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Advances have been made in the development of drought-tolerant transgenic plants, includ-
ing cereals. Rice, one of the most important cereals, is considered to be a critical target
for improving drought tolerance, as present-day rice cultivation requires large quantities
of water and as drought-tolerant rice plants should be able to grow in small amounts of
water. Numerous transgenic rice plants showing enhanced drought tolerance have been
developed to date. Such genetically engineered plants have generally been developed
using genes encoding proteins that control drought regulatory networks. These proteins
include transcription factors, protein kinases, receptor-like kinases, enzymes related to
osmoprotectant or plant hormone synthesis, and other regulatory or functional proteins.
Of the drought-tolerant transgenic rice plants described in this review, approximately one-
third show decreased plant height under non-stressed conditions or in response to abscisic
acid treatment. In cereal crops, plant height is a very important agronomic trait directly
affecting yield, although the improvement of lodging resistance should also be taken into
consideration. Understanding the regulatory mechanisms of plant growth reduction under
drought stress conditions holds promise for developing transgenic plants that produce
high yields under drought stress conditions. Plant growth rates are reduced more rapidly
than photosynthetic activity under drought conditions, implying that plants actively reduce
growth in response to drought stress. In this review, we summarize studies on molecular
regulatory networks involved in response to drought stress. In a separate section, we
highlight progress in the development of transgenic drought-tolerant rice plants, with
special attention paid to field trial investigations.
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INTRODUCTION
Drought is inevitable. For example, the U.S. suffered an agri-
cultural drought in 2012, in which a 12% decrease in corn
production was recorded compared with the previous year (USDA,
2014). Because such decreases in crop production cause enor-
mous economic disruption, demand for the development of
drought-tolerant crops is increasing.

Rice (Oryza sativa L.) is one of the world’s most important
cereals, with production comparable to that of wheat. In 2013,
rice and wheat were cultivated in 124 and 126 countries, respec-
tively, with corresponding worldwide production of 745 and 713
million tons (FAOSTAT). Compared with other cereal crops such
as maize and wheat, rice is sensitive to decreases in soil water con-
tent because rice cultivars have been historically grown under flood
irrigation conditions where the soil matric potential is zero. As a
consequence, large amounts of water are required for production
of rice compared with other crops. Production of 1 kg of rice seed
requires 3,000 to 5,000 L of water, with less than half that amount
needed for 1-kg seed production in other crops such as maize or
wheat (Singh et al., 2002). Improvement of water-use efficiency
during rice production should thus contribute significantly to

agricultural water conservation and deserves much attention. Rice
cultivars showing normal or even increased yield under drought
stress conditions are expected to be closely related to those with
high water-use efficiency.

Transgenic engineering approaches in plants have opened the
door to the development of new cultivars with improved drought
tolerance. Progress has been made in the generation of trans-
genic drought-tolerant rice plants. In this review, we begin with an
overview of abiotic stress signaling pathways coordinated by a wide
range of regulatory proteins, including key factors for the develop-
ment of transgenic drought-tolerant rice plants, and then describe
advances in the development of transgenic drought-tolerant rice.
We also discuss growth regulatory mechanisms operating under
water deficit stress conditions. Special attention is paid to trans-
genic rice plants showing improved drought tolerance under field
conditions.

REGULATORY MECHANISMS OF RESPONSES TO ABIOTIC
STRESSES, INCLUDING DROUGHT, IN Arabidopsis
Abiotic stresses, such as drought, high salinity, and low temper-
ature, induce the expression of a large number of genes. The
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induction of these genes under stress is regulated through complex
transcriptional networks (Yamaguchi-Shinozaki and Shinozaki,
2006). The key genes functioning in these transcriptional net-
works have been revealed by molecular studies and are important
candidates for the development of transgenic plants tolerant to
abiotic stress. Here, we highlight two important pathways of
transcriptional networks under abiotic stress conditions in Ara-
bidopsis: an abscisic acid (ABA)-dependent signaling pathway
and an ABA-independent regulatory network mediated by dehy-
dration responsive element-binding (DREB)-type transcription
factors (Figure 1A). Numerous excellent review articles on global
abiotic stress regulatory networks have previously been published
(Zhu, 2002; Bartels and Sunkar, 2005; Chinnusamy et al., 2007;
Hua, 2009; Thomashow, 2010; Qin et al., 2011; Deinlein et al.,
2014; Golldack et al., 2014; Yoshida et al., 2014).

THE ABA-DEPENDENT SIGNALING PATHWAY
In Arabidopsis, significant progress has been made in the elu-
cidation of molecular mechanisms of transcriptional networks
involved in abiotic stress response. The phytohormone ABA is
a major molecule facilitating signal transduction during drought
stress response. A key enzyme for ABA biosynthesis is 9-cis-
epoxycarotenoid dioxygenase (NCED; Iuchi et al., 2001). Among
five genes encoding NCED in Arabidopsis, expression of NCED3
has been found to increase under water deficit conditions (Iuchi
et al., 2001). A G-box recognition sequence located -2,248 bp
from the NCED3 transcriptional start site has recently been
shown to be important for this gene’s expression under water
deficit conditions (Behnam et al., 2013). It has also emerged
that ABA intercellular transport mechanisms are important for
ABA-dependent drought responses. Kuromori et al. (2014) have
demonstrated that specific cells in vascular tissue synthesize ABA
and transport the molecule to target cells. Bauer et al. (2013)
have proposed that ABA is autonomously synthesized in guard
cells.

Synthesized or transported ABA is perceived by a recep-
tor complex, which consists of PYR (PYRABACTIN RESIS-
TANCE)/PYL (PYR1-LIKE)/RCAR (REGULATORY COMPO-
NENT OF ABA RESPONSE), PP2C (protein phosphatase 2C), and
SnRK2 (sucrose non-fermenting 1-related protein kinase 2; Cutler
et al., 2010; Raghavendra et al., 2010; Umezawa et al., 2010; Weiner
et al., 2010). A suite of studies has clarified the molecular struc-
tural changes that occur during ABA perception and in the ABA
signaling cascade (Cutler et al., 2010; Raghavendra et al., 2010;
Umezawa et al., 2010; Weiner et al., 2010; Miyakawa et al., 2013). In
the absence of ABA, PP2Cs repress the ABA signaling pathway by
dephosphorylation-triggered inactivation of SnRK2s. In the pres-
ence of ABA, ABA-bound PYL/PYR/RCARs recognize and bind to
PP2Cs, thereby releasing SnRK2s from PP2C-dependent negative
regulation. The activated SnRKs phosphorylate downstream pro-
teins including AREB/ABF (ABA-responsive cis-element binding
protein/ABA-responsive cis-element binding factor) transcription
factors. The AREB/ABF transcription factors have a bZIP domain
and four conserved domains containing SnRK2 phosphoryla-
tion sites. The phosphorylated AREB/ABFs are activated and
bind to the ABA-responsive cis-element (ABRE; PyACGTGG/TC),
which is enriched in promoter regions of drought-inducible

genes. AREB/ABFs function as master transcriptional activators
regulating ABRE-dependent gene expression in ABA signaling
under drought stress conditions.

THE ABA-INDEPENDENT SIGNALING PATHWAY MEDIATED BY DREB2
AND DREB1/CBF
Evidence has revealed that ABA-independent signaling pathways
are also important in abiotic stress response. DREB2 proteins are
members of the AP2/ERF family of plant-specific transcription
factors. Among the eight DREB2 genes in Arabidopsis, DREB2A
and DREB2B are highly induced by drought, high salinity, and
heat stress, and function as transcriptional activators in the ABA-
independent pathway. A negative regulatory domain has been
identified in the DREB2A amino acid sequence and is reported
to be involved in DREB2A protein stability (Sakuma et al., 2006a;
Mizoi et al., 2012). Under non-stressed conditions, degradation
of DREB2A proteins occurs via ubiquitination of DREB2A by
the C3HC4 RING domain-containing proteins DRIP1 (DREB2A-
interacting protein1) and DRIP2 (Qin et al., 2008; Morimoto et al.,
2013). Kim et al. (2012a) have proposed that DREB2A expres-
sion is repressed by GRF7, a growth-regulating factor, to prevent
growth inhibition under non-stressed conditions. DREB2A also
plays a role in high temperature stress response and increased heat
stress tolerance (Sakuma et al., 2006b). The use of HsfA1 multiple
mutants has revealed that DREB2A expression under heat stress
conditions is regulated by HsfA1 (heat shock factor A1) proteins
(Yoshida et al., 2011).

DREB1/CBF transcription factors are another subfamily that
regulates expression of many abiotic stress-responsive genes.
DREB1/CBFs are key regulators in low-temperature stress-
responsive gene expression. Transgenic Arabidopsis plants over-
expressing DREB1/CBF genes have been found to improve
low-temperature stress tolerance as well as drought and salin-
ity stress tolerance (Kasuga et al., 1999; Yamaguchi-Shinozaki
and Shinozaki, 2006). Several studies have reported that expres-
sion of DREB1/CBF genes is directly or indirectly modulated
by regulatory factors such as HOS1 (Dong et al., 2006), ICE1
(Chinnusamy et al., 2003), SIZ1 (Miura et al., 2007), MYB15
(Agarwal et al., 2006), PIF7 (Kidokoro et al., 2009), CAMTA3
(Doherty et al., 2009), and a clock component (Dong et al.,
2011). Recent excellent reviews by Medina et al. (2011) and
Mizoi et al. (2012) are highly informative regarding DREB tran-
scription factor proteins and the related signaling cascade in
Arabidopsis.

MOLECULAR RESPONSES TO DROUGHT STRESS IN RICE
In rice, more than 5,000 genes are up-regulated and more
than 6,000 are down-regulated by drought stress (Maruyama
et al., 2014). A comparison between rice and Arabidopsis by
Maruyama et al. (2014) demonstrated that different metabolites
are accumulated under abiotic stress conditions. For exam-
ple, high expression levels of genes encoding isocitrate lyase
and malate synthase in the glyoxylate cycle along with glu-
cose accumulation under abiotic stress conditions were observed
in rice, but not in Arabidopsis. Additionally, reduced expres-
sion of the cytochrome P450 735A gene was correlated with
decreased cytokinin levels in rice, but not in Arabidopsis. Similar
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comprehensive analyses of drought stress-responsive genes, pro-
teins, and metabolites in rice have been performed as follows.
Wang et al. (2011a) identified 5,284 drought stress-responsive
genes. Lenka et al. (2011) compared drought-responsive genes
in indica rice genotypes having contrasting drought tolerances.
Up-regulation of the α-linolenic acid metabolic pathway was
observed in the drought-tolerant genotype. Degenkolbe et al.
(2009) also investigated comprehensive expression profiles of
drought-responsive genes in both drought-sensitive and drought-
tolerant rice genotypes. They found that senescence-related degra-
dation processes and expression of photosynthesis-related genes
were reduced in drought-tolerant cultivars compared with those
in drought-sensitive ones. Using the comprehensive expression
data, the authors also identified marker transcripts for selec-
tion of drought tolerance in a range of rice germplasm resources
through integrated analyses of gene expression and stress toler-
ance (Degenkolbe et al., 2013). The marker transcripts showed
a significant correlation between expression level and tolerance
under drought stress conditions. One of the markers was a gene
for cytosolic fructose-1,6-bisphosphatase, an enzyme that cat-
alyzes a highly regulated step in C-metabolism. Ray et al. (2011)
have reported that genes responsive to drought stress condi-
tions significantly overlap with those expressed during panicle
and seed development. Shu et al. (2011) performed integrated
analyses of two-dimensional electrophoresis – mass spectrometry
– mass spectrometry, cDNA microarray, and gas chromatogra-
phy – mass spectrometry data from rice seedlings after drought
stress treatment to, respectively, determine protein expression lev-
els, gene expression levels, and metabolite contents. The authors
speculated that energy conversion from carbohydrates and/or
fatty acids to amino acids increased under drought stress condi-
tions. Epigenetic research on drought response in rice has been
also reported. Wang et al. (2011b) examined drought-induced
genome-wide DNA methylation and its association with drought
tolerance. Zong et al. (2013) investigated the genome-wide dis-
tribution pattern of histone H3 lysine 4 tri-methylation and
found that methylation levels were positively correlated with
expression levels of some of the evaluated drought-responsive
genes.

