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Models to reconcile plant science and stochasticity
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Plants are modular organisms that exhibit
diverse adaptations to variability. This
variability can be intrinsic in nature, as
in the case of cell shape or division plane
stochasticity, protein distribution in a cell,
variations in internal mechanical proper-
ties etc. . . (Altschuler et al., 2008; Besson
and Dumais, 2011). It can also be extrinsic,
as with variations in environmental con-
ditions at different time scales (Wolpert
et al., 1998; Sultan, 2000; Franklin, 2009;
Leyser and Day, 2009). When it comes to
rationalizing data acquisition and inter-
pretation, one has the tendency to define
what part of the variability is arguably
unhelpful stochasticity and what part does
in fact contain meaningful information.

Systems biology, which combines
methodologies from various disciplines,
can be used to understand the mech-
anisms of development. For example,
complex network analysis (Lucas et al.,
2011), computer simulations (Band et al.,
2012) or physical measurements through
atomic force microscopy (Milani et al.,
2014) can be combined with biologi-
cal experiments. For instance, such an
approach has been able to produce reason-
able explanations for how patterning at
the meristem level can lead to the stem
structure (Prusinkiewicz et al., 1995).
Stochasticity in models as a variable or
as a methodological tool has been a sub-
ject of interest for many years in physics
and mathematics (Saguès et al., 2007;
Friedrich et al., 2011; Wilkinson, 2011).
Studies have already been published in
biology but only a few focused on plant
development, and are often more recent
(for a review of this aspect, see Meyer
and Roeder, 2014). Along with a better

understanding of growth processes, those
studies have also illustrated how our vision
of stochasticity was previously too deroga-
tory (Kliebenstein, 2012). Those new
methodologies illustrate how stochasticity
can be both a consequence and an origin
of core mechanisms in development.

Here we use specific examples to illus-
trate how mathematical or computational
models are well-suited to the study of
stochasticity in plant functions. Moreover,
models enable the use of measured phe-
notypic stochasticity at multiple scales to
elucidate the underlying processes. We
suggest that models used for such purposes
do not need to be overly complex, and
various complex models of the same pro-
cess will in fact converge toward similar
conclusions. We will focus our attention
on apical meristems and the growth that
they generate, where cell–cell interactions
underlie the emergence of various interest-
ing properties of the tissues and organs.

STOCHASTICITY CAN BE BUFFERED BY
GENETIC NETWORKS AT CELLULAR
AND TISSULAR SCALES
It has been shown that low levels of a
protein or a chemical component induce
a high level of noise that can impact on
pattern formation (Shnerb et al., 2000).
For instance, in Drosophila, the Hunchback
(Hb) gene is crucial for the proper segmen-
tation of the embryo, and is regulated by
Bicoid (Bcd). The Bcd gradient can cause
intense noise due to the small numbers of
molecules. Nevertheless, the definition of
segmentation and boundary position are
well-conserved between embryos despite
Bcd stochasticity. Holloway proposed in
his study that noise can be affected by the

number and the strength of binding sites
on a promoter (Holloway et al., 2011). He
develops computational models to con-
firm that the high number of Bcd binding
sites on the Hb promoter reduce stochastic
noise of Bcd gradient.

Complex gene regulatory networks
drive morphogenesis in all multicellular
contexts. Feedback and redundancy within
these networks compensate for intrin-
sic or extrinsic stochasticity. For instance
flower formation is driven by the acti-
vation of a small network mainly com-
posed by LEAFY (LFY), APETALA1 (AP1),
CAULIFLOWER (CAL), and TERMINAL
FLOWER1 (TFL1). This network is reg-
ulated by environmental and physiologi-
cal inputs to start flower initiation at the
appropriate time for reproduction. This
network contains many feedback loops
and mutual activations, such as the induc-
tion by LFY of AP1 and CAL, which
themselves positively regulate LFY. These
interactions can buffer the environmental
noise to obtain the formation of a robust
pattern and to avoid the reversal of flower-
ing (Blazquez et al., 2006).

