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The fluid collected by direct leaf centrifugation has been used to study the proteome of
the sugar beet apoplastic fluid as well as the changes induced by Fe deficiency and Fe
resupply to Fe-deficient plants in the protein profile. Plants were grown in Fe-sufficient
and Fe-deficient conditions, and Fe resupply was carried out with 45μM Fe(III)-EDTA for
24 h. Protein extracts of leaf apoplastic fluid were analyzed by two-dimensional isoelectric
focusing-SDS-PAGE electrophoresis. Gel image analysis revealed 203 consistent spots,
and proteins in 81% of them (164) were identified by nLC-MS/MS using a custom
made reference repository of beet protein sequences. When redundant UniProt entries
were deleted, a non-redundant leaf apoplastic proteome consisting of 109 proteins
was obtained. TargetP and SecretomeP algorithms predicted that 63% of them were
secretory proteins. Functional classification of the non-redundant proteins indicated
that stress and defense, protein metabolism, cell wall and C metabolism accounted
for approximately 75% of the identified proteome. The effects of Fe-deficiency on the
leaf apoplast proteome were limited, with only five spots (2.5%) changing in relative
abundance, thus suggesting that protein homeostasis in the leaf apoplast fluid is
well-maintained upon Fe shortage. The identification of three chitinase isoforms among
proteins increasing in relative abundance with Fe-deficiency suggests that one of the few
effects of Fe deficiency in the leaf apoplast proteome includes cell wall modifications.
Iron resupply to Fe deficient plants changed the relative abundance of 16 spots when
compared to either Fe-sufficient or Fe-deficient samples. Proteins identified in these spots
can be broadly classified as those responding to Fe-resupply, which included defense
and cell wall related proteins, and non-responsive, which are mainly protein metabolism
related proteins and whose changes in relative abundance followed the same trend as
with Fe-deficiency.

Keywords: leaf apoplast, iron deficiency, proteome, sugar beet, two-dimensional electrophoresis

Introduction

Iron is the fourth most abundant element in the earth’s crust and it is an essential micronutrient for
all living organisms including plants. However, its low availability in neutral or alkaline soils, which
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account for approximately 30% of the world’s arable soils, causes
Fe deficiency (Abadía et al., 2004). Iron deficiency is the most
common nutritional disorder in many plants and typical symp-
toms include chlorosis of young leaves (leaf yellowing) and
reduced crop yield and quality, which result in increased orchard
management costs (Álvarez-Fernández et al., 2006; Rombolà and
Tagliavini, 2006; Abadía et al., 2011).

Plants have developed two main mechanisms to allow Fe
uptake from the soil: a strategy based on Fe (III) chelation (Strat-
egy II) used by graminaceous plants, and a strategy used by
non-graminaceous plants based on Fe(III) reduction (Strategy I)
(Römheld and Marschner, 1986; Curie and Briat, 2003; Abadía
et al., 2011). When challenged with Fe shortage, Strategy I plants
such as Beta vulgaris increase the activity of several enzymes at
the root plasma membrane level. These changes are aimed at
increasing Fe uptake and include increases in a Fe(III) reduc-
tase (FRO, Ferric Reductase Oxidase; Robinson et al., 1999),
an Fe transporter (IRT1, Iron Regulated Transporter) which
introduces Fe(II) into the root cell (Eide et al., 1996; Fox and
Guerinot, 1998) and an H+-ATPase that lowers the pH of the
rhizosphere increasing soil Fe solubility (Santi et al., 2005; Santi
and Schmidt, 2008, 2009). Also, several changes occur at the
metabolic level in order to support the increased demand of
energy and reducing power of Fe-deficient Strategy I roots (Zoc-
chi, 2006). These changes include increased activity of the gly-
colytic pathway and TCA cycle, shifts in the redox state of the
cytoplasm and in the mitochondrial electron transport chain
(Schmidt, 1999; López-Millán et al., 2000b; Zocchi, 2006; Vigani,
2012).

While it is well-known that Fe is transported to the shoot
via xylem, complexed by citrate (López-Millán et al., 2000a;
Rellán-Álvarez et al., 2010), the mechanisms for Fe loading and
unloading from the vasculature system are not yet fully under-
stood. These processes could take place via parenchyma cells or
by passive diffusion to the apoplastic space driven by transpi-
ration (Abadía et al., 2011). Also, Fe uptake by mesophyll cells
is not as well-studied as in roots. An Fe-reductase activity has
been detected in leaf cells and protoplasts (Nikolic and Römheld,
1999; González-Vallejo et al., 2000; Jeong and Connolly, 2009)
and AtFRO6 has been located in leaf PM-membranes (Mukher-
jee et al., 2006; Jeong et al., 2008). However, fro6 mutant plants
do not display any Fe-deficiency symptoms (Jeong and Connolly,
2009) therefore suggesting the existence of other reducing mech-
anisms. Factors such as differences in apoplastic pH and carboxy-
late concentrations as a result of Fe deficiency may also regulate
leaf Fe reductase activity. On the other hand, light has also been
proposed to directly photoreduce Fe (III)-citrate complexes in
the leaf apoplast (Nikolic and Römheld, 2007).

The apoplast is a free diffusional space outside the plasma
membrane that occupies less of 5% of the plant tissue volume in
aerial organs (Steudle et al., 1980; Parkhurst, 1982) and the root
cortex (Vakhmistrov, 1967). Among other important functions,
such as transport and storage of minerals (Starrach and Mayer,
1989; Wolf et al., 1990; Zhang et al., 1991) or signal transmission
(Hartung et al., 1992), the apoplast plays a major role in plant
defense (Pechanova et al., 2010). Given that the composition
of the apoplastic fluid results from the balance between xylem

and phloem transport and mesophyll cell uptake processes, small
changes in these fluxes could produce large changes in the solute
concentrations in the apoplast. Changes in the apoplastic com-
position have been described in biotic and abiotic stresses such as
Fe deficiency, air pollutants, heavy metal toxicity, drought, salin-
ity, and extreme temperature (Griffith et al., 1992; Brune et al.,
1994; Covarrubias et al., 1995; Dietz, 1997; López-Millán et al.,
2000a; Fecht-Christoffers et al., 2003). For instance, Fe deficiency
causes a slight decrease in the pH of the apoplast and has a strong
impact on the carboxylate composition, with major increases in
the concentrations of citrate and malate (López-Millán et al.,
2000a). These Fe-deficiency induced changes in the leaf apoplast
chemical environment have been suggested to play a role in Fe
homeostasis (López-Millán et al., 2000a).

Apoplastic fluid isolation is always carried out using some
degree of force (e.g., vacuum perfusion, leaf centrifugation, or
pressure using a Schölander bomb), therefore leading to the pres-
ence of some cytosolic components in the samples (Lohaus et al.,
2001). This contamination may be originated by the rupture of
a certain fraction of the leaf mesophyll cells, or, alternatively, by
the rupture of the plasmodesmata that communicate neighbor-
ing cells. The degree of contamination is usually assessed using
cellular marker enzymes such as cytosolic malate deshidroge-
nase (c-mdh) or other cytoplasmic or internal organelle com-
ponents, with values ≤3% considered acceptable (Dannel et al.,
1995; Lohaus et al., 2001).

