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Plant diseases cause significant reductions in agricultural productivity worldwide. Disease
symptoms have deleterious effects on the growth and development of crop plants, limiting
yields and making agricultural products unfit for consumption. For many plant–pathogen
systems, we lack knowledge of the physiological mechanisms that link pathogen infection
and the production of disease symptoms in the host. A variety of quantitative high-
throughput image-based methods for phenotyping plant growth and development are
currently being developed. These methods range from detailed analysis of a single plant
over time to broad assessment of the crop canopy for thousands of plants in a field
and employ a wide variety of imaging technologies. Application of these methods to the
study of plant disease offers the ability to study quantitatively how host physiology is
altered by pathogen infection. These approaches have the potential to provide insight into
the physiological mechanisms underlying disease symptom development. Furthermore,
imaging techniques that detect the electromagnetic spectrum outside of visible light allow
us to quantify disease symptoms that are not visible by eye, increasing the range of
symptoms we can observe and potentially allowing for earlier and more thorough symptom
detection. In this review, we summarize current progress in plant disease phenotyping and
suggest future directions that will accelerate the development of resistant crop varieties.
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INTRODUCTION
Plant disease is a major threat for global agriculture, account-
ing for at least a 10% reduction in global yields (Strange and
Scott, 2005). Subsistence farmers are the most at risk from plant
diseases, as they often have limited resources to deal with out-
breaks. Most resistant crop varieties have been developed through
breeding with resistance (R) genes. These R genes typically rec-
ognize the activity of pathogen virulence factors to induce strong
resistance responses (Dangl et al., 2013). This approach has been
successful in some cases, but often resistance is quickly lost, which
is thought to be due to rapid pathogen evolution (Kunkeaw
et al., 2010; Dangl et al., 2013). An in depth understanding
of the molecular interplay between hosts and their pathogens
will guide the development of durable resistance strategies for
crop protection. However, research aimed at identifying and
characterizing the genetic determinants of host–pathogen inter-
actions is often obfuscated by functional redundancy, especially
on the side of the pathogen. In essence, single gene mutants
often lack dramatic phenotypes and are therefore difficult to
study.

The advancement of genome and transcriptome sequencing
technologies has helped address the above challenge by making
it possible to study the genetic diversity present in both plant
hosts and pathogens (Bart et al., 2012; Berkman et al., 2012).
Currently, much research is aimed at characterizing this diversity
with the goal of exploiting it for the development of crops with
durable resistance. The ability to translate knowledge of genomic
variants into desired resistance phenotypes would be aided by

a more complete understanding of the relationship between
genotype and phenotype in plants. Nonetheless, our ability to
study plant phenomics has not progressed at the same rate as
our ability to sequence genomes and transcriptomes. In recent
years, there has been considerable interest and progress in the
development of platforms for quantitative, high-throughput plant
phenotyping (Furbank and Tester, 2011; Dhondt et al., 2013;
Fiorani and Schurr, 2013; Araus and Cairns, 2014; Granier and
Vile, 2014).

The field of machine vision develops tools that perform auto-
mated image acquisition and analysis to understand and quan-
tify aspects of a scene. Increasingly, these approaches are being
applied to studies of plant growth and development (Spalding
and Miller, 2013). Image-based phenotyping methods offer a
range of advantages. They are non-destructive, meaning that
phenotypic data can be collected from the same organism over
the course of a long experiment. They are also amenable to
automation, making it feasible to study large sample sizes for
increased statistical power. Particularly important for plant–
pathogen interactions, imaging can detect spatial patterns of
heterogeneity and allows for visualization of localized responses,
which may be difficult to determine with other methods. Addi-
tionally, various imaging techniques, such as hyperspectral and
thermal imaging, collect data that cannot be visualized with the
human eye.

In this review, we discuss the application of image-based
phenotyping methods that have the potential to dramatically
enhance our ability to characterize plant disease phenotypes.
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The techniques discussed have the potential to increase the
dimensions at which an interaction is investigated and can be
deployed in a high-throughput manner. If further developed and
employed correctly, phenomics will increase our understanding
of host–pathogen interactions and facilitate the development
of durable resistance strategies. The methods for phenotyping
disease symptoms can be broadly divided into (1) data col-
lection and (2) data analysis, both of which deserve careful
attention in experimental design. We hope that this review will
bring plant phenomics to the attention of the host–microbe
community and inspire further development of these promising
technologies.

