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S-Alk(en)yl-L-cysteine sulfoxides are pharmaceutically important secondary metabolites
produced by plants that belong to the genus Allium. Biosynthesis of S-alk(en)yl-L-cysteine
sulfoxides is initiated by S-alk(en)ylation of glutathione, which is followed by the removal
of glycyl and γ-glutamyl groups and S-oxygenation. However, most of the enzymes
involved in the biosynthesis of S-alk(en)yl-L-cysteine sulfoxides in Allium plants have
not been identified. In this study, we identified three genes, AsGGT1, AsGGT2, and
AsGGT3, from garlic (Allium sativum) that encode γ-glutamyl transpeptidases (GGTs)
catalyzing the removal of the γ-glutamyl moiety from a putative biosynthetic intermediate
of S-allyl-L-cysteine sulfoxide (alliin). The recombinant proteins of AsGGT1, AsGGT2,
and AsGGT3 exhibited considerable deglutamylation activity toward a putative alliin
biosynthetic intermediate, γ-glutamyl-S-allyl-L-cysteine, whereas these proteins showed
very low deglutamylation activity toward another possible alliin biosynthetic intermediate,
γ-glutamyl-S-allyl-L-cysteine sulfoxide.The deglutamylation activities of AsGGT1, AsGGT2,
and AsGGT3 toward γ-glutamyl-S-allyl-L-cysteine were elevated in the presence of the
dipeptide glycylglycine as a γ-glutamyl acceptor substrate, although these proteins can
act as hydrolases in the absence of a proper acceptor substrate, except water. The
apparent K m values of AsGGT1, AsGGT2, and AsGGT3 for γ-glutamyl-S-allyl-L-cysteine
were 86 μM, 1.1 mM, and 9.4 mM, respectively. Subcellular distribution of GFP-fusion
proteins transiently expressed in onion cells suggested that AsGGT2 localizes in the
vacuole, whereas AsGGT1 and AsGGT3 possess no apparent transit peptide for localization
to intracellular organelles. The different kinetic properties and subcellular localizations of
AsGGT1, AsGGT2, and AsGGT3 suggest that these three GGTs may contribute differently
to the biosynthesis of alliin in garlic.
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INTRODUCTION
Production of cysteine-derived secondary metabolites, S-alk(en)yl-
L-cysteine sulfoxides, is a pharmaceutically important characteristic
of plants that belong to the genus Allium. These compounds
are hydrolyzed by the endogenous vacuolar enzyme alliinase
(EC. 4.4.1.4) upon tissue disruption to yield highly reac-
tive alk(en)ylsulfenic acids that are spontaneously converted to
various sulfur-containing compounds with diverse pharmaco-
logical activities, including antibacterial, antifungal, antivirus,
immunostimulating, antioxidant, anticarcinogenic, antithrom-
botic, cholesterol- and triglyceride-lowering, and hypoten-
sive effects (Jones et al., 2004; Rose et al., 2005; Iciek et al.,
2009). To date, four major S-alk(en)yl-L-cysteine sulfoxides,
S-allyl-L-cysteine sulfoxide (alliin), S-methyl-L-cysteine sulfox-
ide (methiin), S-trans-1-propenyl-L-cysteine sulfoxide (isoalliin),
and S-propyl-L-cysteine sulfoxide (propiin), have been identified
and isolated from Allium plants (Jones et al., 2004; Rose et al.,
2005).

Biosynthesis of S-alk(en)yl-L-cysteine sulfoxides in Allium
plants has previously been proposed to proceed via glutathione
S-conjugates, according to the results of precursor feeding and
pulse radiolabeling experiments (Suzuki et al., 1962; Turnbull
et al., 1980; Lancaster and Shaw, 1989). In the proposed path-
way, glutathione is S-alk(en)ylated at the cysteine residue, followed
by the removal of a glycyl group to form a biosynthetic inter-
mediate, γ-glutamyl-S-alk(en)yl-L-cysteine. This γ-glutamylated
sulfide compound is further deglutamylated and S-oxygenated to
yield S-alk(en)yl-L-cysteine sulfoxide (Figure 1). Although the
results of pulse radiolabeling suggest that S-oxygenation may likely
occur before deglutamylation in onion (Allium cepa; Lancaster and
Shaw, 1989), the order of S-oxygenation and deglutamylation in
other Allium plants remains unclear.

γ-Glutamyl transpeptidase (GGT; EC 2.3.2.2), also known as
γ-glutamyl transferase, is the enzyme that catalyzes the transfer
of the γ-glutamyl moiety of γ-glutamyl compounds to amino
acids, short peptides (transpeptidation), or water (hydrolysis; Tate
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FIGURE 1 | Proposed biosynthetic pathway for alliin in garlic.

and Meister, 1981). The physiological role of GGT, commonly
observed in bacteria, yeast, animals, and plants, is the catabolism
of glutathione. Saccharomyces cerevisiae has a vacuolar GGT
protein responsible for the degradation of glutathione in the
vacuole during nitrogen starvation in order to supply the con-
stituent amino acids of glutathione to the starved cell (Mehdi
and Penninckx, 1997), whereas GGTs in Escherichia coli, mam-
mals, and plants function in the breakdown of extracellular
glutathione (Suzuki et al., 1999; Storozhenko et al., 2002; Dominici
et al., 2005; Martin et al., 2007; Ohkama-Ohtsu et al., 2007a).
GGT is also responsible for degrading glutathione-related com-
pounds. For example, GGT is involved in the biosynthesis of
the phytoalexin camalexin by removing a γ-glutamyl group from
glutathione-indole-3-acetonitrile in Arabidopsis (Su et al., 2011),
in the conversion of the endogenous glutathione S-conjugate
leukotriene C4 to leukotriene D4 in rats (Anderson et al., 1982),
and in the glutathione-mediated detoxification of xenobiotics
in both animals and plants (Zhang et al., 2005; Grzam et al.,
2007; Ohkama-Ohtsu et al., 2007b). Given that the removal
of a γ-glutamyl group from the biosynthetic intermediate γ-
glutamyl-S-alk(en)yl-L-cysteine is required for the biosynthesis
of S-alk(en)yl-L-cysteine sulfoxides in the genus Allium, the
involvement of GGTs in the biosynthesis of S-alk(en)yl-L-cysteine
sulfoxides as deglutamylation enzymes has been proposed. The
fact that the levels of biosynthetic intermediate γ-glutamyl pep-
tides were decreased while GGT activity was increased during
sprouting in onion bulbs also supports this idea (Lancaster and