While these large data sets have provided much information
on drought responses in rice, studies on associated signaling cas-
cades have been limited. Evidence indicates that O. sativa NCED
transcripts are up-regulated along with ABA accumulation under
drought stress conditions (Maruyama et al., 2014), and that a core
ABRE sequence in the promoter regions of drought-inducible
genes is enriched in rice, Arabidopsis and soybean (Maruyama
et al., 2012). These results suggest that the ABA-dependent sig-
naling pathway in rice is activated by drought stress, similar
to that of Arabidopsis and other plant species. He et al. (2014)
determined the crystal structure of the ABA–OsPYL2–OsPP2C06
complex and suggested that the complex has the potential to
be an ABA receptor in rice. Kim et al. (2012b) identified a rice
ABA signaling unit composed of OsPYL/RCAR5, OsPP2C30,
SAPK2, and OREB1 for ABA-dependent gene regulation. They
have reported that OsPYL/RCAR5 functions as a positive regula-
tor of abiotic stress-responsive gene expression and that transgenic
rice plants overexpressing OsPYL/RCAR5 have improved drought

tolerance. The OREB1 bZIP-type transcription factor, which is
ortholog to Arabidopsis AREB, has been shown to regulate the
ABA-dependent pathway in rice (Chae et al., 2007; Hong et al.,
2011).

Experimental evidence has demonstrated that rice DREB
transcription factors also function as important regulators in
ABA-independent drought responses. The rice genome con-
tains five DREB2-type genes, two of which—OsDREB2A and
OsDREB2B—are up-regulated by abiotic stress (Matsukura et al.,
2010). Transgenic rice plants overexpressing these two genes have
been found to have increased drought tolerance (Chen et al., 2008;
Cui et al., 2011). OsDREB2B generates two forms of the tran-
scripts, OsDREB2B1 and OsDREB2B2. OsDREB2B1 encodes a
non-functional protein (Short ORF in Figure 1B). OsDREB2B2
contains a coding region with AP2/ERF DNA binding domain
(Long ORF in Figure 1B). OsDREB2B2 transcripts were accumu-
lated by heat, cold, drought, and high salinity stress treatments,
while OsDREB2B1 transcripts were not changed except for cold
stress. These results suggest that OsDREB2B2 plays an important
role in the abiotic stress response of rice through the alternative
splicing regulatory system (Matsukura et al., 2010). Expression of
OsDREB1A and OsDREB1B is up-regulated by low-temperature
stress (Dubouzet et al., 2003), while expression of OsDREB1F and
OsDREB1G is increased by water deficit stress (Chen et al., 2008;
Wang et al., 2008). In contrast to other DREB1-type genes in rice,
OsDREB1F likely participates as a regulatory factor in the ABA-
dependent pathway. Transgenic rice plants overexpressing these
genes also exhibit increased drought tolerance. It has been reported
that OsICE1, OsICE2, OsSIZ1, and OsSIZ2 are involved in the
cold stress signaling pathway that regulates OsDREB1B expression
(Park et al., 2010; Nakamura et al., 2011).

TRANSGENIC RICE PLANTS THAT ENHANCE DROUGHT
STRESS TOLERANCE
Genetic engineering has opened the door to the development of
new cultivars with improved drought stress tolerance. Reports
on transgenic rice plants that show increased drought stress tol-
erance are accumulating. A selected list of transgenic rice plants,
which includes information on transgenes and promoters used for
the transformations as well as plant stress tolerance and growth
performance, is given in Table 1.

bZIP-TYPE TRANSCRIPTION FACTORS
OsbZIP23, which is closely related to the Arabidopsis homologs
ABF/AREB, is a major regulator of ABA-dependent pathways
(Xiang et al., 2008). In the study of Xiang et al. (2008), OsbZIP23-
overexpressing rice plants showed increased sensitivity to ABA
at both germination and post-germination stages. The trans-
genic plants also exhibited enhanced tolerance to drought and
salinity stresses. A transactivation assay indicated that OsbZIP23
functions as a transcriptional activator, with two regions of the
OsbZIP23 amino acid sequence—at N- (1–59) and C- (210–240)
termini—important for transcriptional activation. Microarray
analysis detected hundreds of downstream genes of OsbZIP23
with diverse functions. These downstream genes included genes
encoding stress-related transcription factors, protein kinases,
dehydrins, and LEA proteins.
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FIGURE 1 | Abiotic stress signaling networks mediated by AREB, DREB1, and DREB2-type transcription factors (A) in Arabidopsis and (B) in rice.

OsbZIP46 is a member of the subfamily that includes
OsbZIP23. A transactivation assay conducted by Tang et al. (2012)
revealed that an internal amino acid sequence (residues 122–219)
of the OsbZIP46 protein had a negative affected on transactivation
activity. A constitutively active form of OsbZIP46 (OsbZIP46CA1)
was developed by deletion of this internal region. Transgenic rice
plants overexpressing OsbZIP46CA1 showed increased drought
tolerance. Microarray analysis was then used to detect up-
or down-regulated genes in the OsbZIP46CA1-overexpressing
transgenic rice plants. These differentially regulated genes were
largely different from the OsbZIP23 downstream genes, suggesting
that OsbZIP46CA1 regulates a different set of genes than does

OsbZIP23. Although plant height under non-stressed conditions
did not appear to differ between overexpressors and control
plants, exogenous ABA application drastically decreased plant
height of OsbZIP46CA1 overexpressors. Similar growth inhibi-
tion was observed in OsbZIP23 overexpressors. These results
suggest that the ABA-dependent signaling pathway mediated by
OsbZIP23 or OsbZIP46 is closely related to growth retardation
mechanisms under drought stress conditions. This relationship
implies that growth of transgenic rice plants overexpressing
OsbZIP23 or OsbZIP46CA1 is decreased under drought stress con-
ditions, even though transgenic plants exhibit increased stress
tolerance.

Frontiers in Plant Science | Plant Biotechnology February 2015 | Volume 6 | Article 84 | 4

http://www.frontiersin.org/Plant_Biotechnology/
http://www.frontiersin.org/Plant_Biotechnology/archive


Todaka et al. Development of drought-tolerant transgenic rice plants

T
a

b
le

1
|

S
e

le
c
ti

v
e

tr
a

n
s
g

e
n

ic
ri

c
e

p
la

n
ts

w
it

h
im

p
ro

v
e

d
d

ro
u

g
h

t
s
tr

e
s
s

to
le

ra
n

c
e

.

C
o

n
s
tr

u
c
t

u
s
e

d
fo

r
tr

a
n

s
fo

rm
a

ti
o

n
T
y

p
e

o
f

tr
a

n
s
g

e
n

ic

e
n

g
in

e
e

ri
n

g

P
e

rf
o

rm
a

n
c
e

G
e

n
e

fu
n

c
ti

o
n

G
e

n
e

n
a

m
e

G
e

n
e

s
o

u
rc

e
P

ro
m

o
te

r
S

tr
e

s
s

to
le

ra
n

c
e

F
ie

ld

tr
ia

l

G
ro

w
th

tr
a

it
R

e
fe

re
n

c
e

T
ra

n
s
c
ri

p
ti

o
n

fa
c
to

r

bH
LH

O
sb

H
LH

U
8

R
ic

e
C

yt
oc

hr
om

e
c

C
O

E
*1

D
↑*

5
–

N
ot

m
en

tio
ne

d
S

eo
et

al
.(

20
11

)

bZ
IP

O
sb

ZI
P

23
R

ic
e

U
bi

qu
iti

n
C

O
E

D
↑,

S
↑*

6
–

H
yp

er
se

ns
iti

ve
to

sh
oo

t
gr

ow
th

in
hi

bi
tio

n
by

ex
og

en
ou

s
A

B
A

X
ia

ng
et

al
.(

20
08

)

bZ
IP

O
sb

ZI
P

46
R

ic
e

U
bi

qu
iti

n
C

O
E

D
↑,

O
↑*

7
–

H
yp

er
se

ns
iti

ve
to

sh
oo

t
gr

ow
th

in
hi

bi
tio

n
by

ex
og

en
ou

s
A

B
A

Ta
ng

et
al

.(
20

12
)

bZ
IP

O
sb

ZI
P

71
R

ic
e

35
S

C
O

E
D

↑,
S
↑,O

↑
–

N
ot

m
en

tio
ne

d
Li

u
et

al
.(

20
14

)

bZ
IP

O
sb

ZI
P

71
R

ic
e

R
D

29
A

S
IE

*2
O

↑
–

N
ot

m
en

tio
ne

d
Li

u
et

al
.(

20
14

)

bZ
IP

O
sb

ZI
P

16
R

ic
e

A
ct

in
C

O
E

D
↑

–
H

yp
er

se
ns

iti
ve

to
sh

oo
t

gr
ow

th
in

hi
bi

tio
n

by

ex
og

en
ou

s
A

B
A

C
he

n
et

al
.(

20
12

)

bZ
IP

A
B

F3
A

ra
bi

do
ps

is
U

bi
qu

iti
n

C
O

E
D

↑
–

N
or

m
al

sh
oo

t
gr

ow
th

an
d

se
ed

pr
od

uc
tio

n
un

de
r

co
nt

ro
lc

on
di

tio
ns

O
h

et
al

.(
20

05
)

A
P

2/
E

R
F

O
S

D
E

R
F1

R
ic

e
A

ct
in

C
R

N
A

i*
3

D
↑

–
N

ot
m

en
tio

ne
d

W
an

et
al

.(
20

11
)

A
P

2/
E

R
F

O
sE

R
F4

a
R

ic
e

C
yt

oc
hr

om
e

c
C

O
E

D
↑

–
In

cr
ea

se
in

sh
oo

t
gr

ow
th

un
de

r
co

nt
ro

lc
on

di
tio

ns
Jo

o
et

al
.(

20
13

)

A
P

2/
E

R
F

O
sE

R
F4

a
R

ic
e

A
i

A
IE

*4
D

↑
–

In
cr

ea
se

in
sh

oo
t

gr
ow

th
un

de
r

co
nt

ro
lc

on
di

tio
ns

Jo
o

et
al

.(
20

13
)

A
P

2/
E

R
F

O
sE

R
F1

0a
R

ic
e

C
yt

oc
hr

om
e

c
C

O
E

D
↑

–
N

ot
m

en
tio

ne
d

Jo
o

et
al

.(
20

13
)

A
P

2/
E

R
F

TS
R

F1
To

m
at

o
35

S
C

O
E

D
↑,

O
↑

–
In

cr
ea

se
s

in
se

ed
lin

g
w

ei
gh

t
an

d
ro

ot
le

ng
th

un
de

r

dr
ou

gh
t

co
nd

iti
on

s

Q
ua

n
et

al
.(

20
10

)

A
P

2/
E

R
F

JE
R

F3
To

m
at

o
35

S
C

O
E

D
↑,

O
↑

–
N

or
m

al
sh

oo
t

gr
ow

th
un

de
r

co
nt

ro
lc

on
di

tio
ns

Zh
an

g
et

al
.(

20
10

)