IMAGE-BASED METHODS FOR ASSESSMENT OF PLANT
DISEASE SYMPTOMS
DATA COLLECTION
Visible light imaging
Traditionally, plant disease severity is scored with visual inspec-
tion of plant tissue by trained raters, who categorize disease
severity according to a discrete scale (Bock et al., 2010). While
this approach has been refined over many years and many crop
systems, it still is plagued by inherent pitfalls that reduce the
reliability of disease estimates. Substantial variation is observed
both between individual raters and between different assessments
by a single rater (Nutter et al., 1993; Bock et al., 2008, 2010).
Accurate visual estimates are particularly difficult to achieve with
certain types of disease symptoms, such as small, evenly spaced
lesions (Bock et al., 2010). Additionally, because of the cost of
labor and time needed to perform visual assessments of disease,
the number of time points from which data can be sampled is
limited.

The use of automated, high-throughput digital imaging in
plant disease phenotyping allows for collection of data at numer-
ous time points, produces images from which quantitative phe-
notypic data can be derived, and improves reproducibility of
experiments. Many different phenotypic measurements can be
obtained from image data. For studies of plant growth and devel-
opment, these measurements may be plant height or biomass.
For studies of plant disease or other stresses, percent leaf area
covered with symptoms or changes in photosynthetic responses
can be derived from images. The scale of imaging systems can vary
greatly. For example, image-based phenotyping of a small number
of plants can be performed with inexpensive, portable systems,
such as the Raspberry Pi computer and camera1. On a larger scale,
high-throughput phenotyping systems, such as the Bellwether
Foundation Phenotyping Facility at the Donald Danforth Plant
Science Center2 and the Australian Plant Phenomics Facility3,
can perform automated imaging of hundreds or thousands of
plants.

Studies with a variety of pathogens have found that image-
based phenotyping produces more accurate and precise results
than can be obtained with visual assessments of disease, and

1http://www.raspberrypi.org
2http://www.danforthcenter.org/scientists-research/core-technologies/
phenotyping
3http://www.plantphenomics.org.au

allows for exploration of more dimensions of disease phenotypes.
For example, imaging of wheat leaves infected with strains of
the fungal pathogen Zymoseptoria tritici was compared to tradi-
tional visual assessment methods (Stewart and McDonald, 2014).
This fungus causes septoria wheat blotch, which is characterized
by chlorosis, necrotic lesions, and fungal fruiting bodies called
pycnidia. Typical visual disease assessments rely on estimates of
percent of leaf area covered by pycnidia or lesions. Since pycnidia
are small, accurate estimates of pycnidia cover are difficult to
make, especially when they are numerous. Stewart and McDonald
(2014) used automated image analysis of infected wheat leaves
to analyze disease symptoms caused by Z. tritici. This approach
allowed them to quantify pycnidia size and density, along with
other traits, which would not have been possible with visual
assessment alone. Thus, image-based phenotyping can greatly
enhance the data available for characterizing plant disease.

Since variability between different ratings and between dif-
ferent raters is a limitation for visual disease assessment, image-
based phenotyping offers the potential to improve reproducibility
and sensitivity of disease quantification. Bock et al. (2008) exam-
ined citrus canker disease symptoms on grapefruit leaves caused
by the bacterium Xanthomonas axonopodis pv. citri using digital
imaging. The authors found that automated image analysis was
more reproducible than visual assessments over multiple mea-
surements. Another study found that image analysis enhanced the
ability to distinguish between genotypes with different levels of
disease severity. Xie et al. (2012) studied common bacterial blight
caused by Xanthomonas spp. on two different genotypes of bean.
While for this particular disease all measurements of the disease
were reproducible between different assessments, image analysis
was better able to distinguish between different disease suscepti-
bility levels on different genotypes. The authors concluded that
image analysis is more useful for investigating the quantitative
genetics of disease resistance for this system. Thus, analysis of
plant disease symptoms with visible light imaging has been shown
to have a variety of benefits, which depend on the plant–pathogen
system being analyzed.

The terminology used to describe plant disease symptoms
often does not reflect the symptom variety that is seen across
different systems. For example, various symptoms caused by bac-
terial plant pathogens on different hosts are described as water-
soaked lesions. However, these lesions vary greatly in size, shape,
and color (Figure 1). Phenotyping studies must be clear in defin-
ing the symptoms that are being measured. To enable comparabil-
ity between systems and storage of phenotypic data in databases,
a standardized set of nomenclature for disease symptoms would
be beneficial, similar to what was done for plant anatomy and
morphology with the Plant Structure Ontology (Ilic et al., 2007).
Some efforts to achieve this for plant–pathogen interactions are
currently in development (Walls et al., 2012; Rodriguez Iglesias
et al., 2013). Additionally, the use of experimental controls, such
as internal color standards, would improve comparability between
different imaging platforms.