Shaw, 1991). To date, several efforts have been made to identify and
characterize GGTs in Allium plants. A GGT partially purified from
onion showed high substrate specificity toward γ-glutamyl com-
pounds that are putative intermediates of S-alk(en)yl-L-cysteine
sulfoxide biosynthesis, strongly suggesting the involvement of
this GGT in the biosynthesis of S-alk(en)yl-L-cysteine sulfoxides
(Lancaster and Shaw, 1994). Recently, a GGT protein was puri-
fied to homogeneity from sprouting onion bulbs, and a partial
cDNA for this GGT, AcGGT, was cloned; however, in contrast
to the previously partially purified onion GGT (Lancaster and
Shaw, 1994), the purified AcGGT protein showed high affinity
for glutathione and glutathione S-conjugates but could not uti-
lize γ-glutamyl-trans-S-1-propenyl-L-cysteine sulfoxide as a good
γ-glutamyl donor substrate, suggesting that AcGGT is not the
major enzyme catalyzing deglutamylation in the biosynthesis of
S-alk(en)yl-L-cysteine sulfoxides in onion (Shaw et al., 2005). A
partial cDNA of AsGGT, which has high sequence homology to
AcGGT, was isolated from garlic (Allium sativum), and its mRNA
expression patterns suggested that AsGGT may play a role in syn-
thesizing S-alk(en)yl-L-cysteine sulfoxides in garlic cloves during
cold storage (Cho et al., 2012).

In this study, we cloned three genes encoding GGTs, AsGGT1,
AsGGT2, and AsGGT3, that are suggested to be involved in
the biosynthesis of alliin in garlic. The substrate preferences of
AsGGT1, AsGGT2, and AsGGT3 suggest that a key biosynthetic
intermediate, γ-glutamyl-S-allyl-L-cysteine, is deglutamylated by
these GGTs prior to being S-oxygenated during alliin biosynthesis
in garlic.

MATERIALS AND METHODS
PLANT MATERIALS AND REAGENTS
Total RNA was extracted from the bulbs of A. sativum L. ‘Fukuchi-
howaito’. S-Allyl-L-cysteine was purchased from Tokyo Chemical
Industry (Tokyo, Japan). Alliin [(RCSS)-S-allyl-L-cysteine sul-
foxide] was synthesized and purified according to previously
reported methods (Yu et al., 1994; Kubec et al., 1999; Kubec and
Dadáková, 2008). γ-Glutamyl-S-allyl-L-cysteine was synthesized
as follows. A mixture of 2.59 g of N-phthaloyl-L-glutamic anhy-
dride and 1.93 g of S-allyl-L-cysteine in 10 mL of acetic acid
was stirred at 60◦C for 2 h. The solvent in the reaction mix-
ture was removed in vacuo, and the residue was suspended in
ethyl acetate and washed with brine. The organic layer was dried
using sodium sulfate, and the solvent was removed in vacuo.
After 1.5 g of residue was dissolved in 10 mL of methanol,
0.15 mL of hydrazine monohydrate was added, and this mix-
ture was refluxed at 80◦C for 1 h. Solvent was removed in
vacuo, and the residue was washed with ethanol. The residue was
recrystallized in a mixture of ethanol and water. The crystalline
powder was applied to DowexTM 50Wx8 (The Dow Chemi-
cal Company, USA), and the column eluate and rinsing were
combined and lyophilized. γ-Glutamyl-S-allyl-L-cysteine sulfox-
ide was synthesized as follows. γ-Glutamyl-S-allyl-L-cysteine was
dissolved in water, and 1.1 equimolar of hydrogen peroxide was
added. The mixture was stirred at room temperature, and the
solvent was removed in vacuo. The residue was dried under
reduced pressure with phosphorus (V) oxide at room tempera-
ture. Structures of synthesized γ-glutamyl-S-allyl-L-cysteine and
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γ-glutamyl-S-allyl-L-cysteine sulfoxide were confirmed using 13C-
NMR and 1H-NMR. All other chemicals were of analytical grade
and were purchased from Sigma (St. Louis, MO, USA), Nacalai
Tesque (Kyoto, Japan), or Wako Pure Chemical Industries (Osaka,
Japan).

CLONING OF AsGGT1, AsGGT2, AND AsGGT3 FROM GARLIC
Molecular biological experiments were performed according
to the standard protocols (Sambrook et al., 1989), unless
otherwise specified. Total RNA was extracted from garlic
cloves by using the RNeasy plant mini kit (Qiagen, Valen-
cia, CA, USA) and treated with DNase I (Life Technologies,
Carlsbad, CA, USA). Reverse transcription (RT) was per-
formed using SuperScript II reverse transcriptase (Life Tech-
nologies) and oligo-d(T)12−18. Partial cDNAs of AsGGT1 and
AsGGT2 were amplified by PCR using ExTaq DNA poly-
merase (Takara, Tokyo, Japan) and oligonucleotide primers
designed from the nucleotide sequences of two garlic EST
clones, i.e., EPP005LLAA12S004013 and EPP005LLAA12S003688
in GarlicESTdb (Kim et al., 20091): AsGGT1-Core-F (5′-
ATCGCCACTTCATATGAACC-3′) and AsGGT1-Core-R (5′-
GATAATGCTAGATATGGCTC-3′) for AsGGT1; AsGGT2-Core-F
(5′-CTCCTCCACATTAATGGAAC-3′) and AsGGT2-Core-R (5′-
AAGTGGTCCCAAACATTTGTC-3′) for AsGGT2. For the ampli-
fication of a partial region of AsGGT3 cDNA, degenerate primers
designed based on the sequences of conserved regions of known
GGTs, GGT-degenerate-F (5′-ATHGTNYTNAAYAAYGARATG-
3′) and GGT-degenerate-R (5′-CCNCCYTTNCKNGGRTC-3′),
were used. Rapid amplification of cDNA ends (RACE) was
performed using 5′-Full RACE Core Set (Takara) and 3′-
Full RACE Core Set (TaKaRa), according to the manufac-
turer’s protocols. 5′-RACE was performed using the following
primers: AsGGT1-5′-RACE-RT (5′-[Phos]TCTTCTGAACCG-
3′), AsGGT1-5′-RACE-F1(5′-TGCTCTCACCACTCTGTTC-3′),
AsGGT1-5′-RACE-F2 (5′-GACTCCATCTCTCATCAGTTC-3′), As
GGT1-5′-RACE-R1 (5′-TCACGAACGATGAGCGATG-3′), and
AsGGT1-5′-RACE-R2 (5′-CCAGTTTCTGATCAGAAGAAGC-3′)
for AsGGT1; AsGGT2-5′-RACE-RT (5′-[Phos]TGAGCTCGTAA
ACTC-3′), AsGGT2-5′-RACE-F1 (5′-TGTGCGACGGTATCCG
ATCA-3′), AsGGT2-5′-RACE-F2 (5′-CTCAATCCAATTCAACCT
AGAC-3′), AsGGT2-5′-RACE-R1 (5′-CATTGTGCAGCGGACGA
TAG-3′), and AsGGT2-5′-RACE-R2 (5′-GGTTCCATTAATGTGG
AGGAG-3′) for AsGGT2; AsGGT3-5′-RACE-RT (5′-[Phos]GTATC
CATCGGGAAT-3′), AsGGT3-5′-RACE-F1 (5′-TGAAAAAGAAA
GGGCAGCTC-3′), AsGGT3-5′-RACE-F2 (5′-GGTTTAGGGATT
GCAAATGG-3′), AsGGT3-5′-RACE-R1 (5′-CCTCCACTTGCGC
CTAGAG-3′), and AsGGT3-5′-RACE-R2 (5′-GGTGGCGGCATAT
TGTTATT-3′) for AsGGT3. 3′-RACE was performed using 3 sites
adaptor primer (5′-CTGATCTAGAGGTACCGGATCC-3′) and
the following gene-specific primers: AsGGT1-3′-RACE-F1 (5′-
AGCTGGTCTACATGCTGCATGG-3′) and AsGGT1-3′-RACE-F2
(5′-TCCCATGGAAGTCACTTTTCG-3′) for AsGGT1; AsGGT2-
3′-RACE-F1 (5′-GCTTTTGATGCTAGAGAGACTGC-3′) and
AsGGT2-3′-RACE-F2 (5′-ATCACTCCGACAAATGTTTG-3′) for
AsGGT2; AsGGT3-3′-RACE-F (5′-TGAAAAAGAAAGGGCAGC