A
P

2/
E

R
F

O
sD

R
E

B
2A

R
ic

e
4A

B
R

C
S

IE
D

↑,
S
↑

–
In

cr
ea

se
s

in
pl

an
t

he
ig

ht
an

d
ef

fe
ct

iv
e

til
le

rs
un

de
r

dr
ou

gh
t

co
nd

iti
on

s

C
ui

et
al

.(
20

11
)

A
P

2/
E

R
F

O
sD

R
E

B
2B

R
ic

e
4A

B
R

C
S

IE
D

↑,
S
↑

–
In

cr
ea

se
s

in
pl

an
t

he
ig

ht
an

d
ef

fe
ct

iv
e

til
le

rs
C

ui
et

al
.(

20
11

)

A
P

2/
E

R
F

H
A

R
D

Y
A

ra
bi

do
ps

is
35

S
C

O
E

D
↑

–
In

cr
ea

se
s

in
sh

oo
t

gr
ow

th
un

de
r

co
nt

ro
lc

on
di

tio
ns

an
d

in
ro

ot
gr

ow
th

un
de

r
dr

ou
gh

t
co

nd
iti

on
s

K
ar

ab
a

et
al

.(
20

07
)

A
P

2/
E

R
F

Zm
C

B
F3

M
ai

ze
U

bi
qu

iti
n

C
O

E
D

↑,
S
↑,

C
↑*

8

–
N

or
m

al
yi

el
d

un
de

r
co

nt
ro

lc
on

di
tio

ns
,h

yp
er

se
ns

iti
ve

to
ro

ot
gr

ow
th

in
hi

bi
tio

n
by

ex
og

en
ou

s
A

B
A

X
u

et
al

.(
20

11
)

A
P

2/
E

R
F

C
B

F3
/D

R
E

B
1A

A
ra

bi
do

ps
is

U
bi

qu
iti

n
C

O
E

D
↑,

S
↑

–
N

or
m

al
sh

oo
t

gr
ow

th
an

d
se

ed
pr

od
uc

tio
n

un
de

r

no
n-

st
re

ss
ed

co
nd

iti
on

s

O
h

et
al

.(
20

05
)

A
P

2/
E

R
F

C
B

F3
/D

R
E

B
1A

A
ra

bi
do

ps
is

R
D

29
A

S
IE

D
↑

–
In

cr
ea

se
in

yi
el

d
un

de
r

dr
ou

gh
t

co
nd

iti
on

s
D

at
ta

et
al

.(
20

12
)

A
P

2/
E

R
F

C
B

F3
/D

R
E

B
1A

A
ra

bi
do

ps
is

H
VA

22
S

IE
D

↑
D

on
e

In
cr

ea
se

in
yi

el
d

un
de

r
dr

ou
gh

t
co

nd
iti

on
s

X
ia

o
et

al
.(

20
09

)

(C
on

tin
ue

d)

www.frontiersin.org February 2015 | Volume 6 | Article 84 | 5

http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Biotechnology/archive


Todaka et al. Development of drought-tolerant transgenic rice plants

T
a

b
le

1
|

C
o

n
ti

n
u

e
d

C
o

n
s
tr

u
c
t

u
s
e

d
fo

r
tr

a
n

s
fo

rm
a

ti
o

n
T
y

p
e

o
f

tr
a

n
s
g

e
n

ic

e
n

g
in

e
e

ri
n

g

P
e

rf
o

rm
a

n
c
e

G
e

n
e

fu
n

c
ti

o
n

G
e

n
e

n
a

m
e

G
e

n
e

s
o

u
rc

e
P

ro
m

o
te

r
S

tr
e

s
s

to
le

ra
n

c
e

F
ie

ld

tr
ia

l

G
ro

w
th

tr
a

it
R

e
fe

re
n

c
e

A
P

2/
E

R
F

O
sD

R
E

B
IA

R
ic

e
U

bi
qu

iti
n

C
O

E
D

↑,
S
↑,

C
↑

–
S

ho
ot

gr
ow

th
re

ta
rd

at
io

n
un

de
r

co
nt

ro
l

co
nd

iti
on

s

It
o

et
al

.(
20

06
)

A
P

2/
E

R
F

O
sD

R
E

B
IB

R
ic

e
U

bi
qu

iti
n

C
O

E
D

↑,
S
↑,

C
↑

–
S

ho
ot

gr
ow

th
re

ta
rd

at
io

n
un

de
r

co
nt

ro
l

co
nd

iti
on

s

It
o

et
al

.(
20

06
)

A
P

2/
E

R
F

C
B

F3
/D

R
E

B
1A

A
ra

bi
do

ps
is

U
bi

qu
iti

n
C

O
E

D
↑,

S
↑,

C
↑

–
S

ho
ot

gr
ow

th
re

ta
rd

at
io

n
un

de
r

co
nt

ro
l

co
nd

iti
on

s

It
o

et
al

.(
20

06
)

A
P

2/
E

R
F

C
B

F1
/D

R
E

B
1B

A
ra

bi
do

ps
is

U
bi

qu
iti

n
C

O
E

D
↑,

S
↑,

C
↑

–
S

ho
ot

gr
ow

th
re

ta
rd

at
io

n
un

de
r

co
nt

ro
l

co
nd

iti
on

s

It
o

et
al

.(
20

06
)

A
P

2/
E

R
F

C
B

F2
/D

R
E

B
1C

A
ra

bi
do

ps
is

U
bi

qu
iti

n
C

O
E

D
↑,

S
↑,

C
↑

–
S

ho
ot

gr
ow

th
re

ta
rd

at
io

n
un

de
r

co
nt

ro
l

co
nd

iti
on

s

It
o

et
al

.(
20

06
)

A
P

2/
E

R
F

H
vC

B
F4

B
ar

le
y

U
bi

qu
iti

n
C

O
E

D
↑,

S
↑,

C
↑

–
N

or
m

al
sh

oo
t

gr
ow

th
un

de
r

co
nt

ro
lc

on
di

tio
ns

O
h

et
al

.(
20

07
)

A
P

2/
E

R
F

C
B

F2
/D

R
E

B
1C

A
ra

bi
do

ps
is

Li
p9

S
IE

D
↑

–
In

cr
ea

se
in

dr
y

w
ei

gh
t

un
de

r
dr

ou
gh

t

co
nd

iti
on

s

Is
hi

za
ki

et
al

.(
20

12
)

A
P

2/
E

R
F

A
P

37
R

ic
e

O
sC

cI
C

O
E

D
↑,

S
↑,

C
↑

D
on

e
N

or
m

al
sh

oo
t

gr
ow

th
un

de
r

co
nt

ro
lc

on
di

tio
ns

O
h

et
al

.(
20

09
)

H
om

eo
do

m
ai

n
E

D
T1

/H
D

G
11

A
ra

bi
do

ps
is

A
ct

in
C

O
E

D
↑

D
on

e
In

cr
ea

se
s

in
sh

oo
t,

ro
ot

,a
nd

se
ed

pr
od

uc
tio

n

un
de

r
dr

ou
gh

t
co

nd
iti

on
s

Yu
et

al
.(

20
13

)

H
om

eo
do

m
ai

n
Zm

hd
z1

0
M

ai
ze

U
bi

qu
iti

n
C

O
E

D
↑,

S
↑

–
H

yp
er

se
ns

iti
ve

to
sh

oo
t

gr
ow

th
in

hi
bi

tio
n

by

ex
og

en
ou

s
A

B
A

Zh
ao

et
al

.(
20

14
)

M
Y

B
O

sM
Y

B
2

R
ic

e
U

bi
qu

iti
n

C
O

E
D

↑,
S
↑,

C
↑

–
H

yp
er

se
ns

iti
ve

to
sh

oo
t

gr
ow

th
in

hi
bi

tio
n

by

ex
og

en
ou

s
A

B
A

Ya
ng

et
al

.(
20

12
)

N
A

C
O

sN
A

C
5

R
ic

e
R

C
c3

R
S

E
*10

D
↑

D
on

e
In

cr
ea

se
s

in
yi

el
d

an
d

ro
ot

di
am

et
er

un
de

r

dr
ou

gh
t

co
nd

iti
on

s

Je
on

g
et

al
.(

20
13

)

N
A

C
O

sN
A

C
9/

S
N

A
C

1
R

ic
e

R
C

c3
R

S
E

D
↑

D
on

e
In

cr
ea

se
s

in
yi

el
d

an
d

ro
ot

di
am

et
er

un
de

r

dr
ou

gh
t

co
nd

iti
on

s

R
ed

ill
as

et
al

.(
20

12
)

N
A

C
O

sN
A

C
10

R
ic

e
R

C
c3

R
S

E
D

↑
D

on
e

In
cr

ea
se

s
in

yi
el

d
an

d
ro

ot
di

am
et

er
un

de
r

dr
ou

gh
t

co
nd

iti
on

s

Je
on

g
et

al
.(

20
10

)

N
A

C
O

sN
A

C
6

R
ic

e
U

bi
qu

iti
n

C
O

E
D

↑
–

S
ho

ot
gr

ow
th

re
ta

rd
at

io
n

un
de

r
co

nt
ro

l

co
nd

iti
on

s

N
ak

as
hi

m
a

et
al

.(
20

07
)

(C
on

tin
ue

d)

Frontiers in Plant Science | Plant Biotechnology February 2015 | Volume 6 | Article 84 | 6

http://www.frontiersin.org/Plant_Biotechnology/
http://www.frontiersin.org/Plant_Biotechnology/archive


Todaka et al. Development of drought-tolerant transgenic rice plants

T
a

b
le

1
|

C
o

n
ti

n
u

e
d

C
o

n
s
tr

u
c
t

u
s
e

d
fo

r
tr

a
n

s
fo

rm
a

ti
o

n
T
y

p
e

o
f

tr
a

n
s
g

e
n

ic

e
n

g
in

e
e

ri
n

g

P
e

rf
o

rm
a

n
c
e

G
e

n
e

fu
n

c
ti

o
n

G
e

n
e

n
a

m
e

G
e

n
e

s
o

u
rc

e
P

ro
m

o
te

r
S

tr
e

s
s

to
le

ra
n

c
e

F
ie

ld

tr
ia

l

G
ro

w
th

tr
a

it
R

e
fe

re
n

c
e

N
A

C
S

N
A

C
1

R
ic

e
35

S
C

O
E

D
↑,

S
↑

D
on

e
H

yp
er

se
ns

iti
ve

to
sh

oo
t

gr
ow

th
in

hi
bi

tio
n

by

ex
og

en
ou

s
A

B
A

,i
nc

re
as

e
in

yi
el

d
un

de
r

dr
ou

gh
t

co
nd

iti
on

s,
no

rm
al

sh
oo

t
gr

ow
th

un
de

r
co

nt
ro

l

co
nd

iti
on

s

H
u

et
al

.(
20

06
)

W
R

K
Y

O
sW

R
K

Y
30

R
ic

e
35

S
C

O
E

D
↑

–
N

ot
m

en
tio

ne
d

S
he

n
et

al
.(

20
12

)

Zi
nc

fin
ge

r
ZF

P
18

2
R

ic
e

35
S

C
O

E
D

↑,
S
↑,

C
↑

–
S

im
ila

r
m

or
ph

ol
og

ic
al

tr
ai

ts
un

de
r

co
nt

ro
l

co
nd

iti
on

s

H
ua

ng
et

al
.(

20
12

)

Zi
nc

fin
ge

r
ZF

P
24

5
R

ic
e

35
S

C
O

E
D

↑,
C

↑
–

H
yp

er
se

ns
iti

ve
to

sh
oo

t
gr

ow
th

in
hi

bi
tio

n
by

ex
og

en
ou

s
A

B
A

,n
or

m
al

sh
oo

t
gr

ow
th

un
de

r

co
nt

ro
lc

on
di

tio
ns

H
ua

ng
et

al
.(

20
09

)

