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Proteins participate in information pathways in cells, both as links in the chain of signals,
and as the ultimate effectors. Upon ligand binding, proteins undergo conformation and
motion changes, which can be sensed by the following link in the chain of information.
Nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) simu-
lations represent powerful tools for examining the time-dependent function of biological
molecules. The recent advances in NMR and the availability of faster computers have
opened the door to more detailed analyses of structure, dynamics, and interactions.
Here we briefly describe the recent applications that allow NMR spectroscopy and MD
simulations to offer unique insight into the basic motions that underlie information transfer
within and between cells.

Keywords: allosterism, folding intermediates, dynamics, binding, aggregation

The Importance of Motion for Information Flow

Signal transduction is firmly rooted in the interactions of proteins with diverse ligands, and in the
molecular consequences of these interactions. In the past few years we have accrued a large amount of
structural information on how proteins look before and after they bind select ligands, as can be seen
in the protein data bank (PDB) Databases (Bernstein et al., 1977). As noted by many, this is only part
of the story, though. The situation is akin to attempting to reconstruct a full ballet performance from
a few still photographs of a dancer. It becomes clear that in order to understand and appreciate the
choreography of a living cell and its interactions with its surroundings, dynamic information at the
molecular and atomic level is essential. This is the territory of nuclear magnetic resonance (NMR)
and of simulations of molecular structures, in particular molecular dynamics (MD), because of their
ability to describe both structure and dynamics with atomic resolution in timescales ranging from
ns to ms and longer. This review is focused on recent examples of successful combinations of NMR
and MD to study proteins, as they perform their dances alone and with their ligands.

The description of the native state has shifted from single structures to that of ensembles of
structures. It is therefore of interest to describe the conformational landscape of proteins, with the
location of minima, their depths, and the heights of the barriers separating these minima (Figure 1).
The relative depths relate to the populations of the structures corresponding to the minima, and the
barriers speak of the interconversion timescale. It has been suggested that the whole conformational
landscape is subject to evolution, as the relative populations and the exchange rates among possible
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states are all relevant for function (Teilum et al., 2011; Nussinov
and Tsai, 2013) and for the proper folding in vivo in a biologically
relevant time (Braselmann et al., 2013). Regarding protein folding,
the goal is to describe the structures along the folding landscape,
in order to understand the folding process and its associated
diseases. These diseases result from loss of function because the
protein never reaches the functional state, or because of toxic gain-
of-function structures (such as amyloid fibers and oligomers)
accessible from accumulated intermediates or unfolded struc-
tures (Bemporad and Chiti, 2012; Neira, 2013; Vendruscolo and
Dobson, 2013; Knowles et al., 2014). Folding and aggregation
intermediates are high-energy species, with low populations and
fleeting lifetimes, and therefore requiring ingenious experiments
and simulations to be characterized (Lee and Goto, 2012; Lane
et al., 2013; Neira, 2013; Rennella and Brutscher, 2013). The
correct description of the denatured state ensemble (DSE) and
its residual structure is also an active subject of inquiry, as this
ensemble holds clues to how folding is initiated (Bowler, 2012),
probably being biased toward the topology of the native state.

Conformational landscapes are a useful tool to frame mecha-
nistic questions regarding protein response to ligands and post-
translational modifications (PTMs), going from the lock-and-key
model to induced fit, conformational selection, and population
shift (Changeux, 2013). An important issue in these models is
whether all relevant minima pre-exist in the absence of ligand or
PTM, and hence these modifications and ligands select confor-
mations, or whether the ligand deforms the conformational land-
scape creating new minima as in induced-fit. The discussion in
terms of a collection of states implies that altering the population
of one minimum affects all others, through the Boltzmann distri-
bution, leading to population shifts (Motlagh et al., 2014). It also
highlights the importance of having enough of the protein cor-
rectly folded so that the population of functional states is physio-
logically adequate (Tsai andNussinov, 2014). In order to figure out
if conformational changes happen before binding or afterward,
the rates of each process must be measured and compared to the
binding rate. This comparison requires an explicit binding model,
such as the formation of a transient encounter complex between
particular states of the receptor and ligand, followed by a recogni-
tion complex and finally an adapted complex (Teilum et al., 2011),
each of which can be probed independently to test the model.
Interestingly, as a consequence of detailed balance, a process that
uses induced-fit while binding will result from conformational
selection in unbinding and vice versa (Weikl and Paul, 2014).

Native folded states are not the only players in signaling cas-
cades in the cell, as the studies on intrinsically disordered proteins
(IDPs) and intrinsically disordered regions (IDRs) in folded pro-
teins have shown (Liu and Huang, 2014; Uversky, 2014; Wright
and Dyson, 2014). These proteins are conformationally and
dynamically heterogeneous, in dynamic equilibrium among mul-
tiple conformational states separated with low barriers (Figure 1).
The issue in binding of IDPs/IDRs is that these chains have a lot
of conformational entropy, and may lose much of it upon binding.
There are various strategies to compensate for this entropy loss.
One option is a favorable enthalpy and dehydration, resulting
in weak but specific binding (Flock et al., 2014). Therefore, the
amount of lost entropy can be used to tune function, and some

FIGURE 1 | Depiction of the ensembles of structures by
conformational landscapes, with the location of minima, their depths
and the heights of the barriers. Schematic representation of ensembles of
structures for a globular, natively folded protein (A) and an intrinsically
disordered protein (B). The description of a globular protein is based on an
ensemble of structures clustered around a deep global minimum that can
have substates in it (C) but represent basically the same topology, whereas
the description of an IDP is based on a dynamic ensemble of different
conformations represented by a collection of minima with similar depths (D).

complexes retain high flexibility, leading to the concept of ligand
clouds (Jin et al., 2013). Residual structure can be stabilized upon
binding, reducing the entropy cost, or favor the unbound state
(Wright and Dyson, 2014). Another option is to use extended
regions of a few amino acids as binding sites, so again the entropy
cost is minimal, and also keep high flexibility in the connecting
loops. Yet another strategy is to have multiple degenerate binding
motifs, hence the combinations increase entropy and the cost
is lower. IDRs can be pre-fixed into productive conformations
by PTMs or other extrinsic factors. These extrinsic factors can
be used as coincidence detectors in IDPs, giving rise to all or
none responses, graded responses or molecular clocks (Wright
and Dyson, 2014).