Proteomic approaches are useful to understand the general
effect that a given stress exerts on metabolic processes (Jorrín-
Novo et al., 2009). These approaches have been previously used
to study the effects of Fe deficiency in several plant tissues, includ-
ing thylakoids and roots (López-Millán et al., 2013). Most of the
leaf apoplastic proteomic studies so far have been devoted to
the study of the protein profile or the effect of biotic stresses.
However, knowledge about the effects of nutritional stresses
such as Fe deficiency in the apoplastic fluid protein profile is
still very limited. Therefore, the aim of this study was first to
obtain an overview of the leaf apoplast proteome in sugar beet
plants and second to characterize the changes induced by Fe
deficiency and resupply in the protein profile of this compart-
ment, with the final goal of shedding light into the major pro-
cesses taking place in the apoplast and the effect of Fe deficiency
on them.

Material and Methods

Plant Material and Growth Conditions
Sugar beet (Beta vulgaris L. cv. Orbis) was grown in a growth
chamber with a photosynthetic photon flux density (PPFD) of
350μmol m−2 s−1 PAR, 80% relative humidity and a photope-
riod of 16 h, 23◦C/8 h, 18◦C day/night regime. Seeds were ger-
minated and grown in vermiculite for 2 weeks. Seedlings were
grown for an additional 2 weeks period in half-strengthHoagland
nutrient solution with 45μM Fe(III)-EDTA, and then trans-
planted to 20 L plastic buckets (four plants per bucket) containing
half-strength Hoagland nutrient solution with either 0 or 45μM
Fe(III)-EDTA. Iron-free nutrient solutions were buffered at pH
7.7 with 1mM NaOH and 1 g L−1 of CaCO3. Young leaves from
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plants grown for 10 d in the presence and absence of Fe were
used to collect the apoplastic fluid in all experiments. In the
Fe-resupply experiment, 45μM Fe (III)-EDTA was added to the
nutrient solution of plants grown for 10 d in the absence of Fe.
The apoplastic fluid of these plants was collected 24 h after Fe
addition.

Experimental Design
The experiment was repeated four times with independent sets of
plants. Each batch of plants consisted of four buckets per treat-
ment with four plants per bucket. Apoplastic fluid was isolated
from the four to five youngest leaves of each plant. Cytosolic
contamination was assayed in each sample as described below.
Samples with less than 3% of cytosolic contamination from a
given treatment per batch were pooled together and considered
as a biological replicate (n = 4).

Collection of Leaf Apoplastic Fluid
Leaf apoplastic fluid was obtained from whole sugar beet leaves
by direct centrifugation (López-Millán et al., 2000a). Briefly,
leaves were excised at the base of the petiole and each leaf was
rolled and placed into a plastic syringe barrel. Leaf-filled syringes
were first centrifuged at low speed (2500 g, 4◦C, 15min) to
remove the xylem sap from the main vein and the fluid col-
lected was discarded. A second centrifugation was then carried
out at 4◦C, 4000 g for 15min and the fluid collected was consid-
ered as soluble apoplastic fluid. The activity of cytosolic malate
dehydrogenase (c-mdh; EC 1.1.1.37) in the collected fluid was
measured immediately and used as a cytosolic contamination
marker. The activity of c-mdh was measured spectrophotomet-
rically at 340 nm in a final reaction mixture containing 46.5mM
Tris (pH 9.5), 0.1mM NADH, 0.4mM oxaloacetate and 5μL of
apoplastic fluid and referred to activity measured in a whole leaf
extract (López-Millán et al., 2000a). For the activity in whole leaf
extracts, approximately 0.1 g of leaf tissue was homogenized with
2mL of a buffer (pH 8.0) containing 100mMHEPES, 30mM sor-
bitol, 2mM DTT, 1mM CaCl2, 1% (w/v) bovine serum albumin
and 1% (w/v) polyvinylpyrrolidone. The supernatant was col-
lected and analyzed immediately after a 10min centrifugation at
10,000 g.

Protein Extraction
Proteins in approximately 1mL of apoplastic fluid were precip-
itated by adding five volumes of cold 10% TCA. Samples were
incubated for at least 14 h at 4◦C and then centrifuged at 10,000 g
for 15min. The pellet was washed twice with coldmethanol, dried
with N2 gas and solubilized in a sample rehydration buffer con-
taining 8M urea, 2% (w/v) CHAPS, 50mM DTT, 2mM PMSF
and 0.2% (v/v) IPG buffer pH 3–10 (GE Healthcare, Uppsala,
Sweden). After rehydration, samples were incubated in a Ther-
momixer Confort device (Eppendorf AG, Hamburg, Germany)
at 29◦C and 1000 rpm during 3 h, then centrifuged at 10,000 ×g
for 10min at RT and filtered (0.45μm ultrafree-MC filters, Mil-
lipore, Bedford, USA). Protein concentration in the samples was
quantified immediately with the Bradford method in microtiter
plates using an Asys UVM 340 spectrophotometer (Biochrom
Ltd., Cambridge, UK) and BSA as standard.

2-DE
Afirst dimension IEF separation was carried out on 7 cmReadyS-
trip IPG Strips (BioRad, Hercules, CA, USA) with a linear pH
gradient 3–10 in a Protean IEF Cell (BioRad). Strips were pas-
sively rehydrated for 16 h at 20◦C in 125μL of rehydration buffer
containing 80μg of apoplast proteins and a trace of bromophenol
blue and then strips were transferred onto a strip electrophore-
sis tray. IEF was run at 20◦C, for a total of 14,000V h (20min
with 0–250V linear gradient; 2 h with 250–4000V linear gradi-
ent and 4000V until 10,000V h). After IEF, strips were equili-
brated for 10min in equilibration solution I [6M urea, 0.375M
Tris-HCl, pH 8.8, 2% (w/v) SDS, 20% (v/v) glycerol, 2% (w/v)
DTT] and for another 10min in equilibration solution II [6M
urea, 0.375M Tris-HCl pH 8.8, 2% (w/v) SDS, 20% (v/v) glyc-
erol, 2.5% (w/v) iodoacetamide]. For the second dimension, poly-
acrylamide gel electrophoresis (SDS-PAGE) and equilibrated IPG
strips were placed on top of vertical 12% SDS-polyacrylamide gels
(8× 10× 0.1 cm) and sealed with melted 0.5% agarose in 50mM
Tris-HCl (pH 6.8) containing 0.1% SDS. SDS-PAGE was carried
out at 20mA per gel for approximately 1.5 h at 4◦C, until the bro-
mophenol blue reached the plate bottom, in a buffer containing
25mM Tris Base, 192mM glycine, and 0.1% SDS. Gels were sub-
sequently stained with Coomassie blue G-250 (Serva, Barcelona,
Spain). For each treatment, gels were made from four indepen-
dent apoplast protein extracts (n = 4), each of them obtained by
pooling the apoplastic fluid collected from 5 to 6 leaves in a given
batch.