Zi
nc

fin
ge

r
ZF

P
25

2
R

ic
e

35
S

C
O

E
D

↑,
S
↑

–
N

ot
m

en
tio

ne
d

X
u

et
al

.(
20

08
)

Zi
nc

fin
ge

r
ZA

T1
0

A
ra

bi
do

ps
is

A
ct

in
C

O
E

D
↑

D
on

e
In

cr
ea

se
s

in
yi

el
d

un
de

r
dr

ou
gh

t
co

nd
iti

on
s

X
ia

o
et

al
.(

20
09

)

Zi
nc

fin
ge

r
ZA

T1
0

A
ra

bi
do

ps
is

H
VA

22
S

IE
D

↑
D

on
e

In
cr

ea
se

s
in

yi
el

d
un

de
r

dr
ou

gh
t

co
nd

iti
on

s
X

ia
o

et
al

.(
20

09
)

K
in

a
s
e

s

C
al

ci
um

-d
ep

en
de

nt

pr
ot

ei
n

ki
na

se

O
sC

P
K

4
R

ic
e

U
bi

qu
iti

n
C

O
E

D
↑,

S
↑

–
N

ot
m

en
tio

ne
d

C
am

po
et

al
.(

20
14

)

C
al

ci
um

-d
ep

en
de

nt

pr
ot

ei
n

ki
na

se

O
sC

D
P

K
1

R
ic

e
U

bi
qu

iti
n

C
O

E
D

↑
–

D
ec

re
as

es
in

pl
an

t
he

ig
ht

an
d

gr
ai

n
si

ze
un

de
r

co
nt

ro
lc

on
di

tio
ns

H
o

et
al

.(
20

13
)

C
al

ci
um

-d
ep

en
de

nt

pr
ot

ei
n

ki
na

se

O
sC

D
P

K
7

R
ic

e
35

S
C

O
E

D
↑,

S
↑,

C
↑

–
N

or
m

al
gr

ow
th

un
de

r
co

nt
ro

lc
on

di
tio

ns
S

ai
jo

et
al

.(
20

00
)

C
al

ci
ne

ur
in

B
-li

ke

pr
ot

ei
n

in
te

ra
ct

in
g

pr
ot

ei
n

ki
na

se

O
sC

IP
K

12
R

ic
e

U
bi

qu
iti

n
C

O
E

D
↑

–
N

or
m

al
gr

ow
th

un
de

r
co

nt
ro

lc
on

di
tio

ns
X

ia
ng

et
al

.(
20

07
)

R
ec

et
or

-li
ke

ki
na

se
O

sS
IK

I
R

ic
e

35
S

C
O

E
D

↑,
S
↑

–
N

or
m

al
gr

ow
th

un
de

r
co

nt
ro

lc
on

di
tio

ns
O

uy
an

g
et

al
.(

20
10

)

R
ec

et
or

-li
ke

ki
na

se
O

sS
IK

2
R

ic
e

35
S

C
O

E
D

↑,
S
↑

–
D

ec
re

as
e

in
sh

oo
tg

ro
w

th
un

de
rc

on
tr

ol
co

nd
iti

on
s

C
he

n
et

al
.(

20
13

)

M
A

P
ki

na
se

ki
na

se

ki
na

se

N
P

K
1

A
ra

bi
do

ps
is

A
ct

in
C

O
E

D
↑

D
on

e
In

cr
ea

se
s

in
yi

el
d

un
de

r
dr

ou
gh

t
co

nd
iti

on
s

X
ia

o
et

al
.(

20
09

)

M
A

P
ki

na
se

ki
na

se

ki
na

se

N
P

K
1

A
ra

bi
do

ps
is

H
VA

22
S

IE
D

↑
D

on
e

In
cr

ea
se

s
in

yi
el

d
un

de
r

dr
ou

gh
t

co
nd

iti
on

s
X

ia
o

et
al

.(
20

09
)

(C
on

tin
ue

d)

www.frontiersin.org February 2015 | Volume 6 | Article 84 | 7

http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Biotechnology/archive


Todaka et al. Development of drought-tolerant transgenic rice plants

T
a

b
le

1
|

C
o

n
ti

n
u

e
d

C
o

n
s
tr

u
c
t

u
s
e

d
fo

r
tr

a
n

s
fo

rm
a

ti
o

n
T
y

p
e

o
f

tr
a

n
s
g

e
n

ic

e
n

g
in

e
e

ri
n

g

P
e

rf
o

rm
a

n
c
e

G
e

n
e

fu
n

c
ti

o
n

G
e

n
e

n
a

m
e

G
e

n
e

s
o

u
rc

e
P

ro
m

o
te

r
S

tr
e

s
s

to
le

ra
n

c
e

F
ie

ld

tr
ia

l

G
ro

w
th

tr
a

it
R

e
fe

re
n

c
e

P
h

y
to

h
o

rm
o

n
e

s

A
B

A
re

ce
pt

or
O

sP
Y

L/
R

C
A

R
5

R
ic

e
U

bi
qu

iti
n

C
O

E
D

↑,
S
↑

–
H

yp
er

se
ns

iti
ve

to
sh

oo
t

gr
ow

th
in

hi
bi

tio
n

by

ex
og

en
ou

s
A

B
A

,d
ec

re
as

e
in

yi
el

d
un

de
r

co
nt

ro
lc

on
di

tio
ns

K
im

et
al

.(
20

14
)

M
ol

yb
de

nu
m

co
fa

ct
or

su
lfu

ra
se

LO
S

5/
A

B
A

3
A

ra
bi

do
ps

is
A

ct
in

C
O

E
D

↑
D

on
e

In
cr

ea
se

s
in

yi
el

d
un

de
r

dr
ou

gh
t

co
nd

iti
on

s
X

ia
o

et
al

.(
20

09
)

M
ol

yb
de

nu
m

co
fa

ct
or

su
lfu

ra
se

LO
S

5/
A

B
A

3
A

ra
bi

do
ps

is
H

VA
22

S
IE

D
↑

D
on

e
In

cr
ea

se
s

in
yi

el
d

un
de

r
dr

ou
gh

t
co

nd
iti

on
s

X
ia

o
et

al
.(

20
09

)

A
ux

in
ef

flu
x

ca
rr

ie
r

O
sP

IN
3t

R
ic

e
35

S
C

O
E

O
↑

–
In

cr
ea

se
in

ro
ot

gr
ow

th
un

de
r

co
nt

ro
l

co
nd

iti
on

s

Zh
an

g
et

al
.(

20
12

)

Is
op

en
te

ny
l-

tr
an

sf
er

as
e

IP
T

A
gr

ob
ac

te
riu

m
SA

P
K

S
M

IE
*11

D
↑

–
N

or
m

al
gr

ow
th

un
de

r
co

nt
ro

lc
on

di
tio

ns
Pe

le
g

et
al

.(
20

11
)

β
-c

at
ot

en
e

H
yd

ro
xy

la
se

D
S

M
2

R
ic

e
35

S
C

O
E

D
↑

–
In

cr
ea

se
s

in
sp

ik
el

et
fe

rt
ili

ty
un

de
r

dr
ou

gh
t

co
nd

iti
on

s

D
u

et
al

.(
20

10
)

L
E

A
p

ro
te

in
s

G
ro

up
3

LE
A

pr
ot

ei
n

H
VA

1
B

ar
le

y
A

ct
in

C
O

E
D

↑,
S
↑

–
N

or
m

al
gr

ow
th

un
de

r
co

nt
ro

lc
on

di
tio

ns
X

u
et

al
.(

19
96

)

G
ro

up
3

LE
A

pr
ot

ei
n

O
sL

E
A

3-
2

R
ic

e
2X

35
S

C
O

E
D

↑,
S
↑

–
N

or
m

al
gr

ow
th

un
de

r
co

nt
ro

lc
on

di
tio

ns
D

ua
n

an
d

C
ai

(2
01

2)

G
ro

up
3

LE
A

pr
ot

ei
n

O
sL

E
A

3-
1

R
ic

e
35

S
C

O
E

D
↑

D
on

e
N

or
m

al
gr

ai
n

yi
el

d
un

de
r

co
nt

ro
lc

on
di

tio
ns

X
ia

o
et

al
.(

20
07

)

G
ro

up
3

LE
A

pr
ot

ei
n

O
sL

E
A

3-
1

R
ic

e
H

VA
1-

lik
e

S
IE

D
↑

D
on

e
N

or
m

al
gr

ai
n

yi
el

d
un

de
r

co
nt

ro
lc

on
di

tio
ns

X
ia

o
et

al
.(

20
07

)

O
th

e
rs

Li
pi

d
tr

an
sf

er
pr

ot
ei

n
O

sD
IL

R
ic

e
U

bi
qu

iti
n

C
O

E
D

↑
–

In
cr

ea
se

s
in

sh
oo

t
gr

ow
th

un
de

r
os

m
ot

ic

st
re

ss

G
uo

et
al

.(
20

13
)

H
ea

t
sh

oc
k

pr
ot

ei
n

O
sH

sp
17

.0
R

ic
e

35
S

C
O

E
D

↑,
S
↑

–
In

cr
ea

se
s

in
sh

oo
t

an
d

ro
ot

gr
ow

th
un

de
r

os
m

ot
ic

st
re

ss

Zo
u

et
al

.(
20

12
)

H
ea

t
sh

oc
k

pr
ot

ei
n

O
sH

sp
23

.7
R

ic
e

35
S

C
O

E
D

↑,
S
↑

–
In

cr
ea

se
s

in
sh

oo
t

an
d

ro
ot

gr
ow

th
un

de
r

os
m

ot
ic

st
re

ss

Zo
u

et
al

.(
20

12
)

m
yo

-ln
os

ito
l

ox
yg

en
as

e

O
sM

lO
X

R
ic

e
35

S
C

O
E

O
↑

–
In

cr
ea

se
s

in
sh

oo
t

gr
ow

th
un

de
r

os
m

ot
ic

st
re

ss

D
ua

n
et

al
.(

20
12

)

O
rn

ith
in

e

δ
-a

m
in

o-
tr

an
sf

er
as

e

O
sO

AT
R

ic
e

U
bi

qu
iti

n
C

O
E

D
↑,

O
↑

D
on

e
In

cr
ea

se
s

in
sh

oo
t

gr
ow

th
un

de
r

os
m

ot
ic

st
re

ss

Yo
u

et
al

.(
20

12
)

(C
on

tin
ue

d)

Frontiers in Plant Science | Plant Biotechnology February 2015 | Volume 6 | Article 84 | 8

http://www.frontiersin.org/Plant_Biotechnology/
http://www.frontiersin.org/Plant_Biotechnology/archive


Todaka et al. Development of drought-tolerant transgenic rice plants

T
a

b
le

1
|

C
o

n
ti

n
u

e
d

C
o

n
s
tr

u
c
t

u
s
e

d
fo

r
tr

a
n

s
fo

rm
a

ti
o

n
T
y

p
e

o
f

tr
a

n
s
g

e
n

ic

e
n

g
in

e
e

ri
n

g

P
e

rf
o

rm
a

n
c
e

G
e

n
e

fu
n

c
ti

o
n

G
e

n
e

n
a

m
e

G
e

n
e

s
o

u
rc

e
P

ro
m

o
te

r
S

tr
e

s
s

to
le

ra
n

c
e

F
ie

ld

tr
ia

l

G
ro

w
th

tr
a

it
R

e
fe

re
n

c
e

H
is

ph
os

ph
ot

ra
ns

fe
r

pr
ot

ei
n

O
sA

H
P

R
ic

e
U

bi
qu

iti
n

C
R

N
A

i
O

↑
–

D
ec

re
as

e
in

in
te

rn
od

e
le

ng
th

an
d

in
cr

ea
se

in

ro
ot

gr
ow

th
un

de
r

co
nt

ro
lc

on
di

tio
ns

S
un

et
al

.(
20

14
)