Chlorophyll fluorescence imaging
Visible disease symptoms do not provide all of the available
information about plant health and may not be the best indicator
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FIGURE 1 | Examples of disease symptoms caused by bacterial plant
pathogens. All photos were taken by the authors. (A) Pseudomonas syringae
infection on Arabidopsis thaliana with gray water-soaked lesions surrounded
by chlorosis. (B) Early-stage Xanthomonas euvesicatoria infection on pepper

with small water-soaked lesions. (C) Xanthomonas oryzae pv. oryzae infection
on rice with grayish green water-soaked lesions coalescing into yellow
streaks. (D) Xanthomonas axonopodis pv. manihotis infection on cassava with
dark water-soaked lesions that are spreading and leading to leaf wilt.

for plant disease severity, especially early during infection. Plants
that are experiencing biotic and abiotic stresses exhibit changes in
chlorophyll fluorescence emission (Baker, 2008). Under normal
conditions, most chlorophyll fluorescence is emitted from photo-
system II (PSII) at 685 nm (Rolfe and Scholes, 2010). When plants
experience stress, this results in altered patterns of chlorophyll
fluorescence emission, which can be observed with fluorescence
imaging.

One of the most widely studied parameters based on chloro-
phyll fluorescence is Fv/Fm, also known as the maximum quan-
tum efficiency of PSII (Baker, 2008). This parameter is calcu-
lated from Fm, the maximum fluorescence of a dark-adapted
leaf, and Fv, the difference between Fm and the minimum
fluorescence from dark-adapted leaf (F0). While non-stressed
plants maintain a consistent Fv/Fm value, various studies have

shown that plants experiencing biotic or abiotic stresses have
decreased Fv/Fm values (Bonfig et al., 2006; Jansen et al., 2009;
Bauriegel et al., 2011; Rousseau et al., 2013; Bauriegel and
Herppich, 2014). Changes in this parameter occur before visible
disease symptoms occur (Bonfig et al., 2006; Rolfe and Scholes,
2010). Studies of Pseudomonas syringae infection on Arabidopsis
thaliana suggest this pathogen has direct impacts on PSII function
(Bonfig et al., 2006). Thus, imaging of chlorophyll fluorescence
can provide added value relative to standard visualization of
symptoms.

In addition to Fv/Fm, other photosynthetic parameters have
been studied in the context of plant disease. Non-photochemical
quenching (NPQ or qN ) is a measure of energy that is dissi-
pated as heat from photosynthetic reaction centers. Rodriguez-
Moreno et al. (2008) observed that NPQ goes up initially during
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P. syringae infection on bean plants, but then is decreased at the
later stages of infection. Furthermore, NPQ was shown to have
more leaf-to-leaf variation and different effects resulting from
physiological changes and tissue death for P. syringae infection
on A. thaliana (Berger et al., 2007). Thus, NPQ has a more
complex relationship with plant stress than that of Fv/Fm. Other
photosynthetic parameters that have been studied in context of
disease areΦPSII , the effective quantum yield of PSII [also known
as Y(II) or F′

q/F′
m], and relative electron transport rate (ETR;

Bonfig et al., 2006; Baker, 2008; Rolfe and Scholes, 2010).ΦPSII is
a parameter that is similar to Fv/Fm but measured in illuminated
conditions, and ETR is calculated from ΦPSII and the amount
of photosynthetically active light that is absorbed by the leaf
(Rolfe and Scholes, 2010). These parameters exhibit a wide range
of responses for different pathogen–host systems (Bonfig et al.,
2006; Scholes and Rolfe, 2009; Rolfe and Scholes, 2010). A few
studies have used a “combinatorial” approach, measuring sev-
eral photosynthetic parameters at once, including those without
explicit physiological meaning (Matous et al., 2006; Berger et al.,
2007). While these novel parameters may exhibit correlations
with pathogen infection, their physiological relevance is unknown
(Rolfe and Scholes, 2010).