1http://garlicdb.kribb.re.kr

TC-3′) for AsGGT3. cDNA clones of AsGGT1, AsGGT2, and
AsGGT3 were re-isolated by RT-PCR using KOD plus DNA
polymerase (Toyobo, Osaka, Japan) and the following primers:
AsGGT1-F (5′-TCATATTCTGACGCAGATTCCACAG-3′) and
AsGGT1-R (5′-TGTTCAATCATATTTTGTACAAATAGAC-3′) for
AsGGT1; AsGGT2-F (5′-CGAGCAAATTAATTCATTTTGGCTC
AC-3′) and AsGGT2-R (5′-GCATACCAATCGCCACAAACTC-3′)
for AsGGT2; AsGGT3-F (5′-GTTAACAACAGGATTGGTCAATG
CTC-3′) and AsGGT3-R (5′-CAGCAAACAACGCACTATTCAGT
TTCTG-3′) for AsGGT3.

HETEROLOGOUS EXPRESSION OF AsGGT1, AsGGT2, AND AsGGT3 IN
YEAST
The coding regions of AsGGT1, AsGGT2, and AsGGT3
were amplified by PCR using the cloned cDNA fragments
described above, KOD plus DNA polymerase (Toyobo),
and the following gene-specific primers: AsGGT1-FKpn3A
(5′-GGTACCAAAATGAACCAAATGGCGCCGGCTTC-3′) and
AsGGT1-stop-RXh (5′-CTCGAGCTATACACAAGCAGGACTTC
CATC-3′) for AsGGT1; AsGGT2-FKpn3A (5′-GGTACCAAAATG
GAACCGGCGCATGATGACTTAG-3′) and AsGGT2-stop-RXh
(5′-CTCGAGTCACACACATGCAGGACTTCCATC-3′) for AsGG
T2; AsGGT3-FKpn3A (5′-GGTACCAAAATGCTAATTAATTCATA
CCCTGC-3′) and AsGGT3-stop-RXh (5′-CTCGAGTCAGTATCC
ATCGGGAATACC-3′) for AsGGT3. The underlined sequences
in the primers correspond to KpnI and XhoI restriction sites
for subcloning. The amplified fragments were cloned into the
pGEM-T easy vector (Promega, Madison, WI, USA). After their
nucleotide sequences were confirmed, the coding regions of
AsGGT1, AsGGT2, and AsGGT3 were cut out as KpnI-XhoI frag-
ments and were inserted between the KpnI and XhoI sites in the
yeast expression vector pYES2 (Life Technologies). The resulting
plasmids, pYES2-AsGGT1, pYES2-AsGGT2, and pYES2-AsGGT3,
and pYES2 empty vector were transformed into the Saccharomyces
cerevisiae mutant strain BJ2168 (MATa, prb1-1122, prc1-407, pep4-
3, ura3-52, leu2, trp1; Nippon Gene, Tokyo, Japan) by using
the lithium acetate method (Gietz et al., 1992). The transfor-
mants were selected on SD minimal medium (Sherman, 1991)
containing no uracil. For the induction of recombinant pro-
teins, the yeast cells grown in SD minimal medium without
uracil at 28◦C for 1 days were transferred to 10 volumes of
uracil-less SD medium containing 2% (w/v) galactose instead
of glucose to activate the GAL1 promoter on pYES2, and cul-
tured at 28◦C for 1 days. The cells were harvested and disrupted
at 4◦C with 425–600-μm (diameter) glass beads in buffer G
[10 mM Tris-HCl (pH 7.5), 300 mM sorbitol, 100 mM NaCl,
5 mM MgCl2, 1 mM EDTA, and 1 μM pepstatin A]. The lysate
was centrifuged at 10,000 × g for 5 min, and the supernatant
was collected. Buffer G of the supernatant was subsequently
replaced with 50 mM Tris-HCl (pH 8.0) by using the Sephadex
column PD Mini Trap G-25 (GE Healthcare, Uppsala, Sweden),
according to the manufacturer’s protocol. The eluted yeast crude
proteins were used for the enzymatic activity assay described
below. Protein concentrations were determined using the Bio-
Rad protein assay (Bio-Rad, CA, USA) based on the Bradford
method (Bradford, 1976), using bovine serum albumin as the
standard.
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ASSAYS OF GGT ENZYME ACTIVITIES
Assays of GGT enzyme activities were performed by analyz-
ing the amount of deglutamylated compounds produced from
γ-glutamylated compounds by yeast crude proteins in 6 h at 37◦C.
The amount of deglutamylated compounds increased linearly over
the 6-h incubation period.

Deglutamylation activities using γ-glutamyl-p-nitroanilide as
the substrate were determined spectrophotometrically accord-
ing to a previously described method (Orlowski and Meister,
1963), with slight modifications, as follows: the reaction mix-
ture, which consisted of 0.0125 μg μl−1 yeast crude protein,
50 mM Tris-HCl (pH 8.0), 10 mM glycylglycine, and 1 mM
γ-glutamyl-p-nitroanilide, was incubated for 6 h at 37◦C, and
p-nitroaniline released from γ-glutamyl-p-nitroanilide was mon-
itored at 412 nm.