The actual structures in the local minima of these landscapes
and the transformations, structural and/or dynamic, that proteins
undergo upon ligand binding are the heart of catalysis (McGeagh
et al., 2011), allostery and information flow (Nussinov and Tsai,
2013). Structural flexibility, reflected in the local and global
motions of backbone and side chain atoms (Motlagh et al., 2014),
can be either increased or decreased upon ligand binding, as the
ligand opens or closes energy and information transfer pathways
in the protein, affecting the packing or even the folding of the
structure (Marsh et al., 2012). These changes in flexibility, together
with changes in translational and rotational freedom of the ligand
and the protein, are the entropic component of the free energy
of binding, while the direct interactions with the ligand and the
cost or gain in energy of the associated conformational change
contribute to the enthalpy. It may well happen that the flexibility
responsible for the stability of the ground state of the protein is
orthogonal to the dynamics required for catalysis (Teilum et al.,
2011). Each protein-ligand complex displays a particular balance
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FIGURE 2 | Schematic of structural and dynamic coupling between
different functional sites in a protein and how this coupling could
modulate the energy landscape. The apo or ligand-free protein (A) samples
three conformations in its native basin and displays unsynchronized and
undirected motions (black arrows). Upon binding of the first ligand (B), a

particular conformation is selected (the minimum in the middle of the
landscape), and also the motions of the two main lobules of the protein become
synchronized (notice the similar direction of the arrows in each domain). These
motions favor the binding of the second ligand (C), selecting another of the
possible conformations.

of enthalpy and entropy, and therefore, an associated molecular
mechanism. The role of entropy in complex formation is one of
the reasons hindering a direct connection between the structure
of a complex and its binding affinity (Kastritis and Bonvin, 2013).

Many eukaryotic proteins are composed of more than one
domain, connected by linkers. The role of linkers in infor-
mation transfer between domains goes beyond a reduction in
sampling space; some authors (Ma et al., 2011) have suggested
that linker sequences have propagation pathways pre-encoded in
them, favoring particular relative orientations between domains,
so information transfer is more efficient than what would be
achieved by a random walk. The search for the information
transfer pathways across and within proteins is a fertile area of
research (Nussinov and Tsai, 2013, 2014b; Feher et al., 2014).
These involve structural and/or dynamic coupling between func-
tional sites (Figure 2), and may be composed of multiple routes
crisscrossing the protein (Tsai and Nussinov, 2014), suggesting
that most of the protein surface is a candidate as an allosteric
site. The outcome of information transfer is to stabilize selectively
a particular conformation of those thermally accessible to the
protein.

An interesting corollary is that each conformation or dynamic
state accessible through flexibility could be associated to a differ-
ent function, selected by particular ligands, leading naturally to
selectivity even in the presence of promiscuous interactions at a
single or multiple sites: each binding event promotes particular
structural and/or dynamic changes in the protein, explaining
how small changes in the ligand can transform it from an ago-
nist to an antagonist (Nussinov and Tsai, 2014b). Selectivity is
important, as it allows for multiple “conversations” to take place
simultaneously in the cell without scrambling the messages. An

intriguing consequence of the paradigm of population shift is that
all that is needed for signal transmission is to select the appropriate
conformations of the receptor and the ligand; the affinity controls
the lifetime of the complex, not the message that is sent (Nussinov
and Ma, 2012). Proteins emerge from these analyses as integrators
of signals (Nussinov and Tsai, 2014a), where their non-linear
output depends on the order and location in which ligands and/or
PTMs are bound or acquired, becoming logical gates as part of the
complex circuitry of life (Nussinov et al., 2013). Understanding
how these effects come about is important, among other things,
for tailored drug design both at active sites and at allosteric sites
(Nussinov and Tsai, 2014b, 2015).

All of the previous discussion hinges on being able to see
both the structures and how they change in time in response
to ligands or other perturbations, so the proposed mechanisms
can be validated or discarded. The examples we discuss below
are aimed at the atomic-level exploration of the conformational
landscapes of both folded proteins and IDPs relating to catalysis,
binding and signaling, allostery, folding, and aggregation.

MD and NMR Toolkit to Study Protein
Dynamics

The molecular complexity of proteins and the span in timescales
of their dynamics make their study a daunting task, achievable
only through the use of multiple approaches, both experimental
and computational. This review is centered in the joint application
of NMR and MD simulations to understand information flows
in biology. Another computational tool that has been extensively
used to study protein dynamics is the elastic network model
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FIGURE 3 | Example of an enhanced sampling method consisting
on multiple MD simulation replicas at different temperatures (each
row). At defined time intervals, which can vary typically from a few to
hundreds of ps, the energy of the structures of each replica are evaluated.
If the energy of run 1 is lower than that of run 2, or if it is higher but allowed
by the Boltzmann factor, the replicas are exchanged, so now the structure
from run 1 is simulated at temperature 2, and the structure from run 2 is

simulated at temperature 1 (exchange between the top and middle rows).
Otherwise, as shown for temperature 3 (lower row), there is no exchange
and run 3 continues to be simulated at temperature 3. Exchanges are
attempted until all replicas have been run at all temperatures. Structures
are then collected as a function of temperature, and data can be analyzed
for all temperatures, or only for a particular temperature, of functional or
physiological relevance.