R
IN

G

do
m

ai
n-

co
nt

ai
ni

ng

pr
ot

ei
n

O
sR

D
C

P
l

R
ic

e
35

S
C

O
E

D
↑

–
N

ot
m

en
tio

ne
d

B
ae

et
al

.(
20

11
)

R
ib

os
om

e-

in
ac

tiv
at

in
g

pr
ot

ei
n

O
sR

IP
18

R
ic

e
35

S
C

O
E

D
↑,

S
↑

–
N

ot
m

en
tio

ne
d

Ji
an

g
et

al
.(

20
12

)

R
IN

G
-fi

ng
er

co
nt

ai
ni

ng
E

3
lig

as
e

O
sS

D
IR

I
R

ic
e

U
bi

qu
iti

n
C

O
E

D
↑

–
N

or
m

al
gr

ow
th

at
an

ad
ul

t
st

ag
e

un
de

r
co

nt
ro

l

co
nd

iti
on

s

G
ao

et
al

.(
20

11
)

D
N

A
an

d
R

N
A

he
lic

as
e

an
d

AT
Pa

se

O
sS

U
V

3
R

ic
e

35
S

C
O

E
O

↑,
S
↑

–
In

cr
ea

se
s

in
sh

oo
t

an
d

ro
ot

gr
ow

th
un

de
r

hi
gh

sa
lin

ity

Tu
te

ja
et

al
.(

20
13

)

Tr
eh

al
os

e-
6-

ph
os

ph
at

e

sy
nt

ha
se

O
sT

P
S

I
R

ic
e

A
ct

in
C

O
E

D
↑,S

↑,C
↑

–
N

ot
m

en
tio

ne
d

Li
et

al
.(

20
11

)

R
N

A
bi

nd
in

g
pr

ot
ei

n
G

R
P

2
A

ra
bi

do
ps

is
U

bi
qu

iti
n

C
O

E
D

↑
–

N
or

m
al

sh
oo

t
gr

ow
th

un
de

r
co

nt
ro

lc
on

di
tio

ns
Ya

ng
et

al
.(

20
14

)

R
N

A
bi

nd
in

g
pr

ot
ei

n
G

R
P

7
A

ra
bi

do
ps

is
U

bi
qu

iti
n

C
O

E
D

↑
–

N
or

m
al

sh
oo

t
gr

ow
th

un
de

r
co

nt
ro

lc
on

di
tio

ns
Ya

ng
et

al
.(

20
14

)

H
ar

pi
n

hr
f1

X
an

th
om

on
as

35
S

C
O

E
D

↑
–

N
ot

m
en

tio
ne

d
Zh

an
g

et
al

.(
20

11
)

Fa
rn

es
yl

tr
an

sf
er

as
e/

sq
ua

le
ne

sy
nt

ha
se

S
Q

S
M

ai
ze

U
bi

qu
iti

n
C

R
N

A
i

D
↑

–
N

or
m

al
gr

ow
th

un
de

rc
on

tr
ol

co
nd

iti
on

s
an

d
no

in
hi

bi
tio

n
of

se
ed

lin
g

gr
ow

th
by

A
B

A
tr

ea
tm

en
t

M
an

av
al

an
et

al
.(

20
12

)

14
-3

-3
pr

ot
ei

n
Zm

G
F1

4-
6

M
ai

ze
U

bi
qu

iti
n

C
O

E
D

↑
–

D
ec

re
as

es
in

sh
oo

t
gr

ow
th

an
d

se
ed

pr
od

uc
tio

n
un

de
r

co
nt

ro
lc

on
di

tio
ns

C
am

po
et

al
.(

20
12

)

14
-3

-3
pr

ot
ei

n
G

F1
4c

R
ic

e
U

bi
qu

iti
n

C
O

E
D

↑
–

N
ot

m
en

tio
ne

d
H

o
et

al
.(

20
13

)

A
rg

in
in

e

de
ca

rb
ox

yl
as

e

D
ad

c
D

at
ur

a
U

bi
qu

iti
n

C
O

E
D

↑
–

N
or

m
al

gr
ow

th
un

de
r

co
nt

ro
lc

on
di

tio
ns

C
ap

el
le

ta
l.

(2
00

4)

M
an

ga
ne

se

su
pe

ro
xi

de
di

m
ut

as
e

M
nS

O
D

Pe
a

S
W

PA
2

S
IE

O
↑

–
N

ot
m

en
tio

ne
d

W
an

g
et

al
.(

20
05

)

S
ki

-in
te

ra
ct

in
g

pr
ot

ei
n

O
sS

K
lP

a
R

ic
e

A
ct

in
C

O
E

O
↑

–
N

or
m

al
gr

ow
th

un
de

r
co

nt
ro

lc
on

di
tio

ns
,l

es
s

gr
ow

th
in

hi
bi

tio
n

un
de

rA
B

A
,s

al
in

ity
an

d

os
m

ot
ic

st
re

ss
co

nd
iti

on
;

H
ou

et
al

.(
20

09
)

*1
C

O
E

,
co

ns
tit

ut
iv

el
y

ov
er

ex
pr

es
si

on
;

*2
S

IE
,

st
re

ss
-in

du
ci

bl
e

ex
pr

es
si

on
;

*3
C

R
N

A
i,

co
ns

tit
ut

iv
el

y
tr

ig
ge

rin
g

R
N

A
in

te
rf

er
en

ce
;

*4
A

IE
,

A
B

A
-in

du
ci

bl
e

ex
pr

es
si

on
;

*5
D

↑,
en

ha
nc

ed
dr

ou
gh

t
st

re
ss

to
le

ra
nc

e;
*6

S
↑,

en
ha

nc
ed

sa
lin

ity
st

re
ss

to
le

ra
nc

e;
*7

O
↑,

en
ha

nc
ed

os
m

ot
ic

e
st

re
ss

to
le

ra
nc

e;
*8

C
↑,

en
ha

nc
ed

co
ld

st
re

ss
to

le
ra

nc
e;

*1
0
R

S
E

,r
oo

ts
pe

ci
fic

ex
pr

es
si

on
;*

11
S

M
IE

,s
tr

es
s-

an
d

m
at

ur
at

io
n-

in
du

ce
d

pr
om

ot
er

.

www.frontiersin.org February 2015 | Volume 6 | Article 84 | 9

http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Biotechnology/archive


Todaka et al. Development of drought-tolerant transgenic rice plants

Arabidopsis ABF3 belongs to the same bZIP subfamily as
OsbZIP46 and OsbZIP23. Transgenic Arabidopsis plants over-
expressing ABF3 show improved drought tolerance (Kang et al.,
2002). Under non-stressed conditions, overexpressors are mor-
phologically identical to control plants. Transgenic rice plants
overexpressing ABF3 have also been found to exhibit improved
drought tolerance without growth inhibition (Oh et al., 2005).

OsbZIP16 and OsbZIP71 are classified into group IV of the
rice bZIP subfamily, which is different than the Arabidopsis
ABF/AREB subfamily (Nijhawan et al., 2008). Transgenic rice
plants overexpressing OsbZIP16 show improved drought tol-
erance and increased growth inhibition under exogenous ABA
treatment (Chen et al., 2012), while OsbZIP71-overexpressing
plants under the 35S promoter or a stress-inducible RD29A pro-
moter exhibit improved drought, salt, and osmotic stress tolerance
(Liu et al., 2014). Overexpression of these genes seems not to
change plant architecture under non-stressed conditions.

These reports suggest that the bZIP-type transcription factors
involved in the ABA signaling pathway are potentially useful for
transgenic engineering to develop rice cultivars with enhanced
drought tolerance. This notion is supported by the fact that ABA
content in rice is increased by drought stress (Maruyama et al.,
2014) and the finding that the ABRE cis-element is enriched in the
promoter regions of drought-responsive genes in rice (Maruyama
et al., 2012).

AP2/ERF-TYPE TRANSCRIPTION FACTORS
As mentioned above, the Arabidopsis DREB1A gene is a key
regulator of abiotic stress response. At least three independent
research groups have developed DREB1A-overexpressing trans-
genic rice plants. Oh et al. (2005) reported that overexpression of
DREB1A driven by the ubiquitin promoter in rice plants enhances
tolerance to drought and salinity stresses without growth retarda-
tion under non-stressed conditions. They observed up-regulated
expression of several genes, including those responsive to stress,
in transgenic rice plants. Datta et al. (2012) developed transgenic
rice plants expressing DREB1A under the control of the stress-
inducible RD29 promoter. The yield of the transgenic rice plants
under drought stress conditions was increased compared with
that of non-transgenic plants. Ito et al. (2006) also reported that
transgenic rice plants overexpressing DREB1A with the ubiqui-
tin promoter showed enhanced tolerance to drought, cold, and
salinity stresses. Elevated contents of osmoprotectants such as
free proline and soluble sugars were also observed. A microar-
ray analysis detected up-regulated genes in the transgenic rice
plants; among the uncovered genes were genes for α-amylase and
dehydrins, which were different from those identified by Oh et al.
(2005). Unlike Oh et al. (2005), Ito et al. (2006) found that shoot
growth retardation occurred in the transgenic plants under non-
stressed conditions. Ito et al. (2006) also developed transgenic
rice plants overexpressing DREB1A homologs, Arabidopsis par-
alogs DREB1B and DREB1C and rice orthologs OsDREB1A and
OsDREB1B under the control of the ubiquitin promoter. These
overexpressors showed enhanced tolerance to drought, salinity,
and low temperature and displayed reduced growth under non-
stressed conditions. Ishizaki et al. (2012) introduced Arabidopsis
DREB1C into the upland rice cultivar NERICA1, an interspecific

hybrid between stress-resistant O. glaberrima Steud. and high-
yield O. sativa. The transgenic rice plants showed improved
survival under drought stress conditions. HvCBF4, a member
of the Arabidopsis DREB1A subfamily, has been isolated from
barley as a low-temperature responsive gene. Overexpression of
HvCBF4 was found to enhance tolerance to drought, salinity,
and low temperature while shoot growth was unaffected (Oh
et al., 2007). ZmCBF3, a maize AP2/ERF-type transcription fac-
tor, is also a member of the Arabidopsis DREB1A subfamily.
In a study by Xu et al. (2011), overexpression of ZmCBF3 in
transgenic rice plants enhanced tolerance to drought, salinity,
and low-temperature stresses. Yields under control conditions
were unchanged in the overexpressors compared with those in
non-transgenic plants.

As mentioned above, the physiological role and molecular func-
tion of Arabidopsis DREB2A in abiotic stress responses have been
vigorously studied (Mizoi et al., 2012). Arabidopsis DREB2A is
widely recognized as a master regulator of both drought and heat
stress responses and has a high potential to enhance drought
and heat stress tolerance (Mizoi et al., 2012). The DREB2 regu-
latory mechanism seems to be well conserved in various plant
species. In rice, there are five DREB2 family genes: OsDREB2A,
OsDREB2B, OsDREB2C, OsDREB2E, and OsABI4. Transgenic Ara-
bidopsis plants overexpressing OsDREB2B are reported to show
increased expression of DREB2A target genes and enhanced tol-
erance to drought and heat stresses (Matsukura et al., 2010).
Transgenic rice plants overexpressing OsDREB2B have also been
found to increase drought tolerance (Chen et al., 2008). Overex-
pression of OsDREB2A under the control of an ABA-responsive
promoter in rice plants increased contents of soluble sugars and
proline at the seedling stage, resulting in increases in osmotic and
salinity stress tolerance (Cui et al., 2011). The transgenic rice plants
exhibited increased plant height and effective tiller numbers at the
reproductive stage following drought treatment.