Gel Image and Statistical Analysis
Stained gels were scanned with an Epson Perfection 4990 Photo
Scanner (Epson Ibérica, Barcelona, Spain), previously calibrated
using the SilverFast 6 software (LaserSoft Imaging AG, Kiel, Ger-
many) using an IT8 reference card. Experimental MR values were
calculated by mobility comparisons with Precision Plus protein
standard markers (BioRad) run in a separate lane on the SDS-
gel, and pI was determined by using a 3–10 linear scale over the
total dimension of the IPG strips. Spot detection, gel matching
and interclass analysis were performed with PDQuest 8.0 soft-
ware (BioRad). Normalized spot volumes based on total intensity
of valid spots were calculated for each 2-DE gel and used for sta-
tistical calculations of protein abundance; for all spots present in
the gels, pI, Mr, and normalized volumes (mean values and SD)
were determined. Only spots present in all four replicates from
at least one treatment were considered as consistent and used
in further analysis. The spots were also manually checked, and
a high level of reproducibility between normalized spot volumes
was found in all four different replicates.

Univariate and multivariate statistical analyses were carried
out. Protein response ratios were defined as the relative abun-
dance in a given treatment divided by the relative abundance
in the control; when ratios were lower than one the inverse was
taken and the sign changed. Spots changing in relative abundance
were defined using a Student t-test and a significance level of
p < 0.05. Among these, only protein species with mean response
ratios above 2.0 or below −2.0 were considered relevant and
are discussed in this study. Principal component analysis (PCA)
analysis was also carried out, using Statistical software (v. 10.0)
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and including only those spots showing differential accumulation
as a result of the Fe-deficiency and Fe-resupply treatments.

Protein in Gel Digestion
Consistent spots were excised automatically using a spot cutter
EXQuest (BioRad), transferred to 500μL Protein LoBind Eppen-
dorf tubes, distained in 400μL of 40% [v/v] acetonitrile (ACN)
and 60% [v/v] 200mM NH4HCO3 for 30min and dehydrated in
100%ACN for 10min. Gel pieces were dried at RT and then in gel
digested with 15μL Trypsin solution (Sequencing Grade Modi-
fied Trypsin V511, Promega, Madison, WI, US; 0.1μg μL−1 in
40mM NH4HCO3/9% ACN). After incubation for 5 h at 37◦C,
the reaction was stopped by adding 1μL of 1% TFA. The peptide
solution was finally analyzed using mass spectrometry (MS).

Reference Repository of Beet Protein Sequences
Proteomes of five sequenced beet accessions (RefBeet,
KDHBv, YMoBv, UMSBv and YTiBv) were downloaded
from http://bvseq.molgen.mpg.de/Genome/Download, corre-
sponding to gene models annotated as of February 2013. In
addition, all B. vulgaris protein sequences annotated in Uniprot
(www.uniprot.org) were retrieved, and added to the set, which
was subsequently filtered to remove redundant sequences
with software CD-HIT (http://www.ncbi.nlm.nih.gov/pubmed/
23060610) with cutoff -c 1.0 and otherwise default parameters.
The final non-redundant set contained 82,368 protein sequences.

Protein Identification by Nano-Liquid
Chromatography-Tandem Mass Spectrometry
(nLC-ESI-MS/MS)
Peptides present in 6μL of sample were pre-concentrated on line
onto a 300μm i.d. × 5mm, 5μm particle size ZORBAX 300SB-
C18 trap column (Agilent Technologies, Waldbronn, Germany),
using a 100μLmin−1 flow rate of 3%ACN, 0.1% formic acid, in a
nano-HPLC system 1200 series (Agilent Technologies). Backflow
elution of peptides from the trap column was carried out, and
separation was done with a 75μm i.d.× 150mm, 3.5μmparticle
size ZORBAX 300SB-C18 column (Agilent Technologies), using
a 300 nL min−1 nano-flow rate and a 55min linear gradient from
solution 97% A (0.1% formic acid) to 90% of solution B (90%
ACN, 0.1% formic acid). The nano-HPLC was connected to a
HCT Ultra high-capacity ion trap (Bruker Daltoniks, Bremen,
Germany) using a PicoTip emitter (50μm i.d., 8μm tip i.d., New
Objective, Woburn, MA, USA) and an on line nano-electrospray
source. Capillary voltage was ×1.8 kV in positive mode and a
dry gas flow rate of 10 L min−1 was used with a temperature of
180◦C. The scan range used was from 300 to 1500m/z. The mass
window for precursor ion selection was ±0.2 Da and the rest
of parameters were those recommended by the manufacturer
for MS/MS proteomics work. Peak detection, deconvolution
and processing were performed with Data Analysis 3.4 software
(Bruker Daltoniks).

Protein identification was carried out using the Mascot
search engine v. 2.5.0 (Matrix Science; London, UK) and
the non-redundant B. vulgaris 20140811 (82,368 sequences;
28,127,547 residues), NCBI 20130310 (23,641,837 sequences;
8,123,359,852 residues), and Plants_EST EST_114 20140804

(158,278,518 sequences; 27,948,288,346 residues). Search param-
eters were: monoisotopic mass accuracy, peptide mass toler-
ance ±0.2Da, fragment mass tolerance ±0.6Da, one allowed
missed cleavage, fixedmodification carbamidomethylation (Cys),
and variable modification oxidation (Met). Positive identifi-
cation was assigned with Mascot P-values below the thresh-
old (p < 0.05), at least two identified peptides with a score
above homology, 10% sequence coverage and similar experi-
mental and theoretical MW and pI values. We used the GO
biological process annotation (http://www.geneontology.org)
for classification of each individual protein identified. The
secretion of apoplastic proteins was predicted using TargetP
(www.cbs.dtu.dk/services/TargetP) (Emanuelsson et al., 2007),
and SecretomeP (www.cbs.dtu.dk/services/SecretomeP) analysis
to predict classical and non-classical secreted proteins, respec-
tively (Bendtsen et al., 2004, 2005).

Quantitative RT-PCR
Expression of chitinase and thaumatin genes was analyzed by
qRT-PCR in two batches of plants. Total RNA from B. vulgaris
leaves was isolated using the RNeasy Plant mini kit from
QIAGEN (QIAGEN Inc., Valencia, CA, USA) according to the
manufacturer’s instructions. Samples were treated with DNAsa
(recombinant DNase from Macherey-Nagel, Düren, Germany)
to remove contaminating genomic DNA. The concentration
of RNA and cDNA was determined with a Nanodrop system
(Thermo Fisher Scientific, Waltham, MA, USA) and the struc-
tural integrity the RNA was checked using non-denaturing
agarose gel stained with SybrSafe (Invitrogen, Carlsbad, CA,
USA). One μg of total RNA was reverse transcribed to cDNA
by using the SuperScript III reverse transcriptase and 2.5μM
poly(dT)20 primer in a final volume of 20μl according to
the manufacturer’s instructions (Invitrogen, Carlsbad, CA,
USA). Quantitative real time polymerase chain reactions were
performed in a AB7500 Fast Real-Time PCR system (Applied
Biosystems by Life Technologies, Grand Island, New York) with
equal amount of cDNA for all samples and 10μl SYBR green
master mix (Applied Biosystems, Warrington, UK) using gene
specific primers and two different housekeeping genes (actin
and tubulin) in a final volume of 20μl. Primer sequences and
fragment sizes are listed in Table S1. The qPCR program was
50◦C for 2min, 95◦C for 10min, 40 cycles of 95◦C for 15 s and
60◦C for 1min; and a final dissociation stage of 95◦C for 15 s,
60◦C for 1min, and 95◦C for 30 s. A previous experiment was
performed to assess for primer efficiency with different sets of
primers for each target gene. Primer efficiencies of the chosen
sets are listed in the Table S1.