(ENM), which explores fluctuations around the native structure,
and has been used to explain allosteric regulation and conforma-
tional changes. We suggest a couple of recent reviews (Dehouck
and Mikhailov, 2013; Bastolla, 2014) for the combination of ENM
and NMR, for interested readers.

Molecular Dynamics Simulations
Molecular dynamics simulations work as “molecular micro-
scopes” (Dror et al., 2012), yielding physically sensible ensem-
bles of molecular structures, linked temporally (see, for example
McGeagh et al., 2011). Carrying out MD simulations has become
relatively straightforward, with tutorials and web servers that help
both experts and newcomers to set up and run the simulations
(Cui and Nussinov, 2014). The net result of an MD simulation is a
large collection of structures of the protein of interest, at ps or sub-
ps resolution, fromwhich any observable property that can be cast
in terms of atomic coordinates can be calculated and compared
to experimental data. This translates to following the sequence
of events that leads to function at atomic resolution under ideal
conditions: an accurate, experimentally validated force field and
sufficient sampling (Elber, 2011).

The sampling issue has made it complicated to escape the
anecdotal description of folding and binding processes. A couple
of strategies to improve sampling in unbiased full atomic detail
simulations are distributed computing using maximum paral-
lelization in the generation of tens or hundreds of thousands of
relatively short runs (reaching tens of ms of cumulative sam-
pling for a collection of proteins) followed by the construction of
Markov state models (MSMs) to represent the network of protein
conformations (reviewed in Chodera and Pande, 2011; Lane et al.,

2013; Chodera and Noé, 2014), and the use of special purpose
machines such as ANTON (Shaw et al., 2009) for the generation
of single very long runs [up to 1 ms for bovine pancreatic trypsin
inhibitor (BPTI), for example]. An alternative to studying protein
folding is to follow unfolding by high temperature, assuming
microscopic reversibility. These studies aim to identify the tran-
sition state ensembles (TSE) and intermediates, and to describe
the DSE with its residual structure (van der Kamp et al., 2010;
Toofanny and Daggett, 2012). Enhanced sampling methods are
also available, such as replica exchange MD (REMD; Figure 3)
using temperature or other biases as in metadynamics (Granata
et al., 2013), and acceleratedMD (AMD), where an energy boost is
added to make minima shallower and barriers easier to jump. The
simulation of IDPs/IDRs is particularly problematic (Esteban-
Martin et al., 2012), because recognition and binding of these
proteins happen in the µs to ms timescale, making explicit-
solvent all-atom unrestricted MD a poor tool, so a collection
of alternatives is presented, from coarse-grained and multi-scale
models (reviewed in McGeagh et al., 2011; Nussinov, 2014; Zhou,
2014), Go models, implicit solvent simulations (Kleinjung and
Fraternali, 2014) or targeted MD (Baker and Best, 2014).

Very long simulations have also been used to validate and refine
the underlying physicalmodels of the force fields used in the simu-
lations (Esteban-Martin et al., 2012; Piana et al., 2014). Most force
fields currently used are capable of describing protein folding,
including folding times and stability, and also of describing struc-
ture and dynamics of native state ensembles, with errors com-
mensurable with experimental uncertainty (Fisette et al., 2012).
The description of the DSE remains problematic, as simulated
ensembles aremore collapsed thanwhat experiments suggest.One
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potential solution to both the inaccuracy of force fields and the
limitations in sampling is to add experimental restraints to the
simulations, as extra terms to the force field, in a protein-specific
fashion. This approach serves to define the minimum structural
heterogeneity that is needed to reproduce the experimental data,
both for folded and unfolded proteins. TheNMRdata used for this
are residual dipolar coupling (RDC), chemical shift anisotropy,
and distance restraints from nuclear overhauser effect (NOE) or
paramagnetic relaxation enhancement (PRE) experiments. The
main issues are how to apply the restraints (over single structures
or over the ensemble, over primary data or secondary data, at all
times or averaging after certain times; Allison, 2012; Allison et al.,
2012; Esteban-Martin et al., 2012; Romo and Grossfield, 2014).

Nuclear Magnetic Resonance Spectroscopy
Nuclear magnetic resonance provides experimental information
on structure and dynamics (amplitudes and rates) of macro-
molecules [up to 100 kDa for structure and 1 MDa for other
studies (Foster et al., 2007)]. The resonance frequency of nuclei is
sensitive to their electronic environment and to their orientation
with respect to an externalmagnetic field, and therefore to changes
in conformation happening over many timescales (Kleckner and
Foster, 2011; Case, 2013). These chemical shifts effects can be
calculated from the nuclear coordinates, and vice versa, where the
proper calculation should be carried out with quantum mechan-
ics; nevertheless good empirical approximations are available in
programs such as SHIFTX+, SPARTA, and camshift (reviewed
in Case, 2013). The possibility to calculate chemical shifts from
coordinates allows for the use of these data to constrain MD
simulations.

