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Selenium (Se) is an essential trace element for humans and animals but at high
concentrations, Se becomes toxic to organisms due to Se replacing sulfur in proteins.
Selenium biofortification is an agricultural process that increases the accumulation of Se
in crops, through plant breeding, genetic engineering, or use of Se fertilizers. Selenium
phytoremediation is a green biotechnology to clean up Se-contaminated environments,
primarily through phytoextraction and phytovolatilization. By integrating Se phytoreme-
diation and biofortification technologies, Se-enriched plant materials harvested from Se
phytoremediation can be used as Se-enriched green manures or other supplementary
sources of Se for producing Se-biofortified agricultural products. Earlier studies primarily
aimed at enhancing efficacy of phytoremediation and biofortification of Se based on
natural variation in progenitor or identification of unique plant species. In this review,
we discuss promising approaches to improve biofortification and phytoremediation of
Se using knowledge acquired from model crops. We also explored the feasibility of
applying biotechnologies such as inoculation of microbial strains for improving the
efficiency of biofortification and phytoremediation of Se. The key research and practical
challenges that remain in improving biofortification and phytoremediation of Se have been
highlighted, and the future development and uses of Se-biofortified agricultural products
in China has also been discussed.
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Introduction

Biofortification is an agricultural process that increases the uptake and accumulation of specific
nutrients (Rouached, 2013), e.g., selenium (Se), in agricultural food products through plant breeding,
genetic engineering, and manipulation of agronomic practices. The development and uses of
biofortified agricultural products have been proposed as a promising functional agricultural strategy
to increase the dietary nutrient intake for humans (Banuelos and Lin, 2009; Zhao and McGrath,
2009; Zhu et al., 2009; Kieliszek and Blazejak, 2013; Borrill et al., 2014). Phytoremediation of Se
is the use of plants and their associated microbes for environmental cleanup, through processes
that include, phytoextraction, rhizofiltration, and phytovolatilization (LeDuc and Terry, 2005; Pilon-
Smits, 2005; Robinson et al., 2009; Yasin et al., 2015b).Water and soil Se-contamination resulted from
coal production and agricultural drainage has caused significant toxic impacts on aquatic wildlife,

Frontiers in Plant Science | www.frontiersin.org March 2015 | Volume 6 | Article 1361

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/editorialboard
http://dx.doi.org/10.3389/fpls.2015.00136
https://creativecommons.org/licenses/by/4.0/
mailto:yuanli@ustc.edu.cn
mailto:xbyin@ustc.edu.cn
mailto:miaoli@ustc.edu.cn
http://dx.doi.org/10.3389/fpls.2015.00136
http://www.frontiersin.org/Journal/10.3389/fpls.2015.00136/abstract
http://www.frontiersin.org/Journal/10.3389/fpls.2015.00136/abstract
http://community.frontiersin.org/people/u/148483
http://community.frontiersin.org/people/u/217024
http://community.frontiersin.org/people/u/217103
http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Wu et al. Biofortification and phytoremediation of selenium in China

such as deformity of waterfowl in the Kesterson National Wildlife
Refuge in central California. Phytoremediation is an alternative
and sustainable remediation technology compared with tradi-
tional physical and chemical remediation approaches. Both Se
phytoextraction and biofortification processes are based on bioac-
cumulation of Se that involves plant uptake, distribution, accumu-
lation, and transformation of Se from soil into the plant’s matrix
(Zhao and McGrath, 2009; Zhu et al., 2009; Bañuelos et al., 2015).
Although the goals of biofortification and phytoremediation of
Se are different, these two processes can sometimes be closely
connected on enhancing the efficiency of Se uptake and accumu-
lation in plants (Vamerali et al., 2014). Therefore, it is important
to better understand the rhizosphere physical, chemical, and bio-
logical processes that affect soil Se bioavailability, plant uptake,
distribution, and transformation of Se in the plant. Understanding
and optimizing these critical processes will help to determine
the success of biofortification and phytoremediation of Se (Wang
et al., 2014). In this review,wewill focus on Se and use this nutrient
as an example to demonstrate the processes of biofortification and
phytoremediation as a combined emerging concept for addressing
the environmental and human health concerns.