For the analysis of deglutamylation activities toward
γ-glutamyl-S-allyl-L-cysteine and γ-glutamyl-S-allyl-L-cysteine
sulfoxide, the enzyme assay reaction mixture consisted of
0.67 μg μl−1 yeast crude protein, 50 mM Tris-HCl (pH 8.0),
10 mM glycylglycine, and 1 mM γ-glutamyl-S-allyl-L-cysteine
or γ-glutamyl-S-allyl-L-cysteine sulfoxide was incubated for 6 h
at 37◦C. For the determination of the enzyme activity in a
pH range of 6.0–7.0, the reaction mixture containing 50 mM
2-(N-morpholino)ethanesulfonic acid buffer, instead of 50 mM
Tris-HCl buffer, was used. For the determination of the enzyme
activity in a pH range of 7.0–9.0, 50 mM Tris-HCl buffer at pH
values from 7.0 to 9.0, instead of 50 mM Tris-HCl (pH 8.0), was
used. For the analysis of the effects of glycylglycine as a γ-glutamyl
acceptor, deglutamylation activity was determined in the reac-
tion mixture with or without 10 mM glycylglycine. The reaction
was initiated by the addition of yeast crude proteins. After incu-
bation at 37◦C, proteins in the reaction mixture were removed
using a centrifugal ultrafiltration device (molecular weight cut-
off, 10 kD; Kurabo, Osaka, Japan). S-Allyl-L-cysteine and alliin in
the ultrafiltrated solution were quantified using high-performance
liquid chromatography (HPLC). For the kinetic analysis, assays
were carried out with γ-glutamyl-S-allyl-L-cysteine concentra-
tions ranging from 12.5 to 1000 μM for AsGGT1, 0.5–8 mM
for AsGGT2, and 1–25 mM for AsGGT3. Km values were calcu-
lated from triplicate date sets according to the Michaelis-Menten
equation.

ANALYSIS OF SULFUR-CONTAINING METABOLITES BY USING HPLC
The enzymatic products were analyzed quantitatively by using
HPLC (Hitachi, Tokyo, Japan) with the cation-exchange column
(TSKgel Aminopak, Tosoh, Tokyo, Japan). For the determination
of S-allyl-L-cysteine, a mobile phase composed of 67 mM sodium
citrate, 8% (v/v) ethanol, and 0.01% (v/v) octanoic acid (pH 3.26)
was used for an isocratic elution. The column temperature was
35◦C. For the determination of alliin, the mobile phase consisted
of 22 mM trisodium citrate and 80 mM citric acid and the column
temperature was 40◦C. After separation, S-allyl-L-cysteine and
alliin were fluorescently derivatized using o-phthalaldehyde and
were detected using a fluorescence detector (excitation 340 nm,
emission 455 nm). Identification of S-allyl-L-cysteine and alliin
in the enzymatic reaction mixture was based on comparisons of
retention times of the synthesized standards.

SUBCELLULAR LOCALIZATION ANALYSIS
For the construction of the fusion gene constructs of 35Spro:As
GGT1N100:GFP,35Spro:AsGGT2N100:GFP, and 35Spro:AsGGT3N100

:GFP, partial coding regions of AsGGT1, AsGGT2, and
AsGGT3 that encode the N-terminal 100 amino acid residues
were amplified by PCR using KOD plus DNA polymerase
(Toyobo) and the following gene-specific primers: AsGGT1-
FSal (5′-GTCGACATGAACCAAATGGCGCCGGCTTCTTC-3′)
and AsGGT1-N100-RNco (5′-CCATGGAACCACCACCACCACC
ACCTTTTCTCAGAACTGAAGCTCC-3′) for AsGGT1; AsGGT2-
FSal (5′-GTCGACATGGAACCGGCGCATGATGACTTAG-3′) and
AsGGT2-N100-RNco (5′-CCATGGAACCACCACCACCACCACC
TAAAGCGTCCACAGCATGACC-3′) for AsGGT2; AsGGT3-FSal
(5′-GTCGACATGCTAATTAATTCATACCCTGCATATC-3′) and
AsGGT3-N100-RNco (5′-CCATGGAACCACCACCACCACCACC
ACTAACAACTCCTAAACAAAATG-3′) for AsGGT3. The sequence
encoding hexa-Gly residues was generated downstream of the
sequence of AsGGT1, AsGGT2, and AsGGT3 by the PCR. The
underlined sequences in the primers correspond to SalI and NcoI
restriction sites for subcloning. The amplified DNA fragments
were cloned into the pGEM-T easy vector (Promega) to confirm
the nucleotide sequence. Partial AsGGT1, AsGGT2, and AsGGT3,
fused with the sequence encoding hexa-Gly residues, were cut
out as SalI-NcoI fragments and were inserted between the SalI
and NcoI sites in pTH2 (Chiu et al., 1996). Each of the result-
ing plasmids was co-introduced with pDsRed plasmid (Kitajima
et al., 2009) into onion epidermal cells by particle bombardment at
150 psi, using a Helios gene gun (Bio-Rad). After bombardment,
onion peels were incubated for 26–47 h on B5 medium (Gamborg
et al., 1968) in the dark at 25◦C. GFP and DsRed fluorescence in the
onion cells were observed using a LSM710 confocal laser-scanning
microscope (Carl Zeiss, Oberkochen, Germany).

PHYLOGENETIC ANALYSIS
Phylogenetic analysis was performed using MEGA version 6
software (Tamura et al., 2013) based on the ClustalW multi-
ple alignment. A phylogenetic tree was generated using the
neighbor-joining method.