Protein dynamics is studied with NMR by measuring relax-
ation rates (reviewed in Bieri et al., 2011; Kleckner and Foster,
2011; Osawa et al., 2012), spanning timescales from ps to hours
or more, covering the range of motions important for infor-
mation flow. The shorter the timescale, the smaller the group
of atoms involved in the motion, in general. Faster motions
correspond to wiggling within a substate, while slower motions
involve jumping between substates. Two types of flexibility can
be defined (Kleckner and Foster, 2011), static flexibility, which
refers to the population of each substate in the conformational
landscape, and dynamic flexibility, which refers to the rates
and pathways connecting these substates. The internal dynam-
ics of the protein causes fluctuating magnetic fields, and this
alters the relaxation rates of the nuclei. These fields are the
Fourier transform of time-correlation functions of distances and
angles that can be calculated from MD simulations that have
reached equilibrium. For the analysis, the rotation of the pro-
tein as a whole and the internal dynamics of the nuclei of the
protein can be separated if they occur in different timescales.
This separation is actually tricky, and is one acknowledged
source of discrepancy between experimental and calculated data
(the different approaches to obtain S2 are reviewed in Fisette
et al., 2012; Allnér et al., 2015). Two-state models are the sim-
plest used to interpret chemical exchange, where a nucleus is
exposed to two different chemical environments. The intensity
of the peaks reports on the population of the states generating
those signals, and the width of the peaks (linewidth) reports

on the relaxation rates. Relaxation dispersion experiments can
yield structural, dynamic, and thermodynamic data on “invisi-
ble” states, which are populated up to a few percent and can-
not be directly detected (Kleckner and Foster, 2011). These
states embody the conformational selection and population shift
paradigm.

Orientational information can be obtained from RDCs in
weakly oriented samples. RDCs depend on the shape of the
molecule, therefore as long as changes in shape are minimal,
MD simulations can be used successfully to back-calculate them.
Problematic areas are turns, loops, side chains, and interdomain
motions. Meanwhile, paramagnetic NMR spectroscopy (Hass and
Ubbink, 2014) can be useful to obtain long-range restraints for
positioning and orienting molecules in a complex, or to probe
residual structure by using PRE effects.

Nuclear magnetic resonance spectroscopy is also an excellent
tool to study binding interactions over a wide range of affinities
(from mM to high affinity), and to follow protein folding as it
happens, either by fast data acquisition of heteronuclear single
quantum coherence or correlation (HSQC) experiments or by
H/D exchange (Bieri et al., 2011). Complex formation is followed
by changes in the intensity and chemical shift of the resonances
of each residue, giving not only information on the existence
of the complex, but also on the details of the interface and the
perturbation on the structure, as chemical shift changes can be
seen not only at the interface, but also at residues located far from
the binding site. NMR allows for the characterization of encounter
complexes, something that cannot be done with other spectro-
scopic or crystallographic techniques. Also NMR relaxation data
can be used to study the entropy changes that take place upon
binding and recognition (Wand, 2013; Allnér et al., 2015). Last
but not least, solid state NMR (ssNMR) has become a useful tool
to study both structure and dynamics of membrane proteins and
large aggregates, such as amyloid fibers.

NMR and MD
Given the low sensitivity of NMR, there is extensive time and
ensemble averaging in the data, a feature to be contrasted with
the single molecule character of most MD simulations. The main
idea of a combined study is to obtain from theMD simulations the
underlying distribution that gives the average value obtained in
the NMR experiment (Figure 4). This is a non-trivial matter due
to the non-linear andmultiple-valued relationships betweenNMR
observables and protein structure. Also, it is conceivable that
many different distributions can result in the same average value,
so care must be taken to look at a large collection of properties,
preferably with different types of averaging.

Also, the sampling limitations of the MD runs must be taken
into account, as all the substates and their relative populations
should be well described. Proper accounting of the relevant
timescales is essential when validating and/or restraining MD
simulations with NMR data (Allison, 2012; Allison et al., 2012).
Short simulations (sub-µs) are adequate to reproduce S2 order
parameters, which relate to ps–ns motions (Figure 4), but not
for slower relaxation measures. Apparently, single runs of at least
10 µs are needed to achieve good agreement with RDCs and
J-couplings (Allison, 2012; Esteban-Martin et al., 2012).
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FIGURE 4 | Correspondence of dynamic parameters measured by
NMR and back-calculated from an MD trajectory. The square of the
backbone order parameter (S2 shown in the bottom panel), which provides
information about the amplitude of the motion of NH bonds or CH bonds, can
be calculated from measured experimental parameters T1, T2, and HetNOE
(black dots in the bottom panel), and from the MD trajectories (red dots in the
bottom panel). The resulting values, for both approaches, can be compared
directly.

On the one hand we have MD simulations providing atomic
detailed explanations of protein motion, for limited timescales,
and on the other hand there is NMR spectroscopy, yielding
information on changes in the environment of key nuclei in the
proteins, related to the same motions. MD simulations can help
in the interpretation of NMR data, through the generation of
physically plausible conformational ensembles and the molec-
ular mechanisms connecting the substates in these ensembles.
The simulations can also supplement structural information, and
point to inconsistencies in the data, as all NMR observables can
be written in terms of nuclear coordinates (with care, as described
above, because of the approximations involved in the models
and equations that are used, and the limitations of sampling
in the simulations). The collaboration of these two approaches
brings simulations into the real world, and provides clear and
testable molecular mechanisms for the spectral features measured
by NMR, getting us closer to understanding the molecular basis
for life processes.

We describe the result of the improvement on both the NMR
and MD fronts over the past three years, as it pertains to infor-
mation flow in biological systems involving proteins in particular.
This is by no means an exhaustive account on all published work
on MD or NMR, and builds on decade-long efforts by many
groups. We apologize to the colleagues whose work we could not
include due to space or scope limitations.

Unrestrained MD Simulations Exploring the
Conformational Landscape

These simulations are the easiest to set up and carry out, and
assume that the force fields are sufficiently accurate to describe
both protein structure and dynamics; ingenuity is manifested
in careful data analysis, and in the biological insights that can

be obtained from these runs. Most of the stories deal with the
dynamics of folded proteins, alone or in complexes, as these relate
to catalysis or ligand binding, and are compared to amide and
methyl order parameters derived from relaxation data, dispersion
experiments, and H/D exchange. The biological problems that
are explored by these works range from residual structure in
the DSE of an acid-unfolded protein, the effect of crowders on
the native structure, identification of allosteric pathways, excited
states and aqueducts, characterization of loop motions important
for complex formation or catalysis, selectivity due to dynamics,
and fibril stability.