The Importance of Essential Micronutrient
Selenium to Human Health

Selenium is a metalloid and commonly has four valence states
in natural environment, including selenide (2−), elemental Se
(0), selenite (4+), and selenate (6+). Selenium is an essential
nutrient for humans and animals to form selenoproteins such as
glutathione peroxidase (GPx) and thioredoxin reductases (TrxR;
Barcelo and Poschenrieder, 2011;Meplan, 2011; Kaur et al., 2014).
Selenoproteins play critical roles in reproduction, thyroid hor-
mone metabolism, DNA synthesis, and protection from oxidative
damage and infection (Sunde, 2012; Hatfield et al., 2014). Earlier
laboratory and clinical trials showed some scientific evidence
suggesting that Se might lower the risk of certain types of cancer
(Yang et al., 1981; Clark et al., 1996; Reid et al., 2008; Wallace
et al., 2009;Hatfield et al., 2014), but recent SELECT (the Selenium
and Vitamin E Cancer Prevention Trial) studies indicated that
this evidence is currently limited and not conclusive (Klein et al.,
2011). More research is needed to confirm the potential relation-
ship between Se daily intake and chemoprevention, especially for
specific regions with specific sectors of the population.

The range between beneficial and harmful Se concentrations
is relatively narrow for humans and animals. The minimal Se
concentration in livestock feed is 0.05–0.10 mg/kg dry forage,
while the toxic Se concentration in animal feed is 2–5 mg/kg
dry forage (Wilber, 1980; Wu et al., 1996). In humans, the
World Health Organization (WHO) and USDA recommended
the required human dietary intake of Se to be 55–200 µg/day for
adults (Thomson, 2004; WHO, 2009). Selenium deficiency and
low Se daily dietary intake can cause endemic diseases or other
significant environmental health problems, such as Keshan dis-
ease (a degenerative heart disease observed in Keshan, China) and
Kaschin–Beck disease (an osteoarthropathy that causes deformity
of affected joints; Tan and Huang, 1991; Tan et al., 2002; Renwick
et al., 2008). However, long-term exposure to high levels of Se

can also lead to Se toxic effects. The common Se toxic symptoms
include hair and nail loss and nervous system disorders that were
previously observed in Se-rich areas such as in Enshi, Hubei,
China (Li et al., 2012).

In plants, Se is not considered as an essential element. In
general, concentrations of Se in plants grown in seleniferous
soils are less than 25 mg/kg DW (Bell et al., 1992; Terry et al.,
2000; Yasin et al., 2015b), except Se-hyperaccumulator species that
accumulate over 1000 mg/kg Se in plant tissues (Ellis and Salt,
2003). In crop studies where soils were supplied with selenate,
garlic (Allium sativum), onion (Allium cepa), leek (Allium ampelo-
prasum), and broccoli (Brassica oleracea) accumulated some Se as
seleno-amino acid (selenomethyl cysteine, SeMeCys), while Ara-
bidopsis thaliana and Brassica juncea accumulated Se primarily in
the chemical form of selenite (Beilstein et al., 1991; Kahakachchi
et al., 2004; Pilon-Smits and Quinn, 2010). Generally, SeMet is
the most common dominant Se compound found in most grains,
such as wheat, barley, and rye (Stadlober et al., 2001; Poblaciones
et al., 2014). However, the Se hyperaccumulator Stanleya pinnata
accumulated up to 90% of the total Se as MeSeCys in plant tissues
(Freeman et al., 2006). For non-hyperaccumulating species, plants
use S uptake and assimilation pathway to metabolize Se, since
Se is chemically similar to S, and the uptake transporter and
enzymes cannot distinguish between these two chemical analogs
(Arvy, 1993). In addition, Se hyperaccumulator species use the
same assimilation pathway from SeO4 to SeCys, but possess spe-
cialized or Se-specific transporters according to recent studies by
Pilon-Smits and Quinn (2010). For example, the accumulation of
selenate in S. pinnata was not inhibited by high concentrations of
sulfate (Feist and Parker, 2001; Schiavon et al., 2015).