Overall, chlorophyll fluorescence imaging has benefits in pro-
viding physiological information about plant health, which in
some cases allows for detection of disease prior to visible symp-
toms appearing. However, the technical challenges of this type
of imaging, such as dark-adaptation for Fv/Fm measurements,
makes it difficult to translate to agricultural fields. Nonetheless,
researchers are developing methods to move this technology
outside the laboratory, such as shaded imaging stations that allow
dark-adapted measurements to be taken in the field (Bauriegel
et al., 2011; Bauriegel and Herppich, 2014). Regardless of whether
this technique will prove effective for disease monitoring in the
field, fluorescence imaging will continue to be an important tool
for studying plant disease in the laboratory.

Hyperspectral imaging
Hyperspectral imaging is a relatively new technology that involves
the acquisition of electromagnetic spectra at every pixel in an
image, thus combining spatial and spectral information (Bock
et al., 2010). Since hyperspectral images have two spatial dimen-
sions and one spectral dimension, they require a large amount
of disk space and computing power to store and analyze, but
also provide a wealth of information for investigating plant dis-
ease phenotypes. Typical wavelengths observed for plant imaging
experiments are the visible (400–700 nm), near-infrared (NIR;
700–1100 nm), and short-wave infrared (1100–2500 nm) regions.
A major advantage of hyperspectral imaging is the wide range
of measurements that can be derived from the data collected.
At a more basic level, the data can be reduced to multispectral
measurements, which are calculated from a few key spectral
bands. For example, the normalized difference vegetation index
(NDVI) is a measure of the greenness of plant tissue, calculated
from reflected wavelengths in the NIR and red regions (Bauriegel
and Herppich, 2014). At a more complex level, entire spectra can
be analyzed with algorithms that allow for comparison of many
wavelengths (Bock et al., 2010).

Different plant diseases can cause distinct spectral reflectance
patterns, so hyperspectral imaging offers the potential to not
only detect disease but also identify specific diseases. Mahlein
et al. (2012) used hyperspectral imaging to investigate disease
symptoms for three different fungal diseases of sugar beet. With
adequate spatial resolution, unique patterns of reflectance in the
visual and NIR ranges were sufficient to distinguish healthy sugar
beet plants from plants with powdery mildew and Cercospora leaf
spot, as well as to differentiate powdery mildew infection from
Cercospora leaf spot infection. This approach was not successful
for all of the diseases that were tested, however, as the reflectance
signature of sugar beet rust infection could not be distinguished
from that of healthy plants.

Hyperspectral imaging has also been used to detect head
blight infection on wheat (Bauriegel et al., 2011; Bauriegel and
Herppich, 2014). Currently, aerial and ground based hyperspec-
tral imaging systems are being developed for use in agricultural
fields and natural environments (Busemeyer et al., 2013; Calvino-
Cancela et al., 2014). In the field, hyperspectral imaging depends
on solar illumination and reflectance, so variation in environ-
mental conditions must be accounted for in the image analysis
steps. Bravo et al. (2003) used normalization methods to account
for variation in illumination and reflectance, enabling the clas-
sification of yellow rust infection on wheat growing in the field.
For all applications of hyperspectral imaging, extensive ground-
truthing will be necessary to validate the optimal set of parameters
that characterize plant disease. While further development of the
hyperspectral imaging methods is needed, this technique offers
great promise for phenotyping plant disease.

Thermal imaging
Depending on the nature of infection, pathogens have different
effects on the temperature of infected plant tissues. Temperature
is negatively correlated with transpiration rate (Lindenthal et al.,
2005). Thus, pathogens that induce stomatal closure in plants
often lead to decreased transpiration rates and increased leaf
temperature. For example, Lindenthal et al. (2005) used digi-
tal infrared thermography to image downy mildew infection in
cucumber, which is caused by the oomycete Pseudoperonospora
cubensis. Infrared thermography imaging can detect relative dif-
ferences in leaf surface temperature by detection of infrared
radiation from leaves. Using this method, Lindenthal et al. (2005)
found that different stages of infection have different effects
on leaf temperature. Infection with P. cubensis initially causes
localized decreases in surface temperature, which are thought to
be due to suppression of stomata closure early during infection.
At later stages when the pathogen has caused areas of necrosis, the
temperature of the infected leaf tissue increases to levels that are
higher than that of uninfected tissue, which may be due to the
inability of damaged tissue to perform natural cooling through
transpiration.