Simulations of free proteins look at the intrinsic structural
plasticity and at the timescales of the motions, to relate them to
function. Two papers study the dynamics of BPTI (Xue et al.,
2012; Persson and Halle, 2013), by analyzing the 1 ms run carried
out in ANTON (Shaw et al., 2010). Because one must typically
run 10 times as long as the longest lived process one wishes to
study, this landmark simulation allows access up to the 100 µs
range. In the first paper, Xue et al. (2012) study the native basin
of BPTI, comparing the experimental relaxation dispersion data
to those derived from the autocorrelation functions for individual
spin states in the simulation. They identify nine states and their
exchange network, linking the observed exchange rate to the
10–100 µs isomerization of one of the disulfide bonds, which
results in the motion of two proximal loops involved in the inhi-
bition of trypsin. Neither the flipping of an aromatic ring nor
the slow exchange of bound water could be gleaned from the
crystal structure, highlighting the relevance of dynamic studies.
Despite this success, the authors acknowledge that the populations
are overestimated, and the correlation times are underestimated.
This is ascribed to limitations in the force field and in sampling.
In the second paper, Persson and Halle (2013) followed four
cavities of BPTI and the water molecules in them by deuterium
and 17O magnetic relaxation dispersion experiments. The sim-
ulation reproduces the experimental mean survival times at the
four cavities, in the range of 2–5 µs. They find single-file water
chains that form transient aqueducts through tunnels or pores
with lifetimes under 5 ns. These tunnels are mechanically linked
to the conformation of the same disulfide bond described by Xue
et al. (2012; C14–C38). Another long simulation carried out in
ANTON is the 71 µs run for the active receiver domain of NtrC
(Villali et al., 2014), a single chain allosteric model activated by
phosphorylation. This is a case of guilt by association, because
crystal structures of active and inactive states of other members
of the same family had suggested that activation depended on the
rotameric state of an aromatic residue (Y101) and the position of a
nearbyTor S (T82), and that these depend on the phosphorylation
of the nearby D that is the substrate of a kinase. The main point of
this study was to measure the timescale of this structural change
and compare it to the response time of the whole domain, both
in simulations and with NMR dispersion experiments. They find
that rotamer changes aremuch faster than activation/inactivation,
so they are not correlated to the activation process nor are they rate
limiting.

Continuing with receptors and ligands, 16 ephrin receptors
and their nine ligands are an intriguing example of how the
same scaffold can allow for specificity (Huan et al., 2013), the
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binding surface is always the same, but the difference lies in
the conformation of loops that line this surface. They study
the EphA5 ligand-binding domain (LBD), that in the absence
of ligand looks like other LBDs already bound to ephrins, just
as the conformational selection model would suggest. It has an
open pocket characterized by H/D exchange NMR, the absence
of relaxation dispersion, and backbone relaxation indicating that
these loops are very flexible in the ps–ns timescale, ideal for MD
studies. This pocket is avid for a specific peptide that all other
LBDs ignore, as shown by NMR titrations. Three independent
30 ns MD simulations coincide with the structural and dynamic
signatures, and offer an explanation for the peculiar behavior of
EphA5 compared to EphA4, a sibling receptor with the opposite
dynamic behavior (motion in the µs–ms regime, closed unbound
state), the electrostatic repulsion at the tips of the binding-site
loops in EphA5, both of which have negative charges; in EphA4,
one of the loops is neutral, allowing for stable favorable inter-
action between these loops. Another scenario is exemplified by
the Rho-GTPase binding domain (RGB) of plexin-B1, where one
small domain uses partially overlapping surfaces to interact with
different partners along a signaling cascade. Zerbetto et al. (2013)
analyze 15N relaxation data with two different approaches, and
also carry out four MD simulations of 55 ns each for the wild
type inactive dimer, a mutant monomer, and an active complex
with Rac1. Three loops are crucial for allostery, and two possible
allosteric pathways emerge from their analysis, one for dimeriza-
tion and the other for GTPase binding, sharing a beta strand at
their intersection. Analyzing the changes in dynamics they show
that binding at loop three makes it more rigid, but this loss of
entropy is gained elsewhere, at the termini of adjacent strands.
The nature of protein motions and their response to ligands is an
issue of practical importance for the design of inhibitors.Meli et al.
(2014) analyze the interaction of a small inhibitor called sm27with
the fibroblast growth factor FGF2 at a flat interface. The inhibitor
impairs binding to the FGF receptor FGFR1 both sterically and
allosterically. They carried out MD simulations of 1 µs for the apo
and the holo structures, as well as the NMR characterization in
terms of structure, dynamics, and hydration. In order to contend
with the limited sampling, they parse the µs-long MD runs into
100 ns blocks, and keep those that yield observables closer to the
experimental data.

A particular case of protein–protein complexes is the amyloid
fiber. Two examples showcasing the interplay of ssNMR and MD
involve a prion (Lange et al., 2009) and a peptide derived from
insulin (Matthes et al., 2014). The prion is HET-s, and the study
involved amino acids 218–289. Its structure was previously known
from ssNMR and was used as the starting structure for short
(10 ns) MD simulations. The study showed that the residues in
the core are less mobile than those at the edges, coincident in
both simulations and NMR data. From the simulations, a highly
dynamic salt bridge networkwas identified, and deemed responsi-
ble for the thermostability of the fibers. Regarding the hexapeptide
VEALYL from insulin, Matthes et al. (2014) build different mod-
els of a fiber with nine protofibrils in a microcrystalline array,
at pH 2.5, 4, and 7, obtaining different degrees of twisting. By
comparing the predicted chemical shifts for the simulations with
the experimental data, good agreement was observed, explaining

how different conformations give rise to similar chemical shifts.
Some residues have split values, completely in agreement with the
ssNMR data.