Plant-derived food products contain different amounts of Se
because concentrations of Se in soil vary substantially in the
natural environment. There are approximately one billion people
facing with Se malnutrition in the world. For example, approx-
imately 2/3 Chinese dietary Se intake is about 40 µg per day,
which is significantly lower than the recommended Se dietary
intake value of 55 µg per day according to the WHO (2009). The
recommended nutritional intake (RNI) rate and upper limit (UL)
of Se is 50 and 200 µg/day, respectively. For developing coun-
tries increasing the daily dietary Se intake by implementing the
biofortification strategies could substantially increase Se contents
in food products. Previous studies on Se biofortification provide
basic understanding on the biofortification technology, potential
health effects, and food safety regulations (White and Broadley,
2009; Zhao and McGrath, 2009; Zhu et al., 2009).

Like some other essential nutrients, Se is essential in small
amounts but become toxic at high levels (Kieliszek and Blazejak,
2013; Sperotto et al., 2014). To minimize local environmental
risk to wildlife, field sites with excessive Se need to be identified
and remediated. In the past two decades, phytoremediation of Se
has been evaluated and introduced as a successful biotechnology
(Terry and Bañuelos, 2000; Barcelo and Poschenrieder, 2011).
However, one of the difficulties associated with Se phytoremedi-
ation management is how to utilize/dispose of Se-contaminated
plant waste materials harvested from phytoremediation sites. Dif-
ferent management options have been discussed by researchers
regarding the disposal of plant waste materials, including landfill

Frontiers in Plant Science | www.frontiersin.org March 2015 | Volume 6 | Article 1362

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Wu et al. Biofortification and phytoremediation of selenium in China

and incineration, but none of these options are considered
sustainable or environmental-friendly. Generally, the plant mate-
rials harvested from phytoremediation sites can contain high
concentrations of Se, which if not properlymanaged can be poten-
tially toxic to waterfowl and wildlife via biomagnification. One
alternative disposal option is to utilize Se-enriched plantmaterials
for Se biofortification of agricultural products (Liu et al., 2011; Lin
et al., 2014). If the Se-enriched plant material is used to amend
agricultural soils, the decomposition of plant wastes will gradually
release Se from the plantmaterial, and bioavailable Se can be taken
up by the crops (Bañuelos et al., 2015).

Recent developments in omics analysis and analytical tech-
nologies have led to incremental changes in research targeted
on biofortification and phytoremediation of Se at molecular
level (Shinmachi et al., 2010; Winkel et al., 2012; Harris et al.,
2014; Schiavon et al., 2015; Visioli et al., 2015). New perspec-
tives are emerging with the “Omics technologies” (e.g., genomics,
transcriptomics, proteomics, metabolomics, nutrigenomics) and
advanced analytical instruments such as micro-focused x-ray flu-
orescence elemental and chemical mapping and x-ray absorption
near-edge structure spectroscopy, are available to further elucidate
the speciation of Se in relation to specific molecular mecha-
nisms for biofortification and phytoremediation of Se (Bañue-
los et al., 2011; Meplan, 2011; Hung et al., 2012; Winkel et al.,
2012; Visioli et al., 2015). Biofortification and phytoremediation
of Se involves the changes in gene expression, protein modi-
fications and influenced by genetic components. In particular,
transcriptomics and proteomics approaches could help to further
understand the phenotypic consequences of variations in Se sta-
tus and unveiled Se targeted pathways for biofortification and
phytoremediation. These molecular targets and pathways could
be used to unravel the effects of sulfur on biofortification and
phytoremediation of Se using non-Se hyperaccumulation plants
(Barcelo and Poschenrieder, 2011). Generally, these “Omics”
approaches and the recent development of analytical techniques
and methods provide new perspectives to study the mechanisms
for biofortification and phytoremediation of Se and help identify
and potentially develop new Se transporters to promote plant
uptake and accumulation of Se.

Use of Phytoremediation Plant Materials
for Biofortification

Some plants are able to accumulate moderate amounts of Se and
other trace elements in their leaves or stems (Bañuelos et al., 2009,
2015; Bañuelos and Dhillon, 2010). This plant extraction process
has been applied tomanage soluble Se in Se-laden soils andwaters.
As a result, Se-enriched materials produced from a phytoreme-
diation field site can be further used as supplementary sources
of Se to produce food or feedstuff, or functional Se biofortified
agricultural products. Selenium-laden plant materials can be used
as green fertilizers to increase Se concentrations in agricultural
soils, or used as supplemental animal feed to increase dietary
intake of Se by animals. For example, Indian mustard was used
for the phytoremediation of Se-contaminated water and soil in
agricultural lands of the San Joaquin Valley in Central California.
After harvest, the Se-laden mustard plant materials were then