Low-Temperature Scanning Electron Microscopy
Leaf pieces were mounted on aluminum stubs with adhesive
(Gurr R©, optimum cutting temperature control; BDH, Poole,
UK), cryo-fixed in slush nitrogen (−196◦C), cryo-transferred to
a vacuum chamber at −180◦C, and then fractured using a stain-
less steel spike. Once inside the microscope, the samples under-
went superficial etching under vacuum (−90◦C, 120 s, 2 kV), and
then were overlaid with gold for observation and microanaly-
sis. This freeze-fracture procedure leads to cell rupture only at
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the fracture plane, whereas the general internal leaf structure is
well-preserved. Fractured samples were observed at low temper-
ature with a digital scanning electron microscope (Zeiss DSM
960, Oberkochen, Germany) using secondary and back-scattered
electrons. Secondary electron images (1024 × 960 pixels) were
obtained at 133 eV operating at a 35◦ take-off angle, an acceler-
ating voltage of 15 kV, a working distance of 25mm and a spec-
imen current of 1–5 nA. Microscopy was run in the Institute of
Agricultural Sciences-CSIC (ICA-CSIC), Madrid, Spain.

Results

Sugar beet plants showed Fe-deficiency symptoms 5 days after
the treatment onset, with a marked yellowing of the younger
leaves (Table S2). A freeze-fracture electron microscopy micro-
graph provided a representative image of a B. vulgaris leaf, with
the apoplastic space surrounding mesophyll cells, as well as the
epidermal cells and the minor vein tissues (Figure 1). The micro-
graph also shows the presence of plasmodesmata that communi-
cate neighboring cells.

The apoplastic fluid collected from these leaves was assayed for
c-mdh activity and only samples with contamination levels <3%
(mean 1.72%, expressed on a total leaf activity basis) were used
for 2-DE protein profiling (Table S2). Typical protein extraction
yields ranged between 0.4 and 0.8μg protein μL−1 of apoplastic
fluid (Table S2).

Protein Profiles of the Apoplastic Fluid
The protein profile of apoplast extracts from B. vulgaris
leaves was studied by 2-DE IEF-SDS-PAGE electrophoresis.

FIGURE 1 | Freeze–fracture low-temperature scanning electron
micrograph of a transversal section from a Beta vulgaris leaf. This leaf
transversal section gives three-dimensional information on the internal
structure of the leaf. Apoplastic space (AS in white letters) surrounds
mesophyll (MC) and epidermal cells (EC). The image also shows the presence
of plasmodesmata (PD) that communicate neighboring mesophyll cells.

Experimental conditions allowed for the separation of proteins
within pI and MW ranges from 3.5 to 8 and from 18 to
106 kDa, respectively. Typical real scans of 2-DE gels obtained
from apoplastic fluid protein extracts of Fe-sufficient (+Fe), Fe-
deficient (−Fe), and Fe-resupplied Fe-deficient plants (−FeR)
are shown in Figures 2A–C, respectively. The average number of
detected spots (mean ± SD) was 210 ± 12, 216 ± 11, and 211 ±
20 in gels from plants grown in+Fe,−Fe, and−FeR conditions,
respectively (Table S3 and Figure S1). The total number of spots
consistently detected in the whole experiment (present in all four
gels of at least one treatment) was 203. A composite averaged vir-
tual map containing all consistent spots is shown in Figure 2D.
All consistent spots were analyzed by MS, and proteins were
unambiguously identified in 78% of the cases (158 spots) (Table
S4 and Figure S1). A large percentage (97%) of identifications
was achieved using the beet custom reference repository. To iden-
tify UniProt entries, BLAST searches (E-values < 1e-30) of the
unambiguously identified protein hits were run when needed.
This approach revealed a high degree of redundancy in the identi-
fied protein species. When duplicates (same UniProt entry) were
removed, the 158 identified proteins were reduced to 109 non-
redundant proteins and this protein set was considered as the leaf
apoplastic protein profile (Table 1). However, it should be noted
that there may be still certain degree of redundancy left, since
some hits correspond to the same protein description but from
different plant species (Table 1).

The distribution of non-redundant proteins according to the
biological process in the sugar beet leaf apoplast indicated that
the major functional categories within the apoplastic proteome
were C metabolism (25%; 27 protein species), stress and defense

FIGURE 2 | 2-DE IEF-SDS PAGE protein profile maps of leaf apoplastic
fluid extracts from sugar beet plants. Scans of typical gels from
Fe-sufficient (+Fe), Fe-deficient (−Fe) and Fe-resupplied Fe-deficient (−FeR)
plants are shown in (A–C), respectively. To facilitate visualization of the studied
spots, a virtual composite image (D) was created containing all spots present
in the real gels (A–C). In (D) spots whose intensities changed in relative
abundance as a result of the treatments are circled and numbered as in
Table 2.
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TABLE 1 | Non-redundant proteome of the leaf apoplastic fluid of sugar beet plants.

Number
of spotsa

Protein descriptionb UniProtc TargetPd SecretomePe Go:Pf

PROTEIN METABOLISM (21)

2 Proteasome subunit alpha type D7T9I6, I6U5E4 –,M –, nCS Ubiquitin-dependent
proteolysis

1 Proteasome subunit alpha type-5 Q9M4T8 – – Ubiquitin-dependent
proteolysis

1 Proteasome subunit alpha type-6-like isoform
X1

XP_004488480 – – Ubiquitin-dependent
proteolysis

1 Proteasome subunit beta type-6 M4D453 – nCS Ubiquitin-dependent
proteolysis

1 Proteasome subunit alpha type-7 XP_008393990 – – Ubiquitin-dependent
proteolysis

1 Cysteine proteinase RD19a/like I1LJ95 S CS Proteolysis

1 Cysteine protease A5HIJ1 S CS Proteolysis

1 Aspartic protease A0A067FW02 S CS Proteolysis

2 Serine carboxypeptidase W9SXH8, B9SMP4 S, S CS, CS Proteolysis

2 Serine carboxypeptidase-like 20-like XP_008235895 S CS Proteolysis

2 Unknown protein with peptidase domain E0CQB3 – nCS Serine-type endopeptidase
activity

1 Subtilisin-like protease-like XP_006466502 S CS Serine-type peptidase
activity

1 Chaperonin 20 A0A061GL19 C – Protein folding

3 Peptidyl-prolyl cis-trans isomerase B9RN18, O49939 C, C –, nCS Protein folding

1 Rubisco subunit binding-protein alpha subunit B9MZ75 C – Protein folding

1 Heat shock 70 protein O22664 – – Protein folding

1 Predicted heat shock cognate 70 kDa protein
2-like

XP_004505872 – – Protein folding

1 Elongation factor Tu A0A067FTF8 C nCS Translation

CARBON METABOLISM (27)