Stopping amyloid fiber formation is an important goal in the
clinic. An interesting case is that of alpha-synuclein (AS) and
dopamine, an interaction that avoids amyloid fiber formation. AS
is an IDP, so the use of unrestricted MD required clever choices of
starting structures for the simulations. Dibenedetto et al. (2013)
took six structures of AS, coming from an ensemble generated
previously that was consistent with PRE measurements. These six
structures cover ∼70% of the population. They docked to each
of these six structures dopamine or one of five dopamine degra-
dation products that could be physiologically relevant, yielding
a total of 36 AS-dopamine adducts. Each free AS and adduct
was simulated for 40 ns of standard MD, and for analysis they
selected the frames with direct contacts of AS to dopamine or its
derivatives. Comparison to SOFAST-HMQC NMR data (chem-
ical shifts, RDCs) was good, and the preferred binding site was
identified. All ligands cause an increase in secondary structure,
helices and turns particularly, explaining the inhibitory effect
on amyloid formation. Another interesting case is that of the
formation of insulin fibers (Banerjee et al., 2013), which happen in
patients with diabetes and in normal aging. Banerjee et al. (2013)
describe a peptide called NK9 that delays the fibrillation process
of insulin in a sub-stoichiometric ratio, affecting nucleation. They
show with multiple techniques that NK9 binds an insulin trimer
at low pH, and that the nucleus for fiber formation is an insulin
monomer. With saturation transfer difference nuclear overhauser
effect spectroscopy (NOESY) experiments they determine the
binding site, and model it in a monomer, which was simulated for
100 ns to gain structural understanding of the interactions.

Enzymes with loops around the active site are common, and an
important question is whether these loops help or hinder catal-
ysis. Two studies of dimeric HIV protease show complementary
approaches. Torbeev et al. (2011) carry out chemical synthesis of
HIV to test -amino acids and non-standard amino acids (such
as Aib) in the flaps covering the active site. The conformational
isomerization of two symmetry related flaps (residues 37–61) is
correlated with the structural organization of the active site, and
this step is rate limiting. The flaps sample conformations that
depend on the backbone motion of G51, and exchange in the
sub-ns and µs–ms timescales. S2 and car-purcell-meiboom-gill
(CPMG) experiments show that the dynamics of the catalytic
residues echo the dynamics of the flaps, and the coupling appears
to be through water molecules. MD simulations of 300 ns of
protonated or unprotonated D25 (the catalytic residue), and of -
alanine or -alanine substitutions for G51 recover the interflap
distances that were measured with electron paramagnetic reso-
nance (EPR). Xia et al. (2013) build a MSM from multiple MD
runs (20 ns × 20 ns) carried out in implicit solvent. The states are
defined from the structural similarity of the flaps, resulting in four
states.With theMSMthey generate a stochastic trajectory of 10µs,
and this trajectory is the source of data for comparisonwithNMR.
The MD runs are used to describe fast motions (100 ps), and the
stochastic trajectory for slow motions (100 ns). In this work they
propose new equations that describe the exchange between the
four macrostates and the fast local motions in each. As in HIV
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protease, protonation of select residues is critical for activity in
the mRNA decapping enzyme Dcp2 (Aglietti et al., 2013). The
catalysis in this case is acid/base chemistry, mediated by Mg2+,
which is bound to a loop that changes conformation during the
catalytic cycle, so again a conformational change is important for
activity. There are four nearby Es, one of which is the general
base (E153), one is in the loop that changes conformation and
binds Mg2+ (E198), and others bind Mg2+. Methyl-NMR and
MD suggest that the loop with E198 is sensitive to the protonation
state of E153, so they measured the pKa of E153 with NMR using
13C HSQC in a protein labeled in I, L, and V residues. They
confirmed this residue as the general base, and showed that its
protonation affects both the conformation and the dynamics of
the loop, as I199 has linewidth changes, suggesting dynamics in
the µs–ms timescale. They carried out MD simulations (100 ns)
of the catalytic domain of Dcp2, with E153, protonated E153,
and Q153. The observed structural and dynamic consequences of
thesemodifications explain chemical shift displacementswith pH,
and the changes in dynamics.

The response of enzymes to their substrates or inhibitors is
of great interest, as is the question of which of the motions of
the free enzyme are relevant for catalysis. Calligari et al. (2012)
explore the effect of 6-phosphogluconolactone on the enzyme 6-
phosphogluconolactonase from Trypanosoma brucei (Tb6PGL),
an interesting enzyme as it is a potential drug target. They mea-
sured the dynamics of both the apo and holo forms, analyzing
relaxation data with theModel Free formalism of Lipari and Szabo
(Lipari and Szabo, 1982). They found that residues far from the
active site display differences in motion, but some close to the
active site showed little or no difference. In order to understand
these observations they carried out 77 nsMD simulations for both
apo and holo forms. Those residues with converged order param-
eters showed good agreement between simulation and NMR data.
The simulations showed that despite the lack of difference in
motion in the backbone of the active site residues, side chains did
show changes in motion without affecting the backbone. Changes
in side chain rotamers are important for information transfer
across proteins, and are the subject of two studies on the imidazole
glycerol phosphate synthase (IGPS; Rivalta et al., 2012; Manley
et al., 2013). This enzyme is large, therefore in order to study
its dynamics, selective labeling of methyl groups in I, L, and V
residues were done. The enzyme was studied in the apo form,
in a binary complex with its substrate, and in a ternary complex
with an allosteric effector too. Fast motions (ps–ns timescale) are
similar for the three states, but µs–ms motions are different. In
order to understand how these motions happen and change, four
runs of 100 ns each, for the apo and the binary complex were
run. A network analysis revealed the communities of residues that
respond to the presence of the substrate, through changes in salt
bridges and H-bonds, connecting the effector site to the active
site. Another spectacular example is the study of allostery in the
catalytic domain of protein kinaseA (PKA;Masterson et al., 2012).
NMRchemical shift titration experiments revealed local and long-
range changes upon ligand binding, and the linear response to
ligand concentration suggested an equilibrium between confor-
mational states. Fast andmedium timescale dynamics indicated an
increase inmotion upon nucleotide binding, and the synchronous