used as biofortified Se supplement for animals (Bañuelos, 2006;
Bañuelos et al., 2009). In this regard, by integrating phytoreme-
diation and biofortification processes, the chemical composition
of plant materials harvested from phytoremediation should be of
concern. The presence of other toxic metals (e.g., Cd, Hg, and
As) in the plant materials could essentially jeopardize the use of
phytoremediation plant materials for Se biofortification. When
phytoremediation plant materials are used as organic sources of
Se or for specific nutrients for biofortification, the connection
between phytoremediation and biofortification can be problem-
atic, since the remediation soil sites are oftentimes contaminated
with multi-pollutants (Vamerali et al., 2014). Thus, it is critically
important to screen and select the appropriate plant species and
to use toxic metal-free phytoremediation field sites for integrating
Se phytoremediation and biofortification strategies. In general,
there are two very basic requirements to meet this goal: firstly, the
selected plant tissues should be edible, and secondly, the edible
part of the plant should accumulate higher and safe concentra-
tions of Se, but not other toxic metals (or chemical compounds).
Phytoremediation strategies commonly attempt to select plant
species that accumulate more pollutants in shoots to increase
the phytoremediation efficiency, while biofortification focuses on
increasing a specific micronutrient content in edible plant tissues.
If the biofortified materials are directly consumed to increase
human nutrient dietary intake, a portion of the phytoremediation
plant should be edible, such as broccoli (Bañuelos, 2002; Rodrigo
et al., 2014).

Previous studies indicated that the manipulation of soil physio-
chemical properties, such as soil pH, Eh, total organic carbon
(TOC), and chelates, can affect the uptake and accumulation of Se
and other nutrient elements by plants (Vamerali et al., 2014). In
addition, some organic acids exuded by roots may play important
roles in determining bioavailability of Se and other mineral nutri-
ent elements in the soil. New research efforts have been made to
integrate phytoremediationwith biofortification processes (Bhatia
et al., 2013; Lin et al., 2014), but this is solely dependent on the
element of concern, such as Fe, Zn, and Se. There are still many
scientific questions that have not beenwell answered. For example,
future research should investigate the feasibility of biofortification
of multiple micronutrients, such as increasing accumulation of
both Se and Zn in crops or vegetables (Zhu et al., 2009). In this
respect, zinc hyperaccumulator Noccaea caerulescens (formerly
Thlaspi caerulescens) and Se hyperaccumulator (S. pinnata) may
be suitable plant species for future consideration. The application
of Zn- and Se-enriched plant materials as a green manures could
significantly increase the total content and bioavailability of both
Zn and Se in the soil, which will enhances the accumulation of Zn
and Se in the edible portion of crops (i.e., biofortification).

Developing Se-Biofortified Agricultural
Products for Human Health

The Se daily dietary intake rate varies considerably between coun-
tries/regions. With Se daily intake rates of <30 µg/d, Keshan
disease has been reported in parts of China, Saudi Arabia, Czech
Republic, Burundi, New Guinea, Nepal, Croatia, and Egypt (Yin
and Yuan, 2012). In addition, many other countries, like India,
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Belgium, Brazil, UK, France, Serbia, Slovenia, Turkey, Poland,
Sweden, Germany, Spain, Portugal, Denmark, Slovakia, Greece,
Netherlands, Italy, China, Austria, and Ireland, were identified
to have Se deficient areas because the levels of Se daily intake
were below the WHO recommended amount of 55 µg/d. Korea,
Australia, New Zealand, Switzerland, and Finland were identified
as Se-adequate to Se-low areas because the levels of Se daily intake
were in a range of 55–100 µg/d, while Japan, USA, and Canada
were recognized as Se-high to Se-adequate countries with the Se
daily intake of 100–200 µg/d (Yin and Yuan, 2012). In contrast,
Venezuela was designated as a country with a high Se intake rate
of 200–350 µg/d. If the Se daily intake is more than 550 µg/d,
selenosis symptoms could be recorded, such as those observed in
Enshi, China (e.g., hair and finger nail loss; Yin and Yuan, 2012).
In China, the Se daily intake varied considerably from toxic levels
in Enshi, to low levels of<55 µg/d in Suzhou, and to the deficient
levels of <11 µg/d in Keshan disease areas (Yin and Yuan, 2012).