4 Enolase Q43130 – nCS Glycolytic process

4 Triosephosphate isomerase B0LT90, K4FXE7, P48496 –, –, C –, nCS, nCS Glycolytic process

11 Fructose-bisphosphate aldolase F1AHC9, O04975, Q6RSN7 C, –, – nCS, nCS, – Glycolytic process

1 2,3-Bisphosphoglycerate-independent
phosphoglycerate mutase

Q42908 – – Glycolytic process

1 Phosphoglucomutase P93262 – – Glucose metabolic process

3 Glyceraldehyde-3-phosphate dehydogenase A3FMH0 – – Glucose metabolic process

2 Ribose-5-phosphate isomerase Q8RU73 C nCS PPS, non-oxidative branch

1 Ribulose-phosphate 3-epimerase Q43157 C nCS Calvin cycle; PPS, oxidative
branch

3 Transketolase O20250, Q14K68 C, – nCS, nCS Calvin cycle; PPS, oxidative
branch

1 Phosphoglycerate kinase P29409 C – Calvin cycle, glycolytic
process

1 Sedoheptulose-1,7-bisphosphatase O20252 C nCS Calvin cycle

1 Phosphoribulokinase P09559 C – Calvin cycle

6 Ribulose-1,5-bisphosphate
carboxylase/oxygenase

Q08184, XP_004144069, P16032,
A0A023ZPS4, Q6JXV6

C, C, C, –, – nCS, –, nCS,
nCS, nCS

Carbon fixation

3 23 kDa OEC protein B0L802 – – Photosynthesis

5 Malate dehydrogenase, cytoplasmic Q9SML8 – nCS Cellular carbohydrate
metabolic process

5 Carbonic anhydrase P16016, U5GK55 C, S nCS, CS One-carbon metabolic
process

1 Oxaloacetase (Dianthus caryophyllus) Q05957 – – Metabolic process

(Continued)
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TABLE 1 | Continued

Number
of spotsa

Protein descriptionb UniProtc TargetPd SecretomePe Go:Pf

STRESS AND DEFENSE (23)

3 Osmotin-like protein Q38745 S CS Defense response

4 Thaumatin-like protein Q6PP01, A9ZMG1, A9ZMG0,
XP_004297839

–, S, S, S nCS, CS, CS,
CS

Defense response

1 Abscisic acid stress ripening-related protein A0A059SPX5 – – Response to stress

1 Protein IN2-1 homolog B-like XP_003632205 C nCS Glutathione metabolic
process

1 Uncharacterized protein with Bet_v_I_allergen
domain

M0ZYA5 – – Defense response

1 Ascorbate peroxidase Q94CF7 – – Response to oxidative
stress

1 Monodehydroascorbate reductase Q93YG1 S CS Response to oxidative
stress

1 Peroxidase superfamily protein XP_007014796 S CS Response to oxidative
stress

1 Peroxidase P93547 S CS Response to oxidative
stress

3 Peroxiredoxin H6VND7 C nCS Cell redox homeostasis

1 Type II peroxiredoxin I0CC96 M nCS Cell redox homeostasis

1 Cu/Zn superoxide dismutase H9BQP8 C CS Superoxide metabolic
process

6 Lactoylglutathione lyase M0ZHD0, D2D330, Q8W593,
GI:697188226, GI:697141977

C, –, C, –, C nCS, –, nCS, –,
–

Methylglyoxal catabolic
process to D-lactate

2 Lactoylglutathione lyase isoform X2 GI:694332574, XP_008385524 –, – –, – Methylglyoxal catabolic
process to D-lactate

1 Predicted isoflavone reductase homolog XP_008377292 S CS Oxidation-reduction process

POLYSACHARIDE METABOLISM (10)

2 3-Glucanase family protein B9GI31 S CS Carbohydrate metabolic
process

2 Acidic endochitinase SP2 P42820 S CS Polysaccharide catabolic
process

1 Acidic endochitinase SE2 P36910 S CS Polysaccharide catabolic
process

4 Chitinase Q8LST3 S CS Carbohydrate metabolic
process

2 Beta-xylosidase/alpha-L-arabinofuranosidase XP_008218886 S CS Xylan catabolic process

1 UDP-glucuronic acid decarboxylase 1 W9R277 C nCS UDP-D-xylose biosynthetic
process

2 Beta-fructofuranosidase Q8VXS6, S49256 –, – nCS, nCS Carbohydrate metabolic
process

1 Uncharacterized protein with hydrolase domain V4SY44 M CS Carbohydrate metabolic
process

1 Unknown protein with hydrolase domain A9PG55 – nCS Mannose metabolic process

AMINO ACID METABOLISM (7)

3 Serine hydroxymethyltransferase XP_007034218, XP_007034219 –, – –, – L-serine metabolism

1 Serine transhydroxymethyltransferase P50433 M – L-serine metabolism

1 Aminomethyltransferase P93256 M nCS Glycine catabolism

3 Glutamine synthetase Q9AWA8, Q9AXD1 C, – –, – Glutamine biosynthesis

2 Aspartate aminotransferase B9HAW0 C nCS Cellular amino acid
metabolic process

LIPID METABOLISM (3)

1 3-Hydroxybutyryl-CoA dehydratase B9RPB0 M nCS Enoyl-CoA hydratase
activity

1 Uncharacterized protein with lipase domain U5FE87 S CS Lipid metabolic process

1 Uncharacterized protein with lipase domain D7TJU3 S CS Lipid metabolic process

(Continued)
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TABLE 1 | Continued

Number
of spotsa

Protein descriptionb UniProtc TargetPd SecretomePe Go:Pf

OTHER (9)

1 Ferredoxin–NADP reductase B9SB31 C nCS Oxidation-reduction process

3 Alcohol dehydrogenase B9SHB0 C – Oxidation-reduction process

1 Flavoprotein WrbA-like XP_004294313 – – Oxidation-reduction process

2 Acylpyruvase FAHD1 XP_004508199 – – Hydrolase activity

1 Cytosolic ATP sulfurylase G9B7N0 – – Sulfate assimilation

1 Nucleoside diphosphate kinase 2 Q01402 C nCS Nucleotide metabolic
process

1 Thiamine thiazole synthase XP_008244366 C nCS Thiamine biosynthetic
process

1 Uncharacterized germin protein I3SGS4 S CS Nutrient reservoir activity

1 Soluble inorganic pyrophosphatase 1 A0A061E4X1 M nCS Pyrophosphatase activity

UNKNOWN FUNCTION (9)

1 Putative protein (Hordeum vulgare) F2EID0 – – Nucleotide binding

4 Uncharacterized protein (Vitis vinifera) D7SXW6 S CS

1 Uncharacterized protein (Jatropha curcas) A0A067KSH6 M nCS

1 Uncharacterized protein (Jatropha curcas) A0A067KHD5 – nCS

1 Jasmonate-induced protein (Atriplex
canescens)

P42764 – nCS

1 CSP41A protein E5KGE2 – – Cellular metabolic process

1 Hypothetical protein CICLE_v10029208mg
(Citrus clementina)

V4SBG5 S CS

2 No blast result

NO IDENTIFIED

45

aNumber of spots with the same protein description.
b Protein description.
c UniProt entries sharing same protein description.
d TargetP algorithm predictions: C, M, S, and—indicate chloroplast, mitochondrion, secretory pathway and any other location, respectively.
e SecretomeP algorithm predictions: CS, nCS and—indicate classical secreted, non-classical secreted, and non-secreted proteins, respectively.
f Description of the GO: P (biological process) term.

(21%; 23 proteins), and protein related processes (19%; 21 pro-
teins), followed by cell wall related processes (9%, 10 proteins)
(Table 1, Figure 3A).