motion of discrete regions leading to the opening and closing
of the active site. The estimated rate constant between open
and closed states coincides with the turnover constant, strongly
suggesting that this motion is rate limiting and that nucleotide
binding is the activator. Four MD simulations of 75 ns each were
done for the apo PKA, PKA with nucleotide, and PKA with ATP
and substrate or ATP and inhibitor. The simulations recover the
trend in motion differences found experimentally. To understand
better how this comes about, principal component analysis was
done, with the first two modes accounting for more than half
of the total motion of the protein. These modes correspond to
opening and closing, and to a shearing motion of the domains.
They propose that the nucleotide synchronizes motions in the
enzyme, shifting the equilibrium to the closed state, in an allosteric
process that changes both structure and dynamics.

Another scenario that is of increasing interest is the effect of
crowding on both the native state and on unfolded states. Harada
et al. (2013) explore the crowding of the villin headpiece, another
iconic protein in simulations. They mix eight villin headpieces
(36 residues) with four protein G (56 residues) as crowders, and
modify the simulation cell size to change protein molar fractions
from 12 to 43%, simulating them for 300 ns each. Experimentally
they follow 15N labeled villin in the presence of unlabeled protein
G, at a 17% molar fraction. In the simulations they find that the
native state is prevalent in all conditions, but at higher crowding
there is local unfolding. This unfolding is clearly different from
that obtained at high temperatures or 8 M urea simulations, sug-
gesting that the crowders modify the conformational landscape
compared to dilute solution conditions. Protein G remains mostly
unperturbed, and starts sampling near-native conformations only
at the highest crowding condition. The changes in chemical shifts
seen in the experiments are matched with the structural changes
seen in the simulations, due to both inter and intramolecular
events. At low concentration ion pairs are most important, but
at higher concentrations both polar and hydrophobic interactions
gain importance.

Sampling is always a concern, and an example of the types of
care that must be taken is the analysis of internal dynamics in
glutaredoxin by Allnér et al. (2015). Order parameters of amide
and methyl groups obtained from NMR relaxation experiments
are used to estimate the entropy of proteins, but these order
parameters are estimated for each bond, lacking information on
the correlation of motions of collections of these bonds (as in,
for example, a whole alpha helix), resulting in an overestimated
entropy. From the MD perspective, the convergence of the auto-
correlation functions is essential to get reliable magnitudes for
the order parameters, and this is a site-specific problem. Con-
verged residues have good agreement with experimental values,
regardless of the actual value of the order parameter, suggesting
that the force fields do a good job. They find that sampling
is better for many short runs (preferably started from different
structures) than for a very long run, as even µs-long runs may
not be converged.

A stringent test of both force fields and sampling is the sim-
ulation of unfolded proteins. Lindorff-Larsen et al. (2012) simu-
lated acid-unfolded acyl-coenzyme a binding protein (ACBP) for
200 µs, starting from a fully protonated and high temperature
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unfolded state. The aim of this unrestrained simulation was to
determine if CHARMM22* is capable of describing local residual
structure and also the global structure of the unfolded ensemble.
Qualitative agreement was obtained, but the simulated ensemble
is more compact than what experiments suggest. NMR relax-
ation properties and PRE data can also be explained qualitatively
through the presence of local structure, and residual alpha helical
sections in the simulations correlate with those measured by
NMR. Overall, the conclusion is that the simulation was too short
to achieve quantitative agreement, but that the qualitative data are
useful.

Enhanced Sampling to Improve the
Description of NMR Observables

Acknowledging that sampling is a pervasive problem, enhanced
sampling protocols aim to solve this with different tricks. One
of them consists on running multiple MD simulation replicas at
different temperatures, and then exchanging replicas at specific
time intervals according to a Metropolis criterion (REMD, see
Figure 3). This allows the system to jump barriers connecting
states easily, and therefore, to sample conformations efficiently.
Grutsch et al. (2014) use this approach to study the native ensem-
ble of a pollen allergen from birch (Bet v 1). These proteins
store and transport small molecules, such as deoxycholate, in an
internal cavity. How the ligand gets into the cavity is not known,
but there are three possible entry sites that can be seen in crystal
structures of members of this family. To make matters more inter-
esting, Bet v 1 has many isoforms, these vary in immunogenicity
despite having the same scaffold, and ligand binding also alters
immunogenicity by stabilizing epitopes. In order to characterize
how conformationally heterogeneous is apo Bet v 1, they ran
REMD, with 32 replicas over 100 ns, keeping only the data of
300K for analysis; these runs show that the apo form samples
conformers that resemble the holo protein, in agreement with the
conformational selection model. They also ran 1 µs of standard
MD for both apo and Bet v 1 with two deoxycholate molecules,
starting from crystal structures. Experimentally they use pulsed-
field-gradient methods to measure diffusion, as this is related to
the diameter of the protein, and confirmed that ligand binding
produces compaction of the protein. This coincides with the mea-
sures of the radius of gyration from the MD simulations with and
without ligand. They also measured chemical shift displacements
in the apo and holo protein with other ligands, finding very small
changes; the largest changes are in the order parameters, which
show how the protein becomes more rigid upon ligand binding.
Medium timescale dynamics (µs–ms) is lost upon ligand binding.
They argue that the freezing of these degrees of freedom could
be important for the particular positioning of loops or epitopes
involved in allergies.