Soil Se distribution varies significantly in the world. More than
40 countries have limited natural Se resources, while about 80% of
the world’s total Se reserves are located in Chile, the United States,
Canada, China, Zambia, Zaire, Peru, Philippines, Australia, and
PapuaNewGuinea (Liu et al., 2011). AlthoughChina is ranked the
fourth in Se reserves worldwide (after Canada, the United States,
and Belgium), Se-deficiency occurs in a geographic low-Se belt
stretching from Heilongjiang Province in the northeast to Yun-
nan Province in the southwest, affecting 71.2% of Chinese land
(Zhu et al., 2009). Therefore, Se food supplements are commonly
needed for many Chinese people. In deficient areas of China,
plant-based Se intake has been the primary source for humans and
animals. Generally, Se-biofortified wheat, rice, and vegetables are
available to provide supplemental Se (Zhu et al., 2009; Liu et al.,
2011).

Selenium Biofortification Strategy
Biofortification is a biotechnological strategy, which aims to
increase micronutrient contents, e.g., Se, in the edible parts of
plants, animals, or mushrooms, via breeding, biotechnology, or
application of Se fertilizers. These strategies are considered to
be safe and effective in alleviating micronutrient malnutrition in
many areas or countries (Nestel et al., 2006; Mayer et al., 2008;
Zhao and McGrath, 2009). Generally, plant-based biofortification
is the most effective and commonly used approach, especially on
staple crops, because it is a natural strategy for improving the
lack of nutritional trace elements like Se in the world (White and
Broadley, 2009). However, Se is not an essential micronutrient for
higher plants, and it is metabolized via S-transport pathway into
plant tissues (see above; Harris et al., 2014). In fact, the ability to
absorb and accumulate Se varies significantly amongplant species.
Therefore, it is important to select specific plant species that can
moderately accumulate Se in their edible parts for successful Se
biofortification. Plants selected for accumulating Se are useful
as a “Se-delivery vehicle” to supplement Se in animal diet in
many Se-deficient areas. As a result, producing Se-biofortified
meat products from animals fed Se-enriched animal feed could
be another important approach for higher dietary Se intake. In
addition, the excrements from the Se-fortified animals could also
be used as an organic source of Se-rich fertilizers for staple crops.

Agronomic Biofortification Strategies to Improve
Se Nutrition
Agronomic biofortification strategies are often based on applica-
tion of mineral fertilizers to improve the Se bioavailability in the
soil (White and Broadley, 2009; Mao et al., 2014). Agronomic Se-
biofortification strategies to increase crop Se contents by using
inorganic Se fertilizers have been successfully implemented in
Finland and New Zealand (Lyons et al., 2003; Hartikainen, 2005;
Premarathna et al., 2012; Schiavon et al., 2013;Wang et al., 2013b).
Different forms of Se supplied for biofortification may result in
different amounts and chemical forms of Se accumulated in plants
(Brummell et al., 2011; Schiavon et al., 2013; Pezzarossa et al.,
2014). Due to chemical similarity to sulfate, selenate can be readily
absorbed by plants, and plant leaves can accumulate substantial
amounts of selenate, but much less selenite or SeMet (De Souza
et al., 1998; Zayed et al., 1999; Kikkert and Berkelaar, 2013).
When organic acids are mixed with Se mineral fertilizers, Se
can be chelated with organic compounds, which could increase
plant uptake of Se and elevate the efficiency of Se fertilizers
(Morgan et al., 2005; Lynch, 2007). The mixture of organic acids
increased the efficiency of Se mineral fertilizers and resulted
in a better developed and extensive root system (White and
Broadley, 2005; Lynch, 2007; Kirkby and Johnston, 2008; White
and Hammond, 2008). Moreover, the rhizosphere microbes and
endophyticmicrobesmay also play an important role in increasing
phytoavailability of Se (Morgan et al., 2005; Lynch, 2007; Kirkby
and Johnston, 2008; Duran et al., 2014; Lindblom et al., 2014). In
this regard, the inoculation of soil with specific microbes might
be beneficial for enhancing Se biofortification strategy for crops
(Acuna et al., 2013; Duran et al., 2013, 2014; Lindblom et al.,
2013a,b; Yasin et al., 2015a).