From the non-redundant leaf apoplastic proteins, 26% (28
protein species) were predicted to have a signal peptide sequence
using the TargetP or SecretomeP softwares, whereas SecretomeP
revealed that 38% (41 proteins) were assigned to non-classical
secreted proteins lacking a signal peptide (Table 1, Figure 3B).

Effect of Fe-Deficiency and Fe Resupply on the
Leaf Apoplastic Fluid Protein Profile
The statistical analysis (p < 0.05; t-Student) of averaged 2-
DE maps indicated that 8% (16 spots) of the total number
of consistent spots changed significantly and >2-fold in rela-
tive abundance in the whole experiment (spots labeled 1–16 in
Figure 2D). Among them, 88% of the spots (14) matched reli-
ably to known proteins and were identified by database searches
(1–14, Figure 2D). Their metabolic functions were assessedman-
ually by GO annotation and identified proteins were classified
into five functional categories: cell wall related processes (4 spots,
2 proteins), protein metabolism (4 proteins), and defense, amino

acid and C-related pathways, with two proteins each (Table 2).
The principal component analysis of differentially accumulated
spots showed a good separation between treatments, with the first
and second components explaining approximately 48 and 38% of
the variation, respectively (Figure 4).

When the protein profile of -Fe samples was compared to that
of the +Fe samples, only five spots changed in relative abundance.
Four of them increased, including three spots (spots 1–3) identi-
fied as chitinase and one (spot 9) identified as a thaumatin-like
protein. Only one spot (spot 13) decreased as a result of Fe defi-
ciency and it was identified as carbonic anhydrase (Figure 2D,
Table 2).

In the comparison of −FeR vs. +Fe, eight spots changed in
relative abundance, four of them increased whereas the other
four decreased (Figure 2D, Table 2). Two of the spots increas-
ing in relative abundance were identified as chitinase and thau-
matin (spots 2 and 9, respectively) whereas the other two could
not be identified (spots 15 and 16). The spots decreasing in rel-
ative abundance were identified as a cysteine proteinase RD19-
like protein (spot 5), a peptidyl-prolyl cis-trans isomerase (spots
6, 7) and a serine hydroxymethyltransferase (spot 11) (Table 2).
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FIGURE 3 | (A) Functional classification of the non-redundant leaf
apoplastic proteome of sugar beet. Pathways related to the identified
proteins were integrated according to the GO annotation. (B) Protein
distribution of the non-redundant leaf apoplastic proteome according

to TargetP and SecretomeP algorithms; CS and nCS indicate
classical and non-classical secretory proteins, respectively, whereas
“Other” represents proteins ascribed to other cellular compartments
and unclassified.

When the -FeR samples were compared to the –Fe ones, six
spots changed in relative abundance (Table 2). Among them,
one spot was detected de novo (spot 14) and identified as the
23 kDa OEC protein and a second one (spot 15) could not be
identified. Four spots showed significant decreases in relative
abundance (Table 2, Figure 2D), and they were identified as β-
xylosidase/alpha-L-arabinofuranosidase (spot 4), a cytosolic heat
shock 70 protein (spot 8), lactoylglutathione lyase (spot 10) and
glutamine synthetase (spot 12).

Relative Transcript Abundance of Target Genes
The chitinase and thaumatin-like 1 proteins identified in spots
1 and 9 (Table 2 and Table S4, Figure 2), respectively, showed
the highest increases in relative abundance as a result of Fe-
deficiency and were selected to study transcript abundances using
q-PCR. Sequences containing the peptides matched during pro-
tein identification, KDHBv_S14175_58500.t1 for chitinase and
BQ584258 for the thaumatin-like 1 protein, were selected to
design primers for specific amplification of target genes (Table
S1). In Fe-deficient leaves, the relative abundances of chitinase
and thaumatin-like 1 protein transcripts increased 3- and 2-
fold, respectively, when compared to controls (Figure 5), whereas
upon Fe resupply the relative abundance of chitinase transcript
was higher and that of thaumatin-like 1 protein was not sig-
nificantly different at p < 0.05 (Figure 5). When compared
to the Fe-deficient controls, changes in transcript abundances
upon Fe-resupply were not statistically significant at p < 0.05
(Figure 5).

Discussion

Leaf Apoplastic Protein Profile
The 2-DE proteomic approach allowed us to resolve 203 spots,
with 158 of them (78%) being identified and 109 accounting
for non-redundant proteins. These results are similar to those
reported for gel-based leaf apoplastic proteome studies in other

plant species, which ranged between 93 and 470 spots, with an
average of 200 spots in most of the studies (Table 3 and refer-
ences therein). Functional classification of the non-redundant
leaf apoplastic proteins of sugar beet indicates that stress and
defense, protein metabolism, cell wall and C metabolism account
for approximately 75% of the identified proteome (Figure 3A).

Stress and defense related proteins accounted for 21% of the
non-redundant sugar beet apoplastic proteome. Similar to what
has been reported in other plant species (references in Table 3),
proteins identified were peroxidases, osmotin-like, thaumatin-
like, and pathogenesis-related proteins. Our results also indicate
the presence in the leaf apoplast of enzymes participating in
defense against oxidative stress (two peroxiredoxins, CuZnSOD
and two enzymes from the ascorbate-glutathione cycle: ascorbate
peroxidase and monodehydroascorbate reductase) and in the
detoxification of methylglyoxal (two UniProt entries described
as glyoxalase I). These proteins have also been found in the
leaf apoplast from poplar (Pechanova et al., 2010) and are also
present in fluids from the vascular tissue (Lattanzio et al., 2013;
Lucas et al., 2013). The presence of this wide spectrum of defense
proteins in non-stressed plants has been attributed to a pre-
formed defense that creates a hostile environment for pathogens
(Pechanova et al., 2010; Delaunois et al., 2013).

The contribution of protein metabolism-related proteins to
the sugar beet apoplastic proteome (19%, with 14 of the 21
UniProt entries being proteases) is within the range reported in
other studies using grapevine, Arabidopsis, and rice (16–20%;
Floerl et al., 2012; Delaunois et al., 2013; Kim et al., 2013), but
higher than percentages described for other plant species, which
range from 6 to 10% (Boudart et al., 2005; Goulet et al., 2010;
Pechanova et al., 2010). The presence of such a high number
of proteolysis-related proteins in the apoplast has been pro-
posed to be species-dependent (Delaunois et al., 2013). Subtilisin-
like, serine-carboxypeptidases, and aspartic proteases found in
this study have been consistently described in the apoplast of
several plant species (Goulet et al., 2010; Floerl et al., 2012;
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TABLE 2 | Spots showing differences in relative abundance (Student t-test p < 0.05) as a result of Fe deficiency and Fe resupply.