Other pathogens alter leaf surface temperature in different
ways during infection. Thermal imaging of tobacco plants resis-
tant to tobacco mosaic virus showed increases in leaf temperature
prior to cell death being visible, likely due to stomata closure
(Chaerle et al., 1999, 2001). The fungus Cercospora beticola had
the opposite effect on tobacco plants, causing a decrease in
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temperature during infection, possibly due to the pathogen’s
ability to suppress stomatal closure (Chaerle et al., 2004). Bacterial
pathogens, such as P. syringae and Xanthomonas campestris pv.
campestris suppress stomatal closure at early stages of infection
to promote entry into leaf tissue (Melotto et al., 2008; Gudesblat
et al., 2009), which may also lead to detectable surface temper-
ature changes. Thus, if thermal imaging is able to detect these
temperature changes caused by pathogens, it offers the potential
to identify different types of plant diseases.

When used in agricultural fields, infrared thermography is
sensitive to environmental variation, such as cloud cover and solar
orientation (Munns et al., 2010). It can also be difficult to identify
plots of interest in an image, to separate the crop canopy from soil
in the background, and to adjust for different temperatures that
result from different plant heights and different environmental
conditions (Munns et al., 2010). Nonetheless, researchers are
currently developing methods that alleviate these challenges. For
example, plots are identified with signs that are readable in the
thermal image, and reference surfaces are used for internal nor-
malization of image data (Jones et al., 2009). Using these methods,
different genotypes of rice and grape were distinguished based
on their relative responses to drought stress. While not yet used
extensively in the field specifically for biotic stresses, infrared ther-
mography may be a useful tool as a monitoring system for general
stress responses in agriculture settings, whether biotic or abiotic.

DATA ANALYSIS
For image-based phenotyping, once the images are generated,
phenotypic data must be extracted using analysis techniques. The
computational methods by which these datasets are analyzed are
an important consideration in any phenotyping experiment. Just
as there are many options for how image data are collected, so too
there are many options for how the data are analyzed.

Marr’s three levels of information processing is a helpful
framework for thinking about how to apply image analysis to bio-
logical problems (Marr, 1982; Pridmore et al., 2012). According to
Marr (1982), any information processing process, such as image
analysis, can be divided to three levels: (1) computational theory, a
description of what the process does, often in mathematical terms;
(2) algorithm, the steps used by the process to implement the
computational theory; and (3) mechanism, the physical systems
and software that carry out the process (Pridmore et al., 2012).
All three of these levels should be considered when designing a
phenotyping experiment. As discussed by Pridmore et al. (2012),
plant biologists may lack expertise in computer vision and often
focus primarily on mechanism, relying on the software and hard-
ware with which they are most familiar. This may not result in
the best experimental design, however, so Pridmore et al. (2012)
advise biologists to identify the best possible approaches based
on computational theory and algorithm, and then choose the
mechanism that best implements those approaches. Like so many
fields, phenomics will benefit from increased multidisciplinary
collaboration.

Image processing
In order to extract meaningful data from images, various image
processing steps are necessary. Computational pipelines can be

customized to carry out these steps in an automated manner. Pre-
processing steps adjust for differences in lighting and alignment
of the image. They may also involve conversion between different
image types, such as conversion between RGB and grayscale
(Klukas et al., 2014). Following pre-processing, segmentation
steps can be used to partition regions of the image for selection
of certain features (Klukas et al., 2014). Rousseau et al. (2013)
used segmentation of Fv/Fm images to assess disease symptom
phenotypes caused by Xanthomonas fuscans subsp. fuscans on
the common bean Phaseolus vulgaris. For their initial approach,
areas with different stages of disease were identified with uni-
versal threshold levels set by human raters based on their visual
observations of a training set of images. To improve upon this
method, the authors developed a probability-based approach to
identify areas of the leaf that were likely to be diseased, followed
by clustering analysis to divide the diseased area into regions
with different stages of disease. Additionally, the probability
thresholds were normalized daily based on Fv/Fm measure-
ments from mock-inoculated controls. Overall, the probability-
based approach improved the analysis both by automating the
process and by accounting for day-to-day variation in Fv/Fm

levels.
A wide variety of algorithms can be used for classification or

quantification of image features. A commonly used example for
hyperspectral imaging applications is the Spectral Angle Mapper
(SAM) classification algorithm (Bauriegel et al., 2011; Mahlein
et al., 2012). This algorithm compares vectors representing experi-
mentally determined spectra and reference spectra, and calculates
an angle to represent the degree of difference between the two at
each pixel.