In addition to DREB1A and DREB2 subfamily members, sev-
eral AP2/ERF-type and AP2/ERF-like transcription factors have
been used to develop transgenic rice plants with enhanced abiotic
stress tolerance. The Arabidopsis HARDY gene is an AP2/ERF-
like transcription factor that enhances drought and salinity stress
tolerance (Karaba et al., 2007). Transgenic rice plants overex-
pressing HARDY show enhanced photosynthetic assimilation
and reduced transpiration, leading to increased shoot and root
biomass. OsDERF1 is a protein that directly interacts with the
GCC box in the promoter regions of OsERF3 and OsAP2-39
(Wan et al., 2011). Knockdown of OsDERF1 increases ethylene
biosynthesis and drought tolerance, suggesting that OsDERF1
modulates drought response via ethylene production. Trans-
genic rice plants overexpressing OsERF3 show decreased drought
tolerance (Zhang et al., 2013). In contrast, Joo et al. (2013)
have reported that overexpression of OsERF3/OsERF4a decreases
expression levels of a repressor involved in defense responses, lead-
ing to increased drought tolerance and seedling shoot growth.
Overexpression of a tomato ERF gene, TSRF1, was found to
improve osmotic and drought tolerance without growth retar-
dation in rice seedlings. The improvement was attributed to
corresponding increases in the expression of genes encoding
MYC and MYB-type transcription factors and genes related to
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ABA synthesis, proline synthesis, and photosynthesis (Quan et al.,
2010). Another tomato ERF gene, JERF3, has also been observed
to increase drought tolerance when overexpressed in transgenic
rice plants (Zhang et al., 2010). The studied transgenic rice plants
showed higher contents of soluble sugars and proline compared
with those of non-transgenic plants. Transgenic rice plants over-
expressing AP37, a rice AP2/ERF transcription factor, showed
enhanced tolerance to drought, cold and high salinity stresses
(Oh et al., 2009). Microarray analysis identified AP37 down-
stream genes, which included genes for PHD zinc finger and iron
transporter.

Among the AP2/ERF transcription factor genes described here,
DREB1/CBF genes have been widely used for the development of
drought-tolerant transgenic crops. These developed crops include
chrysanthemum (Hong et al., 2006), peanut (Bhatnagar-Mathur
et al., 2013), soybean (Polizel et al., 2011), tobacco (Kasuga et al.,
2004), tomato (Hsieh et al., 2002), tall fescue (Zhao et al., 2007),
and wheat (Pellegrineschi et al., 2004).

NAC-TYPE TRANSCRIPTION FACTORS
NAC family proteins function in a wide variety of developmen-
tal processes and abiotic stress responses (Nakashima et al., 2012;
Nuruzzaman et al., 2013). Constitutive overexpression of OsNAC6
in rice plants was observed to increase tolerance to drought and
salinity stresses (Nakashima et al., 2007). The transgenic rice plants
showed decreased shoot growth under non-stressed conditions.
When a stress-inducible promoter was used for the transgene
expression, the transgenic plants showed normal growth under
non-stressed conditions and improved salinity stress tolerance. In
the same study, microarray analysis revealed OsNAC6 downstream
genes including stress-related genes. The transgenic rice plants
constitutively overexpressing OsNAC6 also showed enhanced tol-
erance to blast disease, suggesting that OsNAC6 can act as a
transcriptional regulator in both biotic and abiotic stress responses
in rice.

In a study by Hu et al. (2006), SNAC1 was demonstrated to be
predominantly expressed in guard cells under drought conditions.
Transgenic rice plants overexpressing SNAC1 showed reduced
water loss due to increased stomatal closure and enhanced expres-
sion of a large number of stress-related genes. As mentioned in the
following section, the transgenic rice plants exhibited enhanced
drought tolerance during field trials.

Transgenic rice plants overexpressing OsNAC10 under the con-
trol of a root-specific promoter showed thicker roots and higher
grain yields than those of control plants under drought stress
conditions (Jeong et al., 2010). An accompanying microarray
analysis identified various downstream genes, including P450, Zn-
finger, HAK5, 2OG-Fe(II), NCED, NAC, and KUP3 (Jeong et al.,
2010). Similar to OsNAC10 overexpressors, transgenic rice plants
overexpressing OsNAC5 (Jeong et al., 2013) and OsNAC9/SNAC1
(Redillas et al., 2012) under root-specific promoter control have
been shown to have thicker roots and higher grain yields than
control plants under drought stress conditions. The microarray
analysis of Jeong et al. (2013) identified 62 downstream genes of
OsNAC5, including NCED, calcium-transporting ATPase, germin-
like protein, and meristem protein 5. Only 17 of these downstream
genes were up-regulated in OsNAC10-overexpressing transgenic

rice plants (Jeong et al., 2013). With respect to OsNAC9/SNAC1
overexpressors, identified downstream genes included NCED and
calcium-transporting ATPase (Redillas et al., 2012). In addition
to stress-responsive genes, OsNAC family downstream genes
included genes involved in cell growth and development, sug-
gesting that the OsNAC family is involved in regulatory mech-
anisms of stress responses and developmental processes. Song
et al. (2011) observed that accumulations of proline and solu-
ble sugars in OsNAC5 overexpressors were higher than those of
non-transgenic plants. Takasaki et al. (2010) have reported that
OsNAC5 functions as a transcriptional activator and up-regulates
expression of some stress-responsive genes in OsNAC5 overex-
pressors. These authors also detected dimerization of OsNAC5
with OsNAC5, OsNAC5 with OsNAC6, and OsNAC5 with
SNAC1.

OTHER TRANSCRIPTION FACTORS
Other transcription factors have also been applied in the suc-
cessful development of transgenic rice plants with enhanced
drought tolerance. Some of these plants have shown increased ABA
sensitivity. Arabidopsis EDT1/HDG11 encodes a homeodomain-
leucine zipper transcription factor, which is likely involved in
reproductive development (Yu et al., 2008). Overexpression of
EDT1/HDG11 in rice plants has been found to enhance root
development, reduce stomatal density, and increase water-use
efficiency (Yu et al., 2013). In the cited study, levels of ABA, pro-
line and soluble sugars and activities of reactive oxygen species
(ROS)-scavenging enzymes under drought stress conditions were
higher in transgenic rice plants than in non-transgenic ones.
Global gene expression analysis showed that stress-responsive
genes, including SNAC1, SNAC2, OsbZIP23, and OsNCED3,
were up-regulated in the transgenic rice plants. Under drought
stress conditions, the transgenic rice plants exhibited higher
grain yields compared with non-transgenic plants. Zhao et al.
(2014) isolated a maize homeodomain-leucine zipper transcrip-
tion factor gene, Zmhdz10, and generated transgenic rice plants
overexpressing this gene. Overexpression of Zmhdz10 enhanced
tolerance to drought and salinity stresses and increased growth
inhibition under exogenous ABA treatments. In another study, a
rice R2R3-type MYB gene, OsMYB2, was overexpressed in rice
plants (Yang et al., 2012). The transgenic overexpressors showed
enhanced tolerance to drought, salinity and low-temperature
stresses, and normal growth rates under non-stressed conditions.
Exogenous ABA treatment resulted in greater growth inhibition
of shoots of the overexpressors than those of non-transgenic
plants.

Overexpression of OsWRKY30 in rice plants has been found
to enhance drought tolerance (Shen et al., 2012). In con-
trast, no improved drought tolerance due to overexpression
of OsWRKY30AA, where all serine residues followed by pro-
line are replaced by alanine residues in the encoded pro-
tein, has been observed. The observed interaction of these
OsWRKY30 proteins with various MAP kinase proteins suggests
that OsWRKY30 functions downstream of the MAPK cascades
(Shen et al., 2012). A few studies have reported that overex-
pression of genes encoding C2H2-type zinc finger transcription
factors improves drought tolerance in transgenic rice plants. For
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example, ZFP182-overexpressing transgenic rice plants exhibit
increased expression levels of OsDREB1A, OsDREB1B, OsP5CS,
and OsLEA3 and show enhanced tolerance to drought, salinity
and low-temperature stresses (Huang et al., 2012), suggesting that
ZFP182 may function in the upstream pathway of OsDREB1.
Overexpression of ZFP245 in rice plants has been found to increase
tolerance to drought and low-temperature stresses (Huang et al.,
2009). Transgenic rice plants display elevated proline levels and
ROS-scavenging enzyme activities. Overexpressing ZFP252 in
rice plants leads to enhanced tolerance to drought and salinity
stresses and increased proline and soluble sugar contents (Xu
et al., 2008). Increased drought tolerance has been observed in
transgenic rice plants overexpressing OsbHLH148, a gene encod-
ing MeJA-responsive transcription factor (Seo et al., 2011). In the
cited study, expression of OsDREB1 and OsJAZ family genes was
up-regulated in the overexpressors, and OsJAZ and OsCOI1 pro-
teins were demonstrated to interact with one another. These results
suggest that OsbHLH148 acts on the JA signaling cascade with
OsJAZ1 and OsCOI1 and functions as an upstream regulator of
OsDREB1.

PROTEIN KINASES
Transgenic rice plants overexpressing OsCPK4, a calcium-
dependent protein kinase, showed enhanced tolerance to drought
and salinity stresses in a study by Campo et al. (2014). In the
overexpressors, genes related to lipid metabolism, such as those
encoding proteins with lipid binding activities, lipid transfer pro-
teins, and lipases, were up-regulated. Oxidative stress-responsive
genes, including peroxidase, thioredoxin, GST, and laccase genes,
were also up-regulated in the transgenic plants. These findings
suggest that OsCPK4 is involved in the regulation of cellular mem-
brane protection against oxidative damage (Campo et al., 2014).
Ho et al. (2013) isolated OsCDPK1 from sucrose-starved rice sus-
pension cells and developed OsCDPK1-overexpressing transgenic
rice plants. The transgenic rice plants displayed improved drought
tolerance and activated (Ho et al., 2013) expression of a gene for
a 14-3-3 protein, GF14c. Transgenic rice plants overexpressing
GF14c also showed improved drought tolerance, suggesting that
enhanced drought tolerance due to OsCDPK1 may be mediated
by GF14c. Campo et al. (2012) have reported that transgenic rice
plants overexpressing the gene encoding ZmGF14-6, a maize 14-
3-3 protein, show enhanced drought tolerance. In their study,
expression of stress-responsive genes, including Rab21 and Dip1,
was higher under drought stress conditions in transgenic rice
plants than in non-transgenic ones, with transgenic plants also
exhibiting a higher susceptibility to infection by fungal pathogens.
These observations indicate that ZmGF14-6 functions as a positive
regulator in abiotic stress response, but as a negative regulator in
biotic stress response. Saijo et al. (2000) discovered that transgenic
rice plants overexpressing OsCDPK7 showed elevated tolerance to
drought, salinity, and low-temperature stresses. Overexpression
of OsCDPK7 increased the expression of several stress-responsive
genes, suggesting that OsCDPK7 is a positive regulator of abi-
otic stress response. Finally, transgenic rice plants overexpressing
OsCIPK12 have been found to exhibit enhanced drought toler-
ance, with increased accumulation of proline and soluble sugars
(Xiang et al., 2007).