Genetic Engineering for Se Biofortification
Biofortification involving genetically modified organisms is based
on genetic variations or transgenic technology to increase plants’
abilities to acquire the targetmicronutrients and accumulate them
in edible parts of plants (White and Broadley, 2009). Additionally,
genetic engineering techniques can increase the level of “pro-
moter” substances, such as ascorbate (Vitamin C), β-carotene, and
cysteine-rich polypeptides, which can accelerate the absorption
of micronutrients in plants, and result in higher concentrations
of mineral nutrients in plants. There is also genetic variation
in the concentrations of mineral elements accumulated in the
grains of most cereal species, whereby researchers indicated that
concentrations of Fe and Zn in cereal grain may vary 1.5- to
4-folds among genotypes depending on the genetic diversity
of the material tested (Cakmak, 2008; Tiwari et al., 2008). For
example, the Se levels in different plants show a descending
order: brassica > bean > cereal (Liu et al., 2011). Regarding
transgenic approaches, the selenocysteine methyltransferase gene
of Astragalus bisulcatus (two-grooved poison vetch) was intro-
duced into Arabidopsis thaliana (Thale cress) to overexpress
Se-methylselenocysteine and γ-glutamylmethylselenocysteine in
shoots (Ellis et al., 2004; Sors et al., 2005a,b; Pilon-Smits and
LeDuc, 2009), and resulted in an increased accumulation of Se.
Others also reported that it is possible to mutagenize the Se-
related genes in Arabidopsis thaliana to improve the efficiency of
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breeding Se-enriched crops at molecular level (Pilon-Smits and
LeDuc, 2009). Genetic engineering as a supplementary technique
to breeding, in combination with functional genomics gene tech-
nology could significantly contribute to future Se biofortification
research (Poletti and Sautter, 2005).

Selenium-Biofortified Agricultural Products
in China

Considering that there are so many Se-deficient regions in the
world, it is promising to take advantage of Se-enriched plants/
crops originating from Se-rich regions, e.g., in Enshi, China, as
a natural and green resource of Se. One utilization option is to
harvest the Se-enriched plants grown in Enshi to soils in other Se-
deficient areas as a source of organic Se fertilizer supporting forage
crops and the application of this plant-based organic Se fertilizer
can improve the Se status in the local soil, and likely result in
crops enrichedwith Se. Carefully blending these Se-enriched plant
materials as a forage blend for animals raised in Se-deficiency
areas may result in Se-enriched meat products. Thirdly, the Se-
enriched staple crops grown in Enshi can be regarded as naturally
Se-biofortified products, and these Se-enriched products can be
consumed by populations in Se-deficiency areas (Mei, 1985; Yuan
et al., 2013). In this regard, local businesses in Enshi have devel-
oped various Se-enriched products, such as tea, rice, maize, herb,
and drinks, which contribute to the on-going Se-biofortification
program in China (Yang et al., 2007).

Selecting Se Accumulating Crop Plants
Selecting or breeding crop varieties with high Se-accumulation
characteristics are essential for sustaining a successful Se-
biofortification program (Broadley et al., 2006). For example, the
black rice-Jinlong No. 1 (cultivated by Jilin Academy of Agricul-
tural Sciences in China) was able to accumulate Se up to 6.5 µg/g
DW (Yang et al., 2007; Yin and Yuan, 2012; Wang et al., 2013a).
Jiangsu Academy of Agricultural Sciences cultivated another Se-
enriched rice cultivar—LongqingNo. 4 from Suzi No. 4 in Yunnan
province (Yang et al., 2007; Yin and Yuan, 2012; Wang et al.,
2013a), while Shanxi Academy of Agricultural Sciences developed
a new black wheat cultivar that can accumulate 112.8% more Se
than an ordinary wheat variety (Yang et al., 2007; Yin and Yuan,
2012; Wang et al., 2013a). Using these selected Se-accumulated
species/cultivars can significantly increase the significance of a
Se-biofortification program (Yang et al., 2007; Wang et al., 2013a).