Spot
number in
Figure 1a

SSP
numberb

−Fe vs.
+Fec

−FeR vs.
+Fed

−FeR vs.
−Fee

Proteinf Plant Speciesg Uniproth GO:Pi SecretomePj

POLYSACHARIDE CATABOLISM

1 9403 new new −8.1 Chitinase from Phytolacca
americana

Beta vulgaris Q8LST3 Carbohydrate
metabolic process

CS

2 7404 8.7 5.3 −1.6 Chitinase from Phytolacca
americana

Beta vulgaris Q8LST3 Carbohydrate
metabolic process

CS

3 8401 4.2 3.0 −1.4 Chitinase from Phytolacca
americana

Beta vulgaris Q8LST3 Carbohydrate
metabolic process

CS

4 3805 1.4 −3.6 −5.0 Beta-xylosidase/alpha-L-
arabinofuranosidase from
Prunus mume

Beta vulgaris XP_008218886* Xylan catabolic
process

CS

PROTEIN RELATED

5 1402 −1.8 −6.5 −3.7 Cysteine proteinase
RD19a-like from Glycine
max

Beta vulgaris I1LJ95 Proteolysis CS

6 2203 −1.1 −3.6 −3.2 Peptidyl-prolyl cis-trans
isomerase from Ricinus
communis

Beta vulgaris B9RN18 Protein folding nCS

7 1602 −3.1 −7.9 −2.6 Peptidyl-prolyl cis-trans
isomerase from Spinacia
oleracea

Beta vulgaris O49939 Protein folding nCS

8 2902 1.2 −2.1 −2.4 Cytosolic heat shock 70
protein from Spinacia
oleracea

Beta vulgaris O22664 Protein folding –

DEFENSE

9 1404 19.5 11.5 −1.7 Thaumatin-like protein 1
from Fragaria vesca

Beta vulgaris XP_004297839* Defense response CS

10 2503 1.2 −2.0 −2.3 Lactoylglutathione lyase
from Gossypium hirsutum

Beta vulgaris D2D330 Methylglyoxal
catabolic process
to D-lactate

nCS

AMINO ACID METABOLISM

11 8710 −1.7 −5.0 −3.0 Serine
hydroxymethyltransferase
from Theobroma cacao

Beta vulgaris XP_007034218* L-serine metabolic
process

–

12 2610 2.3 −6.3 −14.2 Glutamine synthetase Beta vulgaris Q9AXD1 Glutamine
biosynthesis

–

CARBON METABOLISM

13 7302 −2.2 −1.8 1.2 Carbonic anhydrase from
Spinacia oleracea

Beta vulgaris P16016 One-carbon
metabolic process

nCS

14 4307 ND −12.2 new 23 kDa OEC protein from
Salicornia veneta

Beta vulgaris B0L802 Photosynthesis –

NO IDENTIFIED

15 7202 1.5 6.1 4.1

16 7204 4.7 2.4 −2.0

aSpot number as in Figure 1.
bSpot number as in Table S3.
c–eFold change in the Fe-deficient vs. Fe sufficient, Fe resupplied vs. Fe-sufficient and Fe-resupplied vs. Fe-deficient comparisons, respectively, values in bold indicate significant changes
and when the ratios were lower than one the inverse was taken and the sign changed.
f Protein description.
gPlant Species.
hUniprot entry (*denotes protein entry in UniParc).
iGO:P term description.
jSecretomeP algorithm predictions: CS, nCS and—indicate classical secreted, non-classical secreted and non-secreted proteins, respectively.

Delaunois et al., 2013). In addition, our results indicate that
sugar beet apoplast also contains several subunits of the pro-
teasome (six UniProt entries), which is involved in the ubiqui-
tin dependent degradation of damaged and miss-folded proteins

(Kurepa and Smalle, 2008). These apoplastic proteases may play
a role in plant defense against pathogens and also in signaling
(Van Der Hoorn and Jones, 2004; Xia et al., 2004; Pearce et al.,
2010).
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FIGURE 4 | Multivariate statistical analysis (Principal Component
Analysis, PCA) of 2-DE gels. Score scatter PCA plot of component 1 vs.
component 2 after analysis of spots showing differences in relative abundance
from leaf apoplastic fluid of sugar beet plants grown in Fe-sufficient (green
circles), Fe-deficient (yellow circles) and Fe-resupplied Fe-deficient (red circles)
conditions.

The cell wall related category accounted for 9% (10 proteins)
of the sugar beet leaf proteome and included nine glycoside
hydrolases. Glycoside hydrolases modify cell walls by metaboliz-
ing carbohydrate compounds from plant cell polysaccharides and
by interacting with hemicellulases and pectic enzymes (Numan
and Bhosle, 2006;Minic, 2008). The percentage of cell wall related
proteins found in sugar beet is similar to those reported in
grapevine and tobacco but lower than those found in rice, poplar
or maize (Table 3). On the other hand, the percentage of proteins
participating in C-related processes in the leaf apoplast of sugar
beet was slightly higher (25%, 27 proteins) than those reported
in other plant species (Table 3 and references therein). However,
these values vary depending on the functional classification of
certain proteins, such as peroxidases that are included in defense
or cell wall depending on the study, and on the consideration of
carbohydrate metabolism and cell wall as one or two functional
categories.

The relatively high percentage of C-related proteins found
in the sugar beet leaf proteome may have several causes. First,
a large number of the spots identified as proteins participating
in C metabolism have a low spot intensity and therefore they
are over-represented in the functional categorization based on
protein number. Second, the sugar beet apoplastic proteome
was obtained by direct leaf centrifugation, whereas most of the
proteomes from other plant species were obtained using leaf
vacuum infiltration followed by centrifugation (Table 3 and
references therein); this later technique may be somewhat better
at preventing leakage of proteins from the cytoplasm (Lohaus

FIGURE 5 | Relative abundances of chitinase and thaumatin-like 1
transcripts measured in leaves by qRT-PCR using tubulin as
housekeeper gene. Sequences containing the peptides matched during
protein identification, KDHBv_S14175_58500.t1 for chitinase and BQ584258
for the thaumatin-like 1, were selected to design primers for specific
amplification (Table S1). Data are means ± SD of two experiments with four
biological and two technical replicates per treatment in each experiment.
Different letters indicate statistically significant differences at p < 0.05.

et al., 2001; Witzel et al., 2011). Interestingly, the percentage
of C-related proteins in the stem apoplast of poplar (18%) as
well as the identity (TCA and glycolysis-related) (Pechanova
et al., 2010), are similar to those found in sugar beet (25%). This
comparison might suggest that the sugar beet apoplastic fluid
obtained by direct centrifugation of the leaves could have a high
contribution of the fluid contained in the xylem sap vessels of
the main vein of the leaf.

The presence of cytoplasmic contamination in our samples
was always lower than 3%, with an average value of 1.5%, as
assessed by the activity of c-mdh (Table S2). However, in sil-
ico analysis of the non-redundant proteome using the TargetP
and the Secretome P algorithms (for classical and non-classical
secretory proteins) predicted 26% (28 proteins) and 38% (41
proteins) of the non-redundant proteome as classical and non-
classical secretory proteins, respectively, whereas 36% of the pro-
teins were predicted to be non-secretory (Table 1, Figure 3B).
This percentage (64%) of secretory proteins is within the range
of those reported in the leaf apoplast proteome of other plant
species (from 50% in Arabidopsis to 80% in grapevine and
poplar; Casasoli et al., 2008; Pechanova et al., 2010; Delaunois
et al., 2013). The fact that our samples contain a relative large
number of proteins tagged as non-secretory is not surprising,
since the c-mdh assay indicates that up to 3% of the leaf cells
could have delivered cytosolic components into the isolated
apoplastic fluid. Furthermore, the release of cytosolic compo-
nents may be in part associated to the rupture of the pasmod-
esmata that exist in these leaves (Figure 1), even if mesophyll
cells remain intact. On the other hand, RuBisCO was identi-
fied in six spots of the total 203 of the leaf apoplastic proteome
map (Table S4). In addition there were 10 more spots whose
identification yielded proteins related to the Calvin cycle and
are, most likely, plastid located (Table 1). Therefore, we could
assume that at least 16 spots (approximately 8% of the total)
are probably a result of cell leakage. These results may suggest
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that the real contamination by cell rupture is likely to be higher
than that estimated by the use of c-mdh as a contamination
marker.