RESULTS
IDENTIFICATION OF THREE GENES ENCODING γ-GLUTAMYL
TRANSPEPTIDASES IN GARLIC
We found two garlic EST clones, EPP005LLAA12S004013 and
EPP005LLAA12S003688, that show high sequence homology with
known GGTs in GarlicESTdb (Kim et al., 20092). Utilizing the
sequence information on these EST clones, we obtained two differ-
ent full-length cDNA clones by 5′- and 3′-RACE and RT-PCR from
the RNA of garlic cloves and designated them as AsGGT1 (Gen-
Bank Accession No. LC008010) and AsGGT2 (GenBank Accession
No. LC008011). In addition, we amplified one garlic cDNA frag-
ment using degenerate primers designed based on the conserved
regions of known plant GGTs. A full-length cDNA clone was
obtained by RACE and RT-PCR, and was designated as AsGGT3
(GenBank Accession No. LC008012). The cDNAs of AsGGT1,
AsGGT2, and AsGGT3 coded for polypeptides of 627, 622, and

2http://garlicdb.kribb.re.kr
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605 amino acids, respectively. The deduced amino acid sequences
of AsGGT1 and AsGGT2 shared 69% identity, whereas the amino
acid sequence identity of AsGGT3 with AsGGT1 and AsGGT2 was
46 and 43%, respectively. The amino acid sequence of AsGGT3
showed 99% sequence identity with that of a partial sequence of
garlic AsGGT (Cho et al., 2012) in their 158 aa overlapped region
and showed 92% sequence identity with that of a partial sequence
of onion AcGGT (Shaw et al., 2005) in their 543 aa overlapped
region. Arabidopsis thaliana has three functional GGTs, AtGGT1,
AtGGT2, and AtGGT4. Among them, AtGGT4 is known to have
a long N-terminal sequence that determines vacuolar localization,
compared to AtGGT1 and AtGGT2 that localize in the extracellu-
lar space (Grzam et al., 2007; Ohkama-Ohtsu et al., 2007b). As
in Arabidopsis AtGGT4, the deduced amino acid sequences of
AsGGT1, AsGGT2, and AsGGT3 had longer N-terminal sequences
than those of Arabidopsis AtGGT1 and AtGGT2, suggesting the
presence of the N-terminal signal sequences for targeting to cel-
lular organelles in AsGGT1, AsGGT2, and AsGGT3. N-terminal
regions of the deduced amino acid sequences of AsGGT1, AsGGT2,
and AsGGT3 were not highly similar to each other or to that of
AtGGT4, despite the high sequence similarities among the rest of
their regions.

A phylogenic tree was generated by the neighbor-joining
method, using the amino acid sequences of known GGTs from
plants, yeast, bacteria, and humans (Figure 2). All plant GGTs were
classified into the same branch, which was further divided into two
distinct subgroups. AsGGT1 and AsGGT2 belonged to the sub-
group containing Arabidopsis AtGGT4 that functions in the degra-
dation of glutathione S-conjugates in the vacuole (Grzam et al.,
2007; Ohkama-Ohtsu et al., 2007b), whereas AsGGT3 belonged
to the subgroup containing Arabidopsis AtGGT1 and AtGGT2
that function in the breakdown of extracellular glutathione
(Martin et al., 2007; Ohkama-Ohtsu et al., 2007a) together with
onion AcGGT (Shaw et al., 2005).

Generally, in bacteria, yeast, plants, and mammals, GGT is a
heteromeric protein consisting of large and small subunits, both of
which are generated from a common inactive precursor polypep-
tide by autoprocessing (Penninckx and Jaspers, 1985; Storozhenko
et al., 2002; Suzuki and Kumagai, 2002; Ikeda and Taniguchi, 2005;
Shaw et al., 2005; Nakano et al., 2006; Boanca et al., 2007). Some
plants, such as tomato, onion, and radish, are suggested to have
GGT proteins consisting of a single polypeptide, although their
sequence information remains unknown (Lancaster and Shaw,
1994; Martin and Slovin, 2000; Nakano et al., 2006). The deduced
amino acid sequences of AsGGT1, AsGGT2, and AsGGT3 pos-
sessed the conserved threonine residue required for autocatalytic
processing and the amino acid residues necessary for GGT activity,
which were previously identified by biochemical and structural
analyses of GGTs from humans and E. coli (Ikeda et al., 1993,
1995a,b; Okada et al., 2006).

IN VITRO CHARACTERIZATION OF RECOMBINANT AsGGT1, AsGGT2,
AND AsGGT3
Recombinant proteins of AsGGT1, AsGGT2, and AsGGT3 were
independently expressed in budding yeast, and the crude protein
extracts were used for the in vitro enzymatic activity assays. To
confirm whether recombinant proteins of AsGGT1, AsGGT2, and

FIGURE 2 | Phylogenetic tree for the γ-glutamyl transpeptidases. An
unrooted tree was constructed using MEGA version 6 software based on
the ClustalW multiple alignment. Bootstrap values (1000 replicates) are
shown next to the branches. Plant GGTs are classified into two subgroups.
Garlic AsGGT1, AsGGT2, and AsGGT3 analyzed in this study are underlined.
Asterisks indicate partial amino acid sequences. Abbreviations for species
are: Ac, Allium cepa; As, Allium sativum; At, Arabidopsis thaliana; Ec,
Escherichia coli ; Hp, Helicobacter pylori ; Hs, Homo sapiens; Os, Oryza
sativa; Rs, Raphanus sativus; Sc, Saccharomyces cerevisiae; Sp,
Schizosaccharomyces pombe. The GenBank accession numbers for the
sequences are shown in parentheses: AcGGT (AAL61611); AsGGT1
(LC008010); AsGGT2 (LC008011); AsGGT3 (LC008012); AtGGT1
(AEE87097); AtGGT2 (AEE87099); AtGGT4 (AEE85602); EcGGT
(AAA23869); HpGGT (AAD08162); HsGGT1 (AAH25927); HsGGT2
(XP_006724458); HsGGT5 (AAH73999); Os01g05810 (BAD61112);
Os01g05820 (BAD61113); Os04g38450 (CAD40892); RsGGT1 (BAC45233);
RsGGT2 (BAC56855); RsGGT3 (BAD22536); ScGGT (DAA09609); SpGGT1
(AAN01227); SpGGT2 (AAQ57121).

AsGGT3 were expressed as mature GGT enzymes in yeast cells,
we first examined deglutamylation activities of these recombinant
proteins by using the standard procedure that utilizes γ-glutamyl-
p-nitroanilide, a common synthetic γ-glutamyl donor substrate
for known GGTs (Orlowski and Meister, 1963). For a γ-glutamyl
acceptor substrate, we used dipeptide glycylglycine. Crude protein
extracts from control yeast carrying the empty vector converted γ-
glutamyl-p-nitroanilide to p-nitroaniline (Table 1), showing that
yeast endogenous GGT could utilize γ-glutamyl-p-nitroanilide
as a γ-glutamyl donor substrate, as reported previously (Payne
and Payne, 1984). The amounts of p-nitroaniline released from
γ-glutamyl-p-nitroanilide in assays using crude protein extracts
from yeast expressing AsGGT1, AsGGT2, and AsGGT3, respec-
tively, were significantly higher than that in assays using crude
protein extracts from control yeast (Table 1), indicating that the
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Table 1 | Specificity of AsGGT1, AsGGT2, and AsGGT3 for γ-glutamyl donor substrates.

