 5).
The oligosaccharyltransferase complex governs the central step
of N-glycosylation, which transfers the preassembled oligosac-
charide to the protein in the ER (Mohorko et al., 2011). In
Arabidopsis, the STT3 subunit has been reported to control the
plant response toward salt/osmotic stress (Koiwa et al., 2003).
STT3 subunit deficiency results in protein underglycosylation
defects that disturb the biogenesis of heavily glycosylated proteins
and ultimately plant innate immunity (Nekrasov et al., 2009).
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FIGURE 5 | Effects of flooding stress on mRNA expression levels

of N-glycosylation related genes. Two-day-old soybeans were treated
with flooding for 1 and 2 days (white column). Untreated plants
served as a control (black column). RNA extracted from roots of
soybean was analyzed by qRT-PCR with specific primers for
N-glycosylation genes (Supplemental Table 1; Supplemental Figure 1
for the analyzed samples). mRNA expression levels indicate relative

mRNA abundance normalized against 18S rRNA abundance. The data
shows mean ± SE values from three independent biological replicates.
Among N-glycosylation related genes, glucosaminephosphotransferase
(Glyma02g34640.1), alpha-1, 2 glucosyltransferase (Glyma07g15720.1),
oligosaccharyltransferase, STT3 subunit (Glyma01g01270.1), and
mannosyl-oligosaccharide glucosidase (Glyma05g27890.1) were
selected.

In this way, plants could modify their system to cope with stress
conditions. The downregulation of the STT3 subunit of oligosac-
charyltransferase might an imporatant part of the response of
plant toward flooding stress. Soybean plants under flooding stress
might experience underglycosylation that leads to the decreased
glycoprotein levels. The downregulation of the genes involved in
protein glycosylation was clearly noticed at the proteomic level
(Figure 5).

The gene encoding protein disulfide isomerase, which is
involved in the formation of disulfide bonds in nascent polypep-
tide chains (Freedman et al., 1994), was upregulated in soybean
roots under flooding stress (Figure 6). Protein disulfide iso-
merase family proteins are involved in polypeptide folding and
the formation of the disulfide bonds in the ER (Freedman et al.,
1994). Protein disulfide isomerase is sorted to the ER to behave

as a chaperone for reconstructing misfolded proteins in this
compartment (Wang et al., 2012), and is involved in the quality
control of storage proteins (Kamauchi et al., 2008). Stressful con-
ditions result in the accumulation of misfolded proteins in the ER
(Liu and Howell, 2010). These results suggest that under flooding
stress conditions, the upregulation of protein disulfide isomerase
might help to reduce misfolded proteins in the ER. This upreg-
ulation could be a remodeling strategy to reconstruct misfolded
proteins and specifically glycoproteins in stressed plants.

CONCLUDING REMARKS
Gel-free glycoproteomics proved useful to uncover the mech-
anisms that are involved in early stages of soybean response
against flooding stress. A total of 69 glycoproteins from soybean
roots were found to display significant changes in abundance

Frontiers in Plant Science | Plant Proteomics November 2014 | Volume 5 | Article 627 | 10

http://www.frontiersin.org/Plant_Proteomics
http://www.frontiersin.org/Plant_Proteomics
http://www.frontiersin.org/Plant_Proteomics/archive


Mustafa and Komatsu Glycoproteomics of flooded soybean

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

2(0) 3(0) 3(1) 4(0) 4(2)-10

10

30

50

70

90

110

2(0) 3(0) 3(1) 4(0) 4(2)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

2(0) 3(0) 3(1) 4(0) 4(2)

m
R

N
A

 e
xp

re
ss

io
n 

le
ve

l

Days after sowing
(days after flooding)

Protein disulfide isomerase 
(Glyma01g25050.1)

Luminal binding protein 5 
(Glyma08g02940.1)

Calreticulin
(Glyma20g23080.1)

Days after sowing
(days after flooding)

m
R

N
A

 e
xp

re
ss

io
n 

le
ve

l

FIGURE 6 | Effects of flooding stress on mRNA expression levels of ER

related genes. Two-day-old soybeans were treated with flooding for 1 and 2
days (white column). Untreated plants served as controls (black columns).
RNA extracted from roots of soybeans was analyzed by qRT-PCR with
specific primers for ER protein genes (Supplemental Table 1). mRNA

expression levels indicate relative mRNA abundance normalized against 18S
rRNA abundance. The data shows mean ± SE values from three independent
biological replicates. Among ER related genes, protein disulfide isomerase
(Glyma01g25050.1), luminal binding protein 5 (Glyma08g02940.1), and
calreticulin (Glyma20g23080.1) were selected.

under 2 days of flooding stress. Functional categorization of these
identified glycoproteins indicated that the majority were related
to glycolysis and protein degradation. Subcellular prediction of
these identified glycoproteins indicated their localization to the
cytoplasm, nucleus, and secretory pathways. Proteins involved in
energy metabolism such as glyceraldehydes 3 phosphate dehy-
drogenase were found to have increased accumulation under
flooding stress. mRNA expression levels of genes involved in
the N-glycosylation pathway indicated a downregulation at every
step of that pathway. From the present results, and as previ-
ously observed (Baerenfaller et al., 2008; Piques et al., 2009;
Schwanhäusser et al., 2011; Galland et al., 2014), it appears that
mRNA and protein accumulation profiles differ. We suggest that
this behavior originates from the various check points in gene
expression and also from different extents of protein and mRNA
stability levels. Altogether, our present results document for the
first time that a flooding stress entails a large modification in the
glycoproteome of soybean roots, which may provide new avenues

for the selection of novel soybean varieties more resistant to this
stress compromising crop yield.
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