Changes Induced by Fe Deficiency in the Leaf
Apoplastic Proteome
The largest part of the changes caused by Fe-deficiency and Fe-
resupply corresponded to proteins tagged as secretory proteins
(10 spots), probably corresponding to true components of the
apoplast. Changes also occurred in a relatively small number
(four) of the apoplastic fluid proteins tagged as non-secretory
ones, and possibly associated to cell or plasmodesmata rupture
(these are marked by ∗ in the following paragraphs).

Iron-deficiency caused changes in the relative abundance of
five spots (2.5% of the consistent spots of the leaf apoplast pro-
teome), suggesting that protein homeostasis in the leaf apoplast
fluid is well-maintained upon Fe shortage. This number of
changes is markedly low when compared to those induced by Fe
deficiency in other proteomes, including those of roots and thy-
lakoids of sugar beet plants (44 and 53%, respectively; Andaluz
et al., 2006; Rellán-Álvarez et al., 2010) and falls within the lower
range of the number of changes caused by other abiotic stresses
in the leaf apoplast (Table 3; Dani et al., 2005; Casasoli et al.,
2008).

Three spots identified as chitinase increased in relative abun-
dance as a result of Fe-deficiency (spots 1–3; Figure 2, Table 2).
These three spots had the same molecular weight and different
pIs (8.2, 7.1, and 7.6), indicating that Fe-deficiency alters the
isoform pattern of this enzyme, with one of the isoforms iden-
tified de novo in Fe-deficient samples. Chitinases are hydrolytic
enzymes that break down glycosidic bonds, removing xylosyl
residues of xyloglucan oligosaccharides in the cell wall (Sampedro
et al., 2001). Therefore, these increases in chitinase suggest the
existence of Fe deficiency-induced cell wall modifications. This
is in agreement with the changes elicited by Fe deficiency in leaf
morphology, which include reduction of xylem vessel size (Fer-
nández et al., 2008; Eichert et al., 2010). Furthermore, changes
in lignification have been reported in roots of Fe-deficient pear
and quince cultivars (Donnini et al., 2009) and cell wall related
proteins commonly show changes in abundance in proteomic
studies of Fe deficient plants (see López-Millán et al., 2013 for
a review).

A spot identified as a thaumatin-like protein 1 (spot 9) also
increased in relative abundance as a result of Fe-deficiency. Thau-
mathins are pathogenesis-related (PR) proteins from the PR5
subfamily, which are induced by biotic and abiotic stresses. Some
members of PR5 subfamily have been described to play distinc-
tive roles in the defense system that protects against high-salt
stress or osmotic imbalance (Tachi et al., 2009), which is likely to
occur in the Fe-deficiency treatment in the presence of CaCO3.
A PR5b protein also showed increases in abundance in roots and
stems of Fe-deficientM. truncatula plants grown in the presence
of CaCO3 (Rodríguez-Celma et al., 2011), suggesting that thau-
matins are ubiquitously up-regulated by Fe deficiency. Interest-
ingly, both chitinase and the thaumatin-like 1 protein were also
affected in the leaf proteome of cowpea submitted to Mn toxicity
(Fecht-Christoffers et al., 2003).
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Only one protein, identified as carbonic anhydrase (CA; spot
13), decreased as a result of Fe deficiency. Carbonic anhydrase
interconverts CO2 and bicarbonate tomaintain the acid-base bal-
ance. A decrease in CA activity could be attributed to the pres-
ence of bicarbonate in the nutrient solution that may reach the
leaf apoplast via xylem (Nikolic and Römheld, 2007). Although
some mammalian CA isoforms are extra-cellular and have been
described in saliva and milk (Karhumaa et al., 2001; Leinonen
et al., 2001), and CA is classified as a non-classical secretory pro-
tein by SecretomeP, plant isoforms are distinct from an evolution-
ary standpoint and have been mainly localized in the chloroplast
or the cytosol.

Changes Induced by Fe Resupply in the Leaf
Apoplastic Proteome
Iron resupply to Fe deficient plants caused significant changes
in the relative abundance of 13 spots when compared to either
Fe-sufficient or Fe-deficient plants. These spots can be roughly
classified into two major groups. The largest group (seven spots)
was composed by those spots increasing in relative abundance
(significantly or not) with Fe-deficiency and decreasing signif-
icantly with Fe resupply when compared either with the con-
trol or with Fe-deficient samples. This group contained two
cell wall related proteins [chitinase (spot 2), and β-xylosidase
(spot 4)], three stress-related proteins [a heat shock 70 pro-
tein (spot 8∗), thaumatin-like 1 protein (spot 9), glyoxalase
I (spot 10)], glutamine synthase (spot 12∗) and the uniden-
tified spot 16. These results indicate that Fe resupply causes
changes in the short-term (within 24 h) in cell wall and stress-
related processes of the Fe-resupplied plants toward values
found in the Fe-sufficient controls. One more protein (spot
14∗, the 23 kDa OEC protein, which nuclear-encoded and syn-
thesized in the cytosol) was also responsive to short term Fe-
resupply but followed a different trend, not-detected in Fe-
deficient samples but detected upon Fe-resupply. This likely
reflects transitory increases in the cytosolic levels of this pro-
tein upon short term Fe-resupply, which are necessary for the
slight recovery of the photosynthetic system at this resupply stage
(Larbi et al., 2004).

On the other hand, a second group of four spots (spots
5–7 and 11∗) decreased in relative abundance with Fe defi-
ciency (although not significantly) and decreased significantly
upon Fe-resupply when compared either with controls or Fe-
deficient samples. This group included two proteins identified as

protein-metabolism related [a cysteine protease (spot 5), a
peptidyl-prolyl cis-trans isomerase (spots 6,7)] and a serine
hydroxymethyltransferase (spot 11∗). One more spot (spot 15,
unidentified protein) followed the opposite behavior (increased).
This group of proteins can be classified as not responsive to short
term Fe-resupply, since they may require a time longer than 24 h
to reset to control values after resupply.

Concluding Remarks

In summary, this study provides information on the composition
of the apoplast proteome in B. vulgaris leaves, which appears to be
quite similar to that of other previously studied plant species. The
study shows that Fe deficiency and Fe resupply cause significant
changes in a limited number of proteins in the leaf apoplast, and
none of them is expected to play a significant role in metal home-
ostasis. This is in contrast with the intense changes previously
found in the concentrations of metabolites (e.g., carboxylates)
that could interact with metals in the same compartment. Data
found contribute toward the understanding of metal homeosta-
sis, and in particular on the still poorly known mechanisms of Fe
acquisition by plant mesophyll cells. Results presented here open
an interesting line of work regarding possible modifications of
cell wall that ultimately may affect permeability or transport of
Fe across the plasma membrane.
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