Substrate GGT activity (pmol μg−1 protein hr−1)

Empty vector AsGGT1 AsGGT2 AsGGT3

γ-glutamyl-p-nitroanilide 52.0 ± 3.6 135.9 ± 10.7 103.6 ± 2.2 130.4 ± 6.0

γ-glutamyl-S-allyl-L-cysteine ND 30.5 ± 0.2 17.4 ± 1.2 35.6 ± 2.5

γ-glutamyl-S-allyl-L-cysteine sulfoxide ND 1.6 ± 0.0 ND 1.0 ± 0.0

Each γ-glutamyl donor substrate was used at a concentration of 1 mM. Activities were measured in the presence of glycylglycine as the γ-glutamyl acceptor substrate.
Data represent the mean ± SD (n = 4 for γ-glutamyl-p-nitroanilide, n = 3 for γ-glutamyl-S-allyl-L-cysteine, and n = 3 for γ-glutamyl-S-allyl-L-cysteine sulfoxide). ND
means no detectable activity.

recombinant proteins of AsGGT1, AsGGT2, and AsGGT3 were
successfully expressed and folded to form mature functional GGT
proteins that can utilize γ-glutamyl-p-nitroanilide as a γ-glutamyl
donor substrate in yeast cells.

Next, we examined the enzymatic activities of AsGGT1,
AsGGT2, and AsGGT3 toward γ-glutamyl-S-allyl-L-cysteine and
γ-glutamyl-S-allyl-L-cysteine sulfoxide, which are two possible
biosynthetic intermediates in alliin biosynthesis, as potential γ-
glutamyl donor substrates (Figures 3 and 4). Activities were
measured in the presence of glycylglycine as a γ-glutamyl accep-
tor substrate. When γ-glutamyl-S-allyl-L-cysteine was used as a
γ-glutamyl donor substrate, S-allyl-L-cysteine was not formed at
a detectable level in assays using crude protein extracts from con-
trol yeast (Figure 3; Table 1), indicating that yeast endogenous
GGT could not use γ-glutamyl-S-allyl-L-cysteine as a γ-glutamyl
donor substrate. By contrast, considerable amounts of S-allyl-
L-cysteine were detected in assays using crude protein extracts
prepared from yeast cells expressing AsGGT1, AsGGT2, and
AsGGT3 (Figure 3; Table 1), demonstrating that the recombi-
nant proteins of AsGGT1, AsGGT2, and AsGGT3 can convert
γ-glutamyl-S-allyl-L-cysteine to S-allyl-L-cysteine. The deglu-
tamylation activities of AsGGT1, AsGGT2, and AsGGT3 toward
γ-glutamyl-S-allyl-L-cysteine were decreased in the absence of
glycylglycine (Figure 5), indicating that these garlic GGTs can
catalyze transpeptidation more effectively than hydrolysis. In
the presence of glycylglycine, the activities of AsGGT2 were
higher with lower pH (Figure 5). Kinetic characterization of
the recombinant AsGGT1, AsGGT2, and AsGGT3 exhibited typ-
ical Michaelis-Menten behavior, and the apparent Km values of
AsGGT1, AsGGT2, and AsGGT3 for γ-glutamyl-S-allyl-L-cysteine
were 86 μM, 1.1 mM, and 9.4 mM, respectively, in the presence of
glycylglycine (Figure 6).

When γ-glutamyl-S-allyl-L-cysteine sulfoxide was used as a
γ-glutamyl donor substrate, only small amounts of alliin were
detected in assays using crude protein extracts from yeast express-
ing AsGGT1 or AsGGT3 (Figure 4; Table 1), suggesting the
recombinant AsGGT1 and AsGGT3 exhibit a weak activity to
deglutamylate γ-glutamyl-S-allyl-L-cysteine sulfoxide. However,
under the conditions we examined, the activities of AsGGT1 and
AsGGT3 to deglutamylate γ-glutamyl-S-allyl-L-cysteine sulfoxide
were too weak to perform further enzymatic characterization.
AsGGT2 exhibited no detectable deglutamylation activity toward
γ-glutamyl-S-allyl-L-cysteine sulfoxide (Figure 4; Table 1). These
results indicate that AsGGT1, AsGGT2, and AsGGT3 are the

FIGURE 3 | Deglutamylation activities of recombinant AsGGT1,

AsGGT2, and AsGGT3 toward γ-glutamyl-S-allyl-L-cysteine.

High-performance liquid chromatography (HPLC) elution profiles of the
S-allyl-L-cysteine standard (A) and the reaction products from
γ-glutamyl-S-allyl-L-cysteine by the crude protein extracts of yeast carrying
empty vector (B) or yeast expressing AsGGT1 (C), AsGGT2 (D), and
AsGGT3 (E) are shown. Arrows indicate peaks of S-allyl-L-cysteine in the
reaction products.

functional GGT proteins with a preference for γ-glutamyl-
S-allyl-L-cysteine as a γ-glutamyl donor substrate over γ-glutamyl-
S-allyl-L-cysteine sulfoxide.

SUBCELLULAR LOCALIZATION OF AsGGT1, AsGGT2, AND AsGGT3
The probable subcellular localization of AsGGT1, AsGGT2, and
AsGGT3 was computationally analyzed using the program TargetP
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FIGURE 4 | Deglutamylation activities of recombinant AsGGT1,

AsGGT2, and AsGGT3 toward γ-glutamyl-S-allyl-L-cysteine sulfoxide.

HPLC elution profiles of the alliin standard (A) and the reaction products
from γ-glutamyl-S-allyl-L-cysteine sulfoxide by the crude protein extracts of
yeast carrying empty vector (B) or yeast expressing AsGGT1 (C), AsGGT2
(D), and AsGGT3 (E) are shown. Arrows indicate peaks of alliin in the
reaction products.

v1.13 and WoLF PSORT4. Both programs predicted that these
three garlic GGT proteins lack signal peptides for secretion or
localization to cellular organelles.