Foliar and Soil Application of Se Fertilizer
Foliar application of Se fertilizer is a popular practical way for
producing Se-enriched foods in China (Pezzarossa et al., 2012;
Boldrin et al., 2013;Wang et al., 2013a). Under optimal application
conditions, Se concentrations in rice were significantly increased
by 19.4% without reducing grain yields and protein/ash content
(Fang et al., 2008). Chen et al. (2002) reported that, by foliar
application of Se-fertilizer at a rate of 20 g Se/ha as sodium selenite
and sodium selenate, the Se concentration in rice was significantly
increased to 0.471 and 0.640 µg/g, respectively. Presently, Se-
enriched rice is available in themarket and its increased consump-
tion can contribute to improving Se dietary intake as major staple

foods in China. Tea is another popular Se-biofortified product in
China. Hu et al. (2003) reported that, in addition to increased Se
concentrations, the number of sprouts, yield, amino acid content,
vitamin C content, as well as the sweetness and aroma of tea leaves
were also significantly increased with the Se fertilizer application.

The application of soil Se fertilizers has increased the total
Se and also bioavailable Se for plant uptake (Zhao et al., 2005;
Broadley et al., 2010; Lavu et al., 2012, 2013; Premarathna et al.,
2012; Hawrylak-Nowak, 2013; Smolen et al., 2014). Compared
with natural biofortification and foliar Se fertilizer application
approaches, the soil Se fertilizers can be effective under uniform
soil conditions. Earlier studies showed that soil Se fertilizers have
successfully been used to enrich Se contents in a variety of agri-
cultural products in Se-deficient regions, such as in Finland and
China. However, Se fertilizers need to be reapplied annually, and
farmers need to be carefully instructed on rates and themethod of
application. Generally, fruits and vegetables in China contain less
than 3 µg/kg Se (wet weight), and rice contains less than 50 µg/kg
without any application of Se (Yin and Li, 2011). The use of soil
Se fertilizers can however increase the Se concentration in grains,
fruits, and vegetables by several 100 times (Liu et al., 2011; Yin and
Li, 2011). In recent years, the Se fertilizer application approach has
been commonly used in agricultural production in some regions
of China. Indeed, the novel concept of “functional agriculture”
and biofortified agricultural products have been adopted by Chi-
nese scientists and farmers, and received more acceptance and
popularity (Banuelos and Lin, 2009; Zhao and Huang, 2010).

Conclusions and Future Directions

Selenium is needed for the formation of selenoproteins, including
the important GPx and TrxR. The gap between the beneficial and
harmful levels of Se is, however, quite narrow. The Keshan disease
has been related to Se deficiency, including a very low dietary
Se intake of 11 µg per day in Keshan, Heilongjiang Province,
China, while the loss of human hair and fingernails was observed
with a daily Se intake reported as high as >2000 µg/d in Enshi,
central China (Qin et al., 2013). The observations of both endemic
diseases of Se-deficiency and selenosis from excessive Se in China
are indicative of greatly uneven distribution of Se in the coun-
try. Although the Se concentrations in foods and the daily Se
intake decreased significantly from 1963 to 2010 in Enshi, the
present daily Se intake is still above the recommended maximum
safe intake 550 µg/d (Mao et al., 2014). Moreover, the total soil
Se concentration ranges from 20 to 60 mg/kg DW in Enshi,
which is almost 150–500 times greater than the average Se con-
tent (0.125 mg/kg DW) in Se-deficient areas and approximately
50–150 times greater than the soil Se concentration (0.40 mg/kg
DW) in Se-rich areas in China. In contrast, there are about 76%
countries located in Se-deficiency regions where the Se daily
intake level is less than 55 µg/d for adults. In about 70% of China,
Se-deficiency occurs in a geographic low-Se belt stretching from
northeastern Heilongjiang Province to southwestern Yunnan
Province. Therefore, developing the natural Se-biofortification
program in Enshi is a positive strategy. Then, Se-enriched plants
or crops can be utilized as a source organic Se fertilizer to increase
the Se contents in staple crops, or used as Se-enriched forage to
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support livestock in Se-deficient areas. In addition, Se-enriched
crops, such as rice, maize, wheat, can also be consumed by pop-
ulations as a natural and safe Se-supplement in Se deficiency
areas. Furthermore, the newly-identified Se-hyperaccumulator
plant (Cardamine hupingshanesis; Yuan et al., 2013) can be planted
in Enshi to yield high-Se plant materials to obtain an additional
source of organic Se fertilizer for Se-biofortification practices.
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