RECEPTOR-LIKE KINASES
OsSIK1 is a putative receptor-like kinase (RLK) with extracel-
lular leucine-rich repeats (Ouyang et al., 2010). In the study by
Ouyang et al. (2010), transgenic rice plants overexpressing OsSIK1
showed enhanced tolerance to drought and salinity stresses.
Leaves of the transgenic plants exhibited elevated peroxidase,
superoxide dismutase and catalase activities and reduced accumu-
lation of H2O2 compared with those of non-transgenic plants.
Reduced stomatal density was also observed in the transgenic
plants, suggesting that OsSIK1 may act as a negative regula-
tor for stomatal development. Another rice RLK, OsSIK2, has
been reported by Chen et al. (2013). In their study, OsSIK2
was predicted to be an S-domain RLK. Transgenic rice plants
overexpressing OsSIK2 showed enhanced tolerance to drought
and salinity stresses, early leaf development, and a delayed
dark-induced senescence phenotype. Their results suggest that
OsSIK2 is involved in abiotic stress response and senescence
processes.

LEA PROTEINS
Late embryogenesis abundant (LEA) proteins are important stress-
inducible proteins involved in cellular protection against stresses
(Hanin et al., 2011). Their protective roles in cells include cryopro-
tective (Bravo et al., 2003) and osmoprotective (Swire-Clark and
Marcotte, 1999) behavior to stabilize proteins (Grelet et al., 2005),
membranes (Koag et al., 2003), and glassy states (Wolkers et al.,
2001). For example, recombinant pea LEA proteins have been
shown to protect two mitochondrial matrix enzymes, fumarase,
and rhodanese, during drying (Grelet et al., 2005). After transgeni-
cally introducing several LEA proteins into rice plants, Hong et al.
(1988) investigated stress tolerance in the transgenic rice plants. A
barley group-3 LEA protein, HVA1, was specifically accumulated
in aleurone layers and embryos at the seed maturation stage. In
another study, HVA1-overexpressing transgenic rice plants were
found to have increased tolerance to drought and salinity stresses,
with the increased stress tolerance correlated with HVA1 protein
accumulation (Xu et al., 1996). Overexpression of OsLEA3-1 or
OsLEA3-2 in rice plants leads to enhanced drought tolerance (Xiao
et al., 2007; Duan and Cai, 2012). Overexpression of OsLEA3-2 in
yeast improved growth under salinity or osmotic stress conditions,
with the OsLEA3-2 protein inhibiting protein aggregation in an in
vitro assay (Duan and Cai, 2012).

PHYTOHORMONES
OsPYL/RCAR5 has been shown to be one of the ABA-signaling
components in rice (Kim et al., 2012b). A protein-protein inter-
action assay and a transient gene expression assay performed
by these authors identified an ABA-signaling unit composed
of OsPYL/RCAR5, OsPP2C30, SAPK2, and OREB1. Kim et al.
(2014) found that overexpression of OsPYL/RCAR5 induced
expression of numerous stress-responsive genes in rice and
caused enhanced tolerance to drought and salinity stresses; how-
ever, field-grown transgenic rice plants had shorter heights
and lower yields than their non-transgenic counterparts. DSM2
encodes a chloroplast protein, a putative β-carotene hydrox-
ylase involved in biosynthesis of the ABA precursor zeaxan-
thin (Du et al., 2010). Overexpression of DSM2 in rice plants
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enhanced resistance to drought and oxidative stresses and
increased xanthophyll levels and non-photochemical quench-
ing.

Zhang et al. (2012) identified and investigated OsPIN3t, a
putative auxin efflux carrier protein in rice. GFP proteins fused
to OsPIN3t were expressed in the plasma membrane, while
GUS activity in OsPIN3t promoter-driven GUS transgenic plants
was detected in vascular tissues. These subcellular expressions
and tissue-specific localization were changed by treatment with
auxin transport inhibitors. Transgenic rice plants overexpress-
ing OsPIN3t exhibited improved drought tolerance. These results
suggest that OsPIN3t regulates polar auxin transport, thereby
enhancing drought tolerance.

Isopentenyltransferase (IPT) is an enzyme that mediates
cytokinin synthesis. Transgenic tobacco plants expressing the IPT
gene under the control of a senescence-associated receptor kinase
(SAPK), a maturation- and stress-inducible promoter, were devel-
oped by Rivero et al. (2007, 2009). The transgenic tobacco plants
showed a drastic increase in plant productivity under drought
stress conditions. The observed increased plant productivity was
attributed to suppression of drought-induced leaf senescence
(Rivero et al., 2007) and involvement in photorespiration (Rivero
et al., 2009). Similarly, transgenic rice plants expressing the IPT
gene under the control of the SAPK promoter were generated
(Peleg et al., 2011). The developed transgenic rice plants displayed
expression changes in genes involved in hormone homeostasis and
resource mobilization, a delay in stress responses, and improve-
ment of drought tolerance. In a study by Sun et al. (2014), two
rice authentic histidine phosphotransfer proteins (OsAHP1 and
OsAHP2) were knocked down simultaneously via RNA inter-
ference. The transgenic rice plants showed enhanced tolerance
to osmotic stress and hyposensitivity to exogenous cytokinin,
suggesting that OsAHPs function as positive regulators of the
cytokinin signaling pathway in response to osmotic stress.

OSMOPROTECTANTS
Ornithine δ-aminotransferase is involved in proline and argi-
nine metabolism. OsOAT, a rice gene encoding ornithine δ-
aminotransferase, has been identified as a downstream gene of
SNAC2 (Hu et al., 2008). You et al. (2012) demonstrated that
SNAC2 can bind to the OsOAT promoter. In their study, over-
expression of the OsOAT gene in rice plants enhanced δ-OAT
activity and increased proline accumulation, glutachione content,
and ROS-scavenging enzyme activity. The OsOAT-overexpressing
transgenic rice plants displayed enhanced oxidative, drought, and
osmotic stress tolerance. While seedling shoot lengths were sim-
ilar between transgenic and non-transgenic plants under normal
conditions, reduced inhibition of shoot growth was observed in
transgenic plants under osmotic stress conditions compared with
non-transgenic plants.

OsTPS1, a gene encoding a rice trehalose-6-phosphate synthase,
acts as a key enzyme for trehalose biosynthesis. Overexpression of
the gene in rice plants improved tolerance to drought, salinity, and
low-temperature stresses in an investigation by Li et al. (2011).
In the transgenic rice plants, trehalose and proline contents were
increased and some stress-responsive genes, includingWSI18, were
up-regulated relative to those in non-transgenic plants.

OTHER GENES
Other genes encoding proteins with various characteristics have
also been shown to enhance drought tolerance. Some of these
proteins are stress responsive. The effect of overexpression of
O. sativa Drought-Induced LTP (OsDIL), a lipid transfer pro-
tein gene, on drought stress tolerance in rice was investigated
by Guo et al. (2013). The transgenic plants showed increased
tolerance to drought stress at both vegetative and reproductive
stages. Less severe tapetal defects and fewer defective anther
sacs were observed in the transgenic plants. These results
were consistent with data indicating that the OsDIL gene is
expressed in anthers. Overexpression of the heat shock pro-
tein gene OsHsp17.0, or OsHsp23.7, has been found to improve
tolerance to drought and salinity stresses in rice (Zou et al.,
2012). In that study, the transgenic rice plants had lower
relative electrical conductivities and malondialdehyde contents
and higher proline contents compared with non-transgenic rice
plants.

Modulation of ROS accumulation is also important for the
enhancement of drought tolerance. Transgenic rice plants over-
expressing the gene encoding manganese superoxide dismutase,
an antioxidant enzyme, have improved osmotic stress tolerance
(Wang et al., 2005). The cited authors found that electrolyte leak-
age in the transgenic plants was lower than in non-transgenic
plants under osmotic stress conditions, and that photosyn-
thetic rate was less affected by osmotic stress in the transgenic
plants. The enzyme OsMIOX, a rice myo-inositol oxygenase,
catalyzes the oxidation of myo-inositol to glucuronic acid. In
a study by Duan et al. (2012), the OsMIOX gene was overex-
pressed in rice plants and caused increases in ROS-scavenging
enzyme activities and proline content and enhancement of growth
performance under osmotic stress conditions. Ski-interacting
protein (SKIP), identified by yeast two-hybrid screening using
the avian retrovirus oncogene v-Ski as bait (Dahl et al., 1998),
has been well characterized as a transcriptional coregulator and
a spliceosome component in humans (Figueroa and Hayman,
2004). Transgenic rice plants overexpressing OsSKIPa have shown
improved drought tolerance and increased ROS-scavenging abil-
ity. Higher transcript levels of SNAC1, OsCBF2, OsPP2C, and
OsRD22 have been found in OsSKIPa-transformed rice plants
compared with their non-transgenic counterparts (Hou et al.,
2009).

Protein turnover via ubiquitin-dependent protein degradation
and ribosomal protein synthesis has been shown to be involved
in abiotic stress response regulatory networks. OsSDIR1 (O.
sativa SALT-AND DROUGHT-INDUCED RING FINGER 1) is
a functional RING-finger-containing E3 ligase, with the RING
finger region required for its activity (Gao et al., 2011). Trans-
genic rice plants overexpressing OsSDIR1 show enhanced drought
tolerance and stomatal closure (Gao et al., 2011), while those
overexpressing OsRDCP1, a rice RING domain-containing pro-
tein 1 gene, have improved drought tolerance (Bae et al., 2011).
Molecular mechanisms underlying the improved drought tol-
erance of these transgenic rice plants remain largely unclear.
Jiang et al. (2012) observed that transgenic rice plants overex-
pressing OSRIP18, a rice ribosome-inactivating protein 18 gene,
exhibited improved drought and salinity tolerance. Microarray
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analysis detected differentially expressed genes, most of which
were not regulated by abiotic stresses, in the transgenic rice
plants.

RNA turnover may also be involved in abiotic stress-response
regulatory networks. OsSUV3 encodes an NTP-dependent
RNA/DNA helicase (Tuteja et al., 2013). Transgenic rice plants
overexpressing OsSUV3 show reduced lipid peroxidation, elec-
trolyte leakage, and H2O2 production, and enhanced antioxidant
enzyme activities, thereby leading to enhanced tolerance to
osmotic and salinity stresses (Tuteja et al., 2013). GRP encodes
a glycine-rich RNA-binding protein. In a study by Yang et al.
(2014), transgenic rice plants overexpressing Arabidopsis GRP2
or GRP7 displayed increased grain yield under drought con-
ditions. The increased grain yield was caused by improved
grain filling. Several stress-responsive genes, including OSE2,
Dip1, and PBZ1, were up-regulated in the transgenic rice
plants.

The application of genes encoding metabolic enzymes is also
thought to be useful for the enhancement of drought tolerance.
Squalene synthase (SQS) is one of several farnesyl-diphosphate
farnesyltransferase proteins that catalyze the first reaction of
the branch of the isoprenoid metabolic pathway involved in
sterol biosynthesis (Tansley and Shechter, 2001). Disruption
of SQS gene function by RNA interference has been found
to improve drought tolerance in rice plants, with the trans-
genic plants showing increased root length, an elevated number
of lateral roots and reduced stomatal conductance (Manavalan
et al., 2012). Polyamines, such as putrescine, spermidine, and
spermine, are compounds implicated in plant embryo devel-
opment, stem elongation and stress response (Takahashi and
Kakehi, 2010). Polyamine levels can be modulated by the regu-
lation of metabolic enzymes, including arginine decarboxylase.
Because rice plants overexpressing Datura stramonium argi-
nine decarboxylase show improved drought tolerance along with
increased putrescine content, Capell et al. (2004) have pro-
posed a regulatory mechanism linking putrescine metabolism
to drought tolerance. In contrast to putrescine, spermidine,
and spermine are not involved in drought stress tolerance, as
increased spermidine and spermine content has not been observed
to enhance drought tolerance in rice plants (Peremarti et al.,
2009).