To determine subcellular localization of AsGGT1, AsGGT2,
and AsGGT3, the green fluorescent protein (GFP)-fusion con-
structs of AsGGT1, AsGGT2, and AsGGT3 were transiently
expressed in onion epidermal cells under the control of the
cauliflower mosaic virus 35S RNA promoter by using the particle
bombardment method. Since N-terminal sequences of AsGGT1,
AsGGT2, and AsGGT3 are long and may contain the signal
sequence for secretion or targeting to cellular organelles, three
types of fusion proteins, GFP C-terminally fused to the N-
terminal 100-amino acid residues of GGT (AsGGT1N100-GFP,
AsGGT2N100-GFP, and AsGGT3N100-GFP), GFP C-terminally
fused to the N-terminal 300-amino acid residues of GGT
(AsGGT1N300-GFP, AsGGT2N300-GFP, and AsGGT3N300-GFP),
and GFP C-terminally fused to the full-length GGT protein
(AsGGT1Full-GFP, AsGGT2Full-GFP, and AsGGT3Full-GFP), were

3http://www.cbs.dtu.dk/services/TargetP/
4http://wolfpsort.org/

FIGURE 5 | pH dependence of transpeptidation and hydrolysis by

AsGGT1, AsGGT2, and AsGGT3. Production of S-allyl-L-cysteine
from γ-glutamyl-S-allyl-L-cysteine was analyzed in the presence or
absence of glycylglycine as the γ-glutamyl acceptor substrate.
2-(N -morpholino)ethanesulfonic acid buffer was used to cover the pH
range from 6.0 to 7.0, and Tris-HCl buffer was used to cover the pH
range from 7.0 to 9.0.

analyzed. As a control of cytosolic localization, DsRed pro-
tein was simultaneously expressed with each GFP-fusion protein.
The green fluorescent signals derived from AsGGT1N100-GFP
and AsGGT3N100-GFP overlapped with the red fluorescence of
DsRed (Figures 7A,C), suggesting that N-terminal regions of
AsGGT1 and AsGGT3 have no signal sequence for secretion or
targeting to cellular organelles. Similarly, the green fluorescent
signals from AsGGT1N300-GFP, AsGGT1Full-GFP, AsGGT3N300-
GFP, and AsGGT3Full-GFP were observed in the cytosol, although
the fluorescent signal intensities were much weaker (data not
shown). By contrast, the green fluorescence from AsGGT2N100-
GFP was observed predominantly in the vacuole (Figure 7B),
indicating that AsGGT2 has a signal sequence for targeting to
the vacuole within its N-terminal 100 amino acid residues. When
AsGGT2N300-GFP and AsGGT2Full-GFP were expressed, weak flu-
orescent signals were detected both in the vacuole and cytosol (data
not shown).

DISCUSSION
In this study, we identified three novel genes encoding GGTs,
AsGGT1, AsGGT2, and AsGGT3, from garlic by utilizing their
partial sequence information found in a publicly available EST
database or by utilizing sequence information of conserved regions
of known plant GGTs. The deduced amino acid sequences of
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FIGURE 6 | Kinetic characterization of AsGGT1, AsGGT2, and AsGGT3.

Lineweaver-Burk plots between deglutamylation activity and
γ-glutamyl-S-allyl-L-cysteine concentrations. Assays were carried out with
γ-glutamyl-S-allyl-L-cysteine concentrations ranging from 12.5 to 1000 μM
for AsGGT1 (A), 0.5–8 mM for AsGGT2 (B), and 1–25 mM for AsGGT3 (C).
Each data point represents the mean ± SD (n = 3).

AsGGT1, AsGGT2, and AsGGT3 contained threonine residues
required for autoprocessing and the residues required for GGT
activity (Ikeda et al., 1993, 1995a,b; Okada et al., 2006), sug-
gesting that AsGGT1, AsGGT2, and AsGGT3 all encode func-
tional GGT proteins. The cDNA sequence of AsGGT3 and the
previously identified partial cDNA sequence of garlic AsGGT
(Cho et al., 2012) were almost identical in their overlapping
region, suggesting that these two cDNAs were derived from
a single gene encoding GGT. The high sequence homology
between garlic AsGGT3 and onion AcGGT (Shaw et al., 2005)
may indicate that they are orthologs. By contrast, AsGGT1 and
AsGGT2 showed relatively low sequence similarity with gar-
lic AsGGT (Cho et al., 2012) and onion AcGGT (Shaw et al.,
2005). Phylogenetic analysis revealed that AsGGT3 belongs to a

FIGURE 7 |Transient expression of GFP fusion proteins of AsGGT1,

AsGGT2, and AsGGT3 in onion epidermal cells. GFP fusion proteins,
AsGGT1N100-GFP (A), AsGGT2N100-GFP (B), or AsGGT3N100-GFP (C),
were transiently co-expressed with DsRed in onion epidermal cells. DsRed
was used as a control for cytosolic localization. Bars = 100 μm.

subgroup different from that containing AsGGT1 and AsGGT2
(Figure 2), suggesting that the biochemical characteristics of
AsGGT3 might be somewhat different from those of AsGGT1 and
AsGGT2.

The deglutamylation activities of AsGGT1, AsGGT2, and
AsGGT3 toward alliin biosynthetic intermediates were demon-
strated by in vitro biochemical assays, using recombinant proteins
expressed in yeast. In the hypothetical alliin biosynthetic pathway,
two different routes from the intermediate γ-glutamyl-S-allyl-
L-cysteine to alliin are possible, according to differences in the
order of deglutamylation and S-oxygenation reactions (Figure 1):
a potential route via deglutamylation of γ-glutamyl-S-allyl-L-
cysteine to yield S-allyl-L-cysteine that is further S-oxygenated to
alliin, and an alternative route via S-oxygenation of γ-glutamyl-
S-allyl-L-cysteine to form γ-glutamyl-S-allyl-L-cysteine sulfox-
ide that is further deglutamylated to yield alliin. Our results
demonstrated that AsGGT1, AsGGT2, and AsGGT3 actively
deglutamylate γ-glutamyl-S-allyl-L-cysteine, whereas these GGTs
have almost no deglutamylation activity toward γ-glutamyl-
S-allyl-L-cysteine sulfoxide (Figures 3 and 4; Table 1). It
can be speculated that the intermediate γ-glutamyl-S-allyl-L-
cysteine is mainly deglutamylated prior to being S-oxygenated
in alliin biosynthesis in garlic. This hypothesis is also supported
by our recent study on flavin-dependent S-oxygenase, which
preferably utilizes S-allyl-L-cysteine, rather than γ-glutamyl-
S-allyl-L-cysteine, as the substrate (unpublished results). The
presence of dipeptide glycylglycine as a γ-glutamyl acceptor
increased the deglutamylation activities of AsGGT1, AsGGT2,
and AsGGT3 (Figure 5), showing that these GGTs catalyze
transpeptiation more efficiently than hydrolysis, as in GGTs from
Arabidopsis and onion (Storozhenko et al., 2002; Shaw et al.,
2005).