A variety of available software packages can aid in development
of custom image analysis approaches. ImageJ4 is an open source,
Java-based image analysis program, which is customizable with
a variety of available macros and plugins written specifically for
plant phenotyping applications (Hartmann et al., 2011; Stewart
and McDonald, 2014). There are also commercial software pack-
ages available for plant disease phenotyping, such as ASSESS 2.0,
from the American Phytopathological Society, but these lack abil-
ity for customization. The website Plant Image Analysis5 provides
an online database of image analysis software options for plant
biology, both commercial and open source (Lobet et al., 2013).
Given that image-based plant phenotyping is a relatively new field,
the analysis tools are still in development.

CHALLENGES AND FUTURE DIRECTIONS FOR IMAGE-BASED
PLANT DISEASE PHENOTYPING
While image-based phenotyping methods offer great promise
for enhancing characterization of plant disease phenotypes,
many hurdles remain for implementing these techniques in both
research and agricultural production. Since phenotyping methods
enable the exploration of multiple dimensions of phenotypic
space, it will be essential to determine which particular dimen-
sions serve as the best indicators for plant disease status. As
the ultimate goal is to limit the impacts of plant disease on

4http://rsbweb.nih.gov/ij
5http://www.plant-image-analysis.org
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agricultural production, understanding the correlation between
the disease symptoms and impacts on yield is important. Further-
more, indicators of general stress may be effective early warning
signs of disease but are not likely to identify or distinguish
between different diseases. On the other hand, assays that are
designed to detect specific pathogens or diseases may be more
reliable but may not be useful for broad surveys or early warning
systems. This tradeoff must be considered when designing pheno-
typing strategies.

While imaging is likely to be useful for investigating many
plant–pathogen systems, there also may be cases for which imag-
ing approaches are not sufficient for characterization of disease
phenotypes. Plant diseases that progress asymptomatically or with
only internal symptoms will be difficult to detect with image-
based phenotyping. For example, the group of fungi known as
Fusarium spp. cause maize ear rot disease, and certain envi-
ronmental conditions promote asymptomatic Fusarium infec-
tions with accumulation of dangerous mycotoxins in the host
tissue (Murillo-Williams and Munkvold, 2008; Mesterházy et al.,
2012). Imaging approaches are unlikely to effectively diagnose
this type of infection at an early stage. Instead, other non-
imaging remote sensing technologies need to be developed to
detect this disease or others like it. Becker et al. (2014) identi-
fied changes in a set of volatile sesquiterpenes that are emitted
from corn, between plants infected with Fusarium and those
that are uninfected. In theory, remote sensing of these dif-
ferent volatile chemical profiles could be a method for early
detection for Fusarium infection. While such technologies for
remote sensing do not yet exist, it may be possible to use such
methods in the future to detect diseases without clear visible
symptoms.

Other studies suggest that image-based phenotyping is not
more accurate or sensitive than visual assessment for certain
host–pathogen systems. Olmstead et al. (2001) attempted to use
digital imaging to improve estimates of powdery mildew infection
on sweet cherry leaves. They determined that imaging did not
provide an accurate quantification of the infected leaf area, likely
because the difference in color between infected and uninfected
areas was not distinct enough for this particular disease (Olm-
stead et al., 2001). Additionally, for some applications, it may
be more useful to quantify pathogen growth levels in the host
rather than disease symptoms (Jackson et al., 2006). Given the
wide range of infections caused by plant pathogens, the best phe-
notyping strategy for each particular disease should be carefully
considered.

A major goal in plant disease phenotyping is to translate
techniques from controlled environments in growth chambers to
agricultural fields (Araus and Cairns, 2014). Many researchers
are currently working on developing unmanned aerial vehicles
or ground vehicles for imaging of crop canopies (Prashar et al.,
2013). Using a variety of different imaging techniques simultane-
ously may be necessary for acquiring sufficient data to monitor
plant health in the field.

Another challenge is developing hardware and software that
are broadly applicable across different plant–pathogen systems.
Plants vary widely in size and leaf architecture, and dis-
eases cause different types of symptoms. Thus, most disease

phenotyping methods have been developed specifically for one
particular host–pathogen system. For example, imaging meth-
ods developed specifically for A. thaliana may not be appli-
cable to grasses, which have a dramatically different architec-
ture.

Moving forward, it will be necessary to standardize methods
and document analysis methods for reproducibility. Making anal-
ysis software open source and available is necessary for repro-
ducibility and will enable improvement of the phenotyping meth-
ods to be a community effort (Prlic and Procter, 2012; Leprevost
et al., 2014). While many challenges remain for implementing
these technologies, a multi-disciplinary approach involving col-
laboration between biologists, engineers, and computer scientists
is the best strategy for overcoming these hurdles.
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