MODELS EXPLAIN THE ROBUSTNESS
OF PATTERNING
Plant tissues, even those as little differ-
entiated as meristems, exhibit strong
self-organizational properties. Intense
local cell–cell interactions through diverse
exchanges (Murray et al., 2012; Landrein
and Vernoux, 2014) contribute to the
emergence of patterns. Those patterns
may be in the form of either simple
genetic differentiation or more complex
morphogenetic events. Among the var-
ious properties of such self-organized
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patterning, robustness is crucial for the
principal meristematic properties: their
ability for self-renewal or to produce vari-
ous lateral organs. Models are well-suited
to predict how a set of linked cells can
generate shape and differentiate following
emergent processes.

Auxin signaling processes are amongst
the best-studied cases of tissue pattern-
ing in plants, and furthermore, they have
also been extensively modeled and linked
to numerous biological observations. In
the auxin flux models, simple cell-to-
cell communication occurs via the local
amplification of auxin flux by the PIN-
FORMED proteins. The auxin response
patterns observed in the meristematic tis-
sues of the stem and at the vascular gen-
eration zones, are an emergent property
of those molecular interactions (Sassi and
Vernoux, 2013). This system clearly illus-
trates the robustness of emergent patterns
to external noise. External noise can be
as intense as multicellular injuries. It has
been shown that an injury to the meris-
tem can be compensated. The patterning
system is robust enough and can main-
tain the activity of organogenesis (Snow
and Snow, 1932; Reinhardt et al., 2005).
Computational Models of phyllotaxis can
predict how the plant might cope with
such ablations; the pattern is very quickly
deformed around the ablation, but re-
emerges naturally as growth continues
to produce healthy new cells. This resis-
tance to local injuries is also observed in
vasculature development. Cutting a part
of the provasculature induces its sponta-
neous reconfiguration, such that the new
vasculature is reshaped around the abla-
tion (Sauer et al., 2006). Models predict
that such reconfiguration does not need
any specific change in cell behavior, and
that cell–cell communication itself is suf-
ficient to enable such changes (Wabnik
et al., 2010).

STOCHASTICITY IN PATTERNING IS
FILTERED IN PLANT TISSUES
If spatial robustness is a natural outcome
of the self-organization described above,
this kind of patterning is itself some-
times stochastic. The phyllotactic angle
between successive lateral organs forming
on the shoot apical meristem (SAM) is
approximately 137 degrees in Arabidopsis
thaliana. For a long time, research has

focused on predicting mechanisms behind
the astonishing regularity of phyllotaxis
in various plant systems (Adler, 1997).
More recently, the close examination of
plants phyllotaxis has led to the discov-
ery of strange phenotypic alterations. The
histidine phosphotransfer protein 6 (ahp6)
mutant presents curious alterations called
M-shaped successions, where three succes-
sive lateral organs display altered angles
(Besnard et al., 2013). Other, more com-
plex, successions are visible with lower
frequencies. Strikingly, these types of alter-
ations also occur in wild type plants,
though less frequently. In order to under-
stand the source of this stochasticity and
the specific pattern of alterations, both sta-
tistical (Refahi et al., 2011; Guédon et al.,
2013) and agent (Mirabet et al., 2012)
models have been used to study phyl-
lotaxis in Arabidopsis. These models have
predicted that the auxin system, under
the influence of stochasticity, can sponta-
neously generate the alterations seen along
the stem. Indeed in mutants some organs
can be generated simultaneously, whereas
a delay (called the plastochron) occurs in
a typical normal situation. Because the
organs appear simultaneously, the way
they are arranged along the stem may be
inverted, thus producing the characteristic
M-shaped structure. This stochasticity in
timing would thus appear to be a sponta-
neous outcome of the spatial patterning of
the auxin system.

These studies have helped clarify that
the Arabidopsis SAM possesses a second
patterning system, based on the AHP6
protein, that partially overlaps the auxin
system and ensures that new primordia
will emerge successively through time.
Thus, the temporal stochasticity of the
auxin system is compensated for by a
second patterning process that filters it.
Without the use of a “systemic” view of
the entire patterning process, it would have
been difficult to decipher the role of the
AHP6 system.

STOCHASTICITY AS A SOURCE OF
PATTERNING AND MORPHOGENESIS
In developmental biology, stochastic gene
expression can lead to the formation of
coherent patterns. An example is in the
ommatidium of the Drosophila eye, which
consists of eight photoreceptor cells. Two
of them (R7 and R8) express rhodopsin,

which is responsible for the detection of
color. It has been shown that the sepa-
ration of “yellow” and “pale” ommatidia
determined by rhodopsin regulation in R7
and R8 is due to the stochastic expression
of the SPINELESS receptor (Wernet et al.,
2006). This stochasticity is both neces-
sary and sufficient for proper ommatidial
development. In this example, stochas-
tic gene expression at the cell level can
become instructional at the tissue level.