Transgenes originating from non-plant species have also
been used to enhance stress tolerance. Harpin proteins are
secreted by the type-III protein secretion system of Gram-
negative plant pathogenic bacteria (Wei et al., 1992). Harpin
proteins trigger the hypersensitive response, a well-characterized
defense response against various bacteria, fungi, nematodes,
and viruses. Transgenic rice plants overexpressing the harpin-
encoding gene hrf1 showed improved drought tolerance along
with increased stomatal clousure and ABA, proline, and sol-
uble sugar contents (Zhang et al., 2011). Increased expres-
sion of stress-responsive genes including OsLEA3-1 was also
observed in the transgenic rice plants. As reviewed by
Sharma et al. (2013), the evidence that pathogenic-related
genes can also improve abiotic stress tolerance suggests an
overlapping regulatory cascade between biotic and abiotic
stresses.

CHANGES IN SHOOT GROWTH OF DROUGHT-TOLERANT
TRANSGENIC RICE PLANTS
Among the transgenic rice plants described in this review, 37%
have been reported to display growth retardation under nor-
mal conditions or exogenous ABA application (Table 1). Such
decreased shoot growth performance is also observed in non-
transgenic plants subjected to drought stress conditions. Shoot
growth retardation due to low soil water content is one of the
earliest stress responses in plants, occurring even earlier than
decreases in leaf water potential (Michelena and Boyer, 1982; Par-
ent et al., 2010). This phenomenon suggests that plants actively
decrease shoot growth instead of it being a consequence of
decreased cell turgor (Claeys and Inzé, 2013). Growth regula-
tion in proportion to soil water content is thus an important
plant morphological response to water deficit. Molecular mech-
anisms underlying growth regulatory responses to water deficit
have been investigated in Arabidopsis. DELLA proteins, which
are negative regulators of gibberellic acid (GA) signaling, have
been shown to integrate growth and abiotic stress tolerance in
Arabidopsis (Achard et al., 2006). Skirycz et al. (2010) performed
transcript profiling of expanding Arabidopsis leaves subjected to
mild osmotic stress. Their results indicated that an ethylene-
and gibberellin-dependent regulatory circuit modulated growth
under the mild osmotic stress conditions, with no involve-
ment from ABA. Rapid accumulation of 1-aminocyclopropane-
1-carboxylic acid (1-ACC), an ethylene precursor, was observed
in the expanding leaf tissue under the mild osmotic stress con-
ditions of their study. This accumulation has been proposed to
activate a cascade of the growth regulatory circuit in Arabidop-
sis as follows (Claeys and Inzé, 2013). After activation by 1-ACC
accumulation through a MAP kinase cascade, ethylene respon-
sive factor 6 (ERF6) increases expression of GA2OX6, which
encodes an enzyme that inactivates GAs. By the operation of
GA2OX6, GAs are inactivated, with this inactivation stabilizing
DELLA proteins. The DELLA proteins modulate the activity of
ANAPHASE-PROMOTING COMPLEX/CYCLOSOME (APC/C),
which controls the activity of CDK-cyclin complexes, through the
repression of APC/C inhibitors DEL1 and UVI4. Finally, the mod-
ulated APC/C activity abolishes potential for cell proliferation and
inhibits growth.

A similar growth regulatory circuit does not seem to hold
for rice, as it has been generally accepted that ethylene and
1-ACC act as positive growth regulators under various condi-
tions in rice (Bailey-Serres and Voesenek, 2008, 2010; Fukao
and Xiong, 2013; Wang et al., 2013). In rice, growth regulatory
mechanisms that are distinct from those in Arabidopsis should
therefore be taken into consideration. We recently identified O.
sativa phytochrome interacting factor like 1 (OsPIL1), a gene that
regulates internode elongation under drought stress conditions
in rice (Todaka et al., 2012). The bHLH-type transcription fac-
tor OsPIL1 functions as a transcriptional activator and modulates
expression of cell elongation-related genes such as expansins.
Increased expression of OsPIL1 observed in the daytime under
normal growth conditions was canceled under drought stress
conditions. We proposed the following growth regulatory mech-
anistic model involving OsPIL1 in response to drought stress.
Under normal growth conditions, OsPIL1 elevates expression of
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cell elongation-related genes such as expansins, causing normal
shoot growth. When rice plants are exposed to drought stress,
the canceled OsPIL1 expression leads to reduced expression of
cell elongation-related genes, resulting in shoot growth reduc-
tion that likely conserves photosynthetic products and decreased
shoot surface area. The saved energy may be used for activa-
tion of mechanisms involved in stress tolerance. Ogawa et al.
(2011) have revealed that the rice protein RSS1 plays an important
role in the maintenance of meristematic activity under salinity
stress conditions. RSS1 proteins interact with protein phosphatase
1, a regulator of various cellular processes including the cell
division cycle. RSS1 stability is regulated by the APC/C 26S pro-
teasome pathway, which is responsible for degradation of mitotic
cyclins.

Use of the growth regulatory genes described in this section may
ameliorate the growth reduction observed in drought-tolerant
transgenic rice plants. Although stress-inducible promoters are
often useful for development, their efficacy seems to be limited
under moderate long-term drought stress conditions. Long-term
drought stress maintains a high level of transgene expression,
thereby affecting growth performance.

EVALUATION OF ABIOTIC STRESS TOLERANCE UNDER FIELD
CONDITIONS
When developing abiotic stress tolerant transgenic crops, plant
productivity should be taken into consideration. Plant productiv-
ity is extensively affected by natural drought episodes under field
conditions. Droughts are unpredictable events and vary in stress
severity and duration. Simultaneously occurring stresses, such
as drought and heat, are also observed. Results obtained under
laboratory or greenhouse conditions are therefore not perfectly
comparable to observations made under field conditions. Field
trials are thus critical for the proper evaluation of stress-tolerant
transgenic crops.

Xiao et al. (2007) analyzed drought tolerance of transgenic rice
plants constitutively overexpressing OsLEA3-1, a gene encoding
proteins that highly accumulate in water-stressed tissues, as well
as plants expressing the transgene with a stress-inducible promoter
under field conditions. Drought stress was initiated at the panicle
development stage by draining surface water in paddy fields and
halting irrigation until leaves were rolled. Although T1 generations
of both transgenic lines showed reduced yields under non-stressed
conditions, T2 and T3 generations exhibited no yield penalty under
non-stressed conditions and exhibited increased grain yield under
drought conditions.

Xiao et al. (2009) also examined drought tolerance of transgenic
rice plants overexpressing seven well-documented stress-related
genes with an actin promoter under field conditions. These
seven genes were CBF3/DREB1A, an AP2/ERF-type transcrip-
tion factor; SOS2, a serine/threonine protein kinase; NCED2 and
LOS5, enzymes involved in ABA biosynthesis; NPK1, a mitogen-
activated protein kinase kinase kinase; ZAT10, a C2H2-type
zinc finger transcription factor; and NHX1, a vacuolar Na+/H+
antiporter. Although drought stress in the field decreased grain
yield in these transgenic plants, grain yields in LOS5, ZAT10,
and NHX1 overexpressors were less affected. The authors also
developed transgenic rice plants that expressed these genes with a

stress-inducible promoter and field-tested their drought tolerance.
Grain yields in these transgenic plants were similarly decreased
by drought stress under field conditions. Grain yields in trans-
genic rice plants expressing CBF3/DREB1A, SOS2, NPK1, LOS5,
ZAT10, and NHX1 with the stress-inducible promoter were the
least affected. Because absolute grain yields under normal growth
conditions were lower in these transgenic rice plants than in
non-transgenic ones, further improvement is needed for practical
application.

Hu et al. (2006) subjected field-grown transgenic rice plants
overexpressing SNAC1, a NAC-type transcription factor, to two
different levels of drought stress treatments at the anthesis stage:
severe stress with 15% soil moisture and moderate stress with
28% soil moisture. Both drought stress conditions increased
spikelet fertility in the transgenic plants. Under non-stressed
conditions, agronomic traits, including plant height, panicle num-
ber, spikelet number, spikelet fertility, and grain yield, were
similar between transgenic plants and the controls. Drought resis-
tance of transgenic rice plants overexpressing OsNAC5 (Jeong
et al., 2013), OsNAC9/SNAC1 (Redillas et al., 2012), or OsNAC10
(Jeong et al., 2010) under the control of the root-specific pro-
moter has also been examined in the field. In these studies,
exposure to drought stress was performed at the panicle head-
ing stage by draining surface water and halting irrigation until
leaves were rolled. Similar results were observed among the three
transgenic rice lines. Grain yield decreases under drought condi-
tions were significantly smaller in all three transgenic lines than
those observed in their non-transgenic counterparts. Drought
tolerance of transgenic rice plants overexpressing OsOAT has
also been investigated under field conditions (You et al., 2012).
The OsOAT protein, an enzyme that increases proline content,
is a direct target gene of the stress-responsive NAC transcrip-
tion factor SNAC2. The field drought test was performed by
stopping irrigation at the flowering stage in a refined paddy
field covered with a movable rain-off shelter. Slower wilt-
ing, fewer withered leaves, and a higher rate of seed-setting
were noted in the transgenic rice plants than in non-transgenic
ones.

Increased grain yield was observed in transgenic rice plants
overexpressing the AP37 gene, an AP2/ERF-type transcription fac-
tor, when the transgenic plants were subjected to drought stress
in the field (Oh et al., 2009). The field drought stress was per-
formed at the panicle heading stage by draining the surface water
and halting irrigation until leaves were rolled. The increased grain
yield was due to the higher grain-filling rate in the drought-
treated transgenic plants compared with the drought-treated
non-transgenic plants. Finally, field evaluation of transgenic rice
plants overexpressing EDT1/HDG11, a homeodomain-leucine
zipper transcription factor, has also been carried out (Yu et al.,
2013). The transgenic rice plants were grown in the field for
a month after transplanting; irrigation was then stopped until
the seed maturation stage. The drought-treated transgenic rice
plants had higher grain yields than those observed in the drought-
treated non-transgenic rice plants. The grain yield increase in
the transgenic plants was a consequence of their larger panicle
sizes and higher tiller numbers compared with the non-transgenic
plants.
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FUTURE DIRECTIONS IN THE DEVELOPMENT OF
DROUGHT-TOLERANT TRANSGENIC RICE PLANTS
Although several studies have reported transgenic rice plants with
improved drought tolerance during field trials, further research is
needed to uncover the regulatory mechanism of drought response
and tolerance under field conditions. Such investigations should
lead to the discovery of new genes that increase drought tolerance
without yield penalty even under drought conditions. Another
approach to new gene exploration is to study stress tolerance
mechanisms of stress-adapted extremophiles such as desert plants,
halophilic plants, cold-water fishes, and thermophilic bacteria
(Mittler and Blumwald, 2010). Even in well-characterized species,
the functions of 18–38% of total proteins remain unknown
(Gollery et al., 2006). The elucidation of these unknown func-
tion proteins should aid the discovery of new genes. Modification
of root architecture is also important for the development of
drought-tolerant rice plants. In this regard, Uga et al. (2013)
reported that the QTL Deeper Rooting 1 (DRO1) increased the
root growth angle in rice, leading to high-yield performance under
drought conditions.

Rice has the highest potential of any crop to grow under sub-
mergence conditions. Studies of submergence-tolerance mecha-
nisms and the development of submergence-tolerant rice cultivars
have progressed significantly (Bailey-Serres and Voesenek, 2008,
2010; Hattori et al., 2009; Fukao and Xiong, 2013; Voesenek and
Bailey-Serres, 2013). The results of these studies indicate that
drought-tolerant rice plants with submergence-tolerant cultivar
backgrounds are exceptional crops that can survive under both
low and excessive soil–water content conditions. In the future,
crops may be alternately exposed to drought and flood because of
global climate change. Efforts to develop rice cultivars having high
water usage flexibility should help solve this crisis.
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