There are two characteristic differences among the AsGGT1,
AsGGT2, and AsGGT3 proteins. One is in their affinity for
γ-glutamyl-S-allyl-L-cysteine (Figure 6). The apparent Km values
of AsGGT1 and AsGGT2 for γ-glutamyl-S-allyl-L-cysteine deter-
mined in this study (86 μM and 1.1 mM, respectively) are lower
than or comparable to those of partially purified onion GGT
for γ-glutamyl-S-propenyl-L-cysteine (Km = 1.68 mM) and for
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γ-glutamyl-S-methyl-L-cysteine (Km = 0.55 mM; Lancaster and
Shaw, 1994). By contrast, AsGGT3 exhibited a relatively low affin-
ity for γ-glutamyl-S-allyl-L-cysteine (Km = 9.4 mM). This is in
agreement with the results of a previous study that onion AcGGT,
which shares high sequence homology with AsGGT3, could
not utilize γ-glutamyl-trans-S-1-propenyl-L-cysteine sulfoxide (a
major γ-glutamylated biosynthetic intermediate in onion) as a
good γ-glutamyl donor substrate (Shaw et al., 2005). In garlic,
the content of alliin is increased dramatically before and dur-
ing the maturation of bulbs (Ueda et al., 1991). Alliin is largely
found in leaves before the formation of bulbs and in the initial
stage of bulb maturation, whereas it is found predominantly in
bulbs in the later stage of bulb formation (Ueda et al., 1991; Koch
and Lawson, 1996). It is suggested that leaves of garlic actively
biosynthesize alliin before the formation of bulbs and in the initial
stage of bulb maturation. However, in leaves at the same stages,
γ-glutamyl-S-allyl-L-cysteine is present in trace levels (0.01 mg
g−1 fresh weight; Matsuura et al., 1996). The concentration of
γ-glutamyl-S-allyl-L-cysteine in cells of these tissues is calculated
to be approximately 38 μM, when the content of water in tissues
is estimated to be 90%. By contrast, the content of γ-glutamyl-
S-allyl-L-cysteine in mature bulbs is ∼5 mg g−1 fresh weight
(Matsuura et al., 1996; Ichikawa et al., 2006a,b), and the concentra-
tion of γ-glutamyl-S-allyl-L-cysteine in cells of bulbs is calculated
to be 26 mM, when the content of water in tissues is estimated
to be 65%. The highly accumulated γ-glutamyl-S-allyl-L-cysteine
in bulbs is stored during dormancy of bulbs at −3◦C, while it is
rapidly converted to alliin when bulb dormancy is broken at 4◦C
(Ichikawa et al., 2006a). Based on these observations, we hypoth-
esize that AsGGT1 and AsGGT2, which exhibit high-affinity for
γ-glutamyl-S-allyl-L-cysteine, would contribute to the biosynthe-
sis of alliin in leaves during the formation and maturation of bulbs,
while AsGGT3 may contribute to alliin biosynthesis in bulbs dur-
ing dormancy-breaking or, alternatively, the main in vivo function
of AsGGT3 may not be the deglutamylation of γ-glutamyl-S-allyl-
L-cysteine. The other major difference observed among AsGGT1,
AsGGT2, and AsGGT3 is in their subcellular localization. Tran-
sient expression analyses of GFP-fused AsGGT2 proteins in onion
cells suggested that AsGGT2 is predominantly localized in the
vacuole in vivo. In contrast to the almost exclusive localization
of AsGGT2N100-GFP in the vacuole (Figure 7B), the green flu-
orescence signals from AsGGT2N300-GFP and AsGGT2Full-GFP
were detected both in the vacuole and cytosol (data not shown),
suggesting that a part of AsGGT2N300-GFP and AsGGT2Full-GFP
polypeptides was not properly processed and/or assembled and
thus was not sorted to the vacuole in the heterologous expression
system we used. Alternatively, AsGGT2 may localize both in the
vacuole and cytosol in garlic cells. The signal sequence for tar-
geting to the vacuole of AsGGT2 is located within its N-terminal
100 amino acids, as in Arabidopsis AtGGT4 (Grzam et al., 2007;
Ohkama-Ohtsu et al., 2007b). To date, several sequence motifs for
vacuolar targeting have been identified from plants (Xiang et al.,
2013). However, we could not identify the potential motif for vac-
uolar targeting that is conserved between AsGGT2 and AtGGT4.
Future studies are needed to determine the sequence motif and
the mechanism for their targeting to the vacuole. Consistent with
vacuolar localization of AsGGT2, the deglutamylation activities

of AsGGT2 toward γ-glutamyl-S-allyl-L-cysteine were increased
under weakly acidic conditions (Figure 5). AsGGT2 is suggested
to contribute alliin biosynthesis mainly in the vacuole. In addi-
tion, AsGGT2 may function in the breakdown of glutathione
S-conjugates in the vacuole in a similar manner as Arabidop-
sis AtGGT4 (Grzam et al., 2007; Ohkama-Ohtsu et al., 2007b).
In contrast, GFP-fusion proteins of AsGGT1 and AsGGT3 were
retained in the cytosol (Figures 7A,C), suggesting that AsGGT1
and AsGGT3 have no apparent signal sequence for targeting to
the cellular organelles in their N-terminal peptides. To the best
of our knowledge, there have been no reports of GGT pro-
teins localizing in the cytosol. Future investigations will reveal
whether AsGGT1 and AsGGT3 are new types of GGT proteins
that localize and function in the cytosol in vivo or not. To date,
the subcellular distribution of alliin biosynthetic intermediates
and enzymes in garlic remains largely unclear, although the pre-
vious cell fractionation experiment suggested that γ-glutamyl
peptides and S-alk(en)yl-L-cysteine sulfoxides are mainly located
in the cytosol in onion (Lancaster et al., 1989). Our results sug-
gest that AsGGT1, AsGGT2, and AsGGT3 contribute differently
to alliin biosynthesis, according to differences in their kinetic
properties and localization patterns. Recently, five γ-glutamyl
peptidases (GGPs), which have similar catalytic functions but no
sequence homology with GGTs, were identified from Arabidopsis.
Among these, GGP1 and GGP3 were shown to be cytosolic pro-
teins that play major roles in the removal of γ-glutamyl groups
from glutathione S-conjugates in the biosynthesis of glucosino-
lates and camalexins (Geu-Flores et al., 2009, 2011). Although
identification of GGPs from garlic has not been reported to
date, it is likely that GGPs exist and function in the deglu-
tamylation reaction in alliin biosynthesis, perhaps together with
GGTs.

In the present study, we succeeded in identifying three garlic
GGTs, AsGGT1, AsGGT2, and AsGGT3, that can deglutamylate
an alliin biosynthetic intermediate, γ-glutamyl-S-allyl-L-cysteine.
Future investigations of the in vivo functions of AsGGT1, AsGGT2,
and AsGGT3 will provide a better understanding of the molecular
mechanisms underlying the biosynthesis of alliin in garlic, which
can be applied to future metabolic engineering of plants.
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