Through the use of simple activator-
inhibitor model systems, Turing managed
to describe the self-organization of vari-
ous spatial patterns (Turing, 1952). These
patterns mainly depend on the strength of
molecular interactions and on the geom-
etry of the domains where the activators
and inhibitors are expressed. In these com-
putational models, stochasticity is neces-
sary to trigger the dynamics that leads
to the final stable pattern. Stochasticity
of cell behaviors becomes the motor of
patterning. Nevertheless, this stochastic-
ity is in a way buffered by the interac-
tions, as its intensity has only a small
effect on the final pattern. In plants, exam-
ples of such systems exist in trichomes
positioning in leaves (Benítez et al., 2007;
Greese et al., 2012). Interactions can be
summarized into an activator complex
(that consists of WEREWOLF, GLABRA1,
GLABRA3, ENHANCER OF GLABRA3,
and TRANSPARENT TESTA GLABRA) as
well as the redundant inhibitory activ-
ity of CAPRICE and TRIPTYCHON. With
Turing-like models applied to those com-
ponents, the authors were able to repro-
duce the experimentally observed patterns.

Stochasticity is present not only in
gene expression, but is an inherent prop-
erty of cells, notably with respect to cell
growth. A recent study showed that cells
are able to interact mechanically to adapt
their growth depending on the behav-
iors of their neighbors (Uyttewaal et al.,
2012). Interestingly, this function seems
to increase variability instead of compen-
sating for it. In turn this positive feed-
back is necessary for correct morphogen-
esis of new primordia. Models predict
that an optimum exists between variabil-
ity of cell growth and feedback between
cells. Depending upon the relative strength
of both parameters, the tissue can grow
more or less efficiently. This intricate inter-
play between stochasticity and cell–cell
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communication is a fundamental aspect of
tissue morphogenesis, and would appear
to be regulated. Models can help pre-
dict the optimal ratio between stochas-
ticity and feedback necessary for proper
morphogenesis. Interestingly, it is not this
theoretical optimum that seems to be gen-
erated in meristems, a fact that may allow
the tissue to undergo growth bursts, which
may in turn lead to primordia emergence
(Alim et al., 2012).

SIMPLE MODELS TRANSLATE
VARIABLE PHENOTYPES INTO
VALUABLE INFORMATION
Complex systems can be modeled quite
simply. An example is human crowds
being modeled as simple interacting agents
with very basic properties. Such models
can efficiently predict the behavior of these
groups (Helbing et al., 2000). Similarly,
plant cells and tissues can also be mod-
eled using such approaches. With a sim-
ple model such as that of Turing (with
less than 10 parameters), it is possible to
add noise measured at the cell scale, and
study its consequences at an higher (tissue
or plant) level. Thus, phenotypic variabil-
ity at this higher level can be interpreted
through the model, that gives the ability to
search for the cellular parameters leading
to the mutant phenotype of interest.

In the example of phyllotaxis described
above, the types and frequencies of alter-
ations may be interpreted through the use
of the model. They are predicted to be an
outcome either of alterations of the meris-
tem structure or the auxin system. This
scenario may be easily tested with further
experimentation, for example searching
for defects in the pin network or meristem-
atic size.

This reasoning is in fact multiscale,
each conclusion at one scale providing
the data for models that focus on the
link to the next level of organization. Our
ability to measure variability and stochas-
ticity at various scales has recently been
increased. Experimental techniques and
analysis tools have immensely improved
the precision of measurements both spa-
tially and temporally, and at various scales
(Fernandez et al., 2010; de Reuille et al.,
2014). Those new techniques point out the
importance of heterogeneity and stochas-
ticity in biological systems. Modeling
approaches will be more and more helpful

in this new context to explain those
data.

It is time to switch from seeing biology
as clockwork perfection to looking at its
natural variations more thoroughly. That
will undoubtedly help us decipher where
plants’ real beauty is hidden: behind those
so-called imperfections.
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