The description of the ensembles for IDPs is, as noted above,
particularly problematic. The presence of pre-structured motifs is
important for specific binding, and their identification is a goal
in bioinformatics. One approach is that of Szöllosi et al. (2014),
who use discrete MD (DMD) and replica exchange in a collection
of IDPs for which there is NMR data indicating the presence

of alpha helices in particular regions of the proteins. DMD is a
collision driven algorithm, with implicit solvent, and uses a force
field based on chemistry at HARvard macromolecular mechanics
(CHARMM). It is faster than standard MD, and it only calcu-
lates forces upon collisions, so the simulation time is measured
differently. They analyzed secondary structure as a function of
temperature, and as expected, it diminishes as temperature is
increased. Overall, they can detect 45 out of the 65 pre-structured
motifs in the set, indicating that the procedure is a good start-
ing point to work with an uncharacterized protein. Designing
inhibitors for IDPs is hard, because the binding sites can be mov-
ing targets. Jin et al. (2013) speak of ligand clouds around protein
clouds, and use a fragment of oncogene cMyc(370–409) and a
small inhibitor as a case example. Binding was measured with
NMR, CD, and fluorescence. First they simulate the apo structure
with REMD (30 replicas in implicit solvent) for 34.5 µs, and then
with the ligand in explicit solvent for multiple 1 µs standard MD
runs. They see that cMyc remains disordered, and the ligand binds
at many locations; the ensembles were validated against proton
and carbon chemical shifts. A non-ligand (another segment of
cMyc) does not bind the ligand with the same efficiency, so this
is not a case of blatant promiscuity.

Accelerated MD is another strategy to improve sampling. Here,
the idea is to flatten out the free energy surface describing the con-
formational landscape of the protein, so barriers can be traversed
easily. This is achieved by a boost term for the energy, and this
boost is adjustable. Two examples of this approach (Salmon et al.,
2012; Guerry et al., 2013) apply this to study the dynamics of an
SH3 domain, compared to RDC. Salmon et al. (2012) accelerate
their MD simulations to the point where the ensemble generated
agrees best with the RDC data. Once this ensemble is defined,
they calculate order parameters. Their data show that fast motions
(ps–ns regime) are almost uniform in the SH3 domain, but those
derived from RDCs show increased motions in the loops that
interact with ubiquitin. They get the fast motions from standard
MD runs seeded from the accelerated ensemble, a strategy rem-
iniscent of the AS complexes with dopamine, described above
(Dibenedetto et al., 2013). Guerry et al. (2013) take this approach
further in a new method called SUPERNOVA, which is a multi-
level AMD simulation. They oversample the SH3 domain tomake
sure they get all the sub-states; then they generate Boltzmann-
weighted ensembles that agree with experimental data (RDCs
obtained in various orienting media in this case). The chemical
shifts calculated from these new ensembles agreemuch better with
experimental data than the whole oversampled ensemble. The
same idea, but using Monte Carlo simulations instead of AMD,
was used before (Jensen et al., 2011) to study the tail domain
of the measles virus nucleo-protein. With the flexible-meccano
program, which uses volume exclusion and amino acid specific
conformational preferences, they generated a huge set of conform-
ers. They calculated chemical shifts and RDCs for the conformers,
and selected the ensemble that described best the experimental
data. They found that the domain adopts a dynamic equilibrium
between unfolded conformations and helices of different lengths,
some of which are retained upon capsid assembly.

Accelerated MD can also be used to break complexes and
study their stability. A nice example of this strategy is that of
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Xing et al. (2014), applied to a phosphotransferase system, specif-
ically the weak interaction between enzyme I and enzyme IIA-
glucose (EI—EIIA). This interaction results in the phosphoryla-
tion of EIIA by EI. Chemical shift perturbation was used to map
the interaction site and estimate the low Kd (>25 mM). Using
these data and PRE data from specifically labeled samples, they
built a model of the complex. This model was used with AMD,
with the phosphate on EI or on EIIA, to test their stabilities, and
also a mutant that increases the Kd was simulated. The mutant
alters the electrostatics at the interphase, and results in a complex
that does not dissociate.

Restricted Simulations Using NMR
Observables

This approach could be considered as the best way to complement
the strengths of simulations and experiments. The drawback is
that the restrictions are protein-specific, so what works for one
need not work for others. Nevertheless, it is very powerful, as the
following examples show. A natural problem for this approach is
the description of IDPs or of the DSE of proteins. Esteban-Martin
et al. (2013) used PRE to map tertiary interactions in AS, an IDP,
using 11 PRE labels at different positions, and used these data to
restrict aMonte Carlo simulation with a protocol called SCOOBE,
where PRE are back-calculated for eachMonte Carlo step, guiding
the simulation. Once the sample is large enough, clustering is
applied and representative structures are used to obtain detailed
contact maps for the soluble protein. Curiously, some contacts
are compatible with amyloid fibers but others are not, suggesting
the need for a reorganization of the structure during the fibril
formation process. Scaffolding proteins have disordered regions
that sample compact states with residual secondary structure, and
this is important for binding, as it reduces the entropy cost as dis-
cussed above. Krieger et al. (2014; Goto, 2014) use chemical shifts
to characterize the unbound state of a peptide from scaffolding
protein Gab2. The bound state is known from crystallography,
and there the N-terminus is a polyproline sequence that binds
in an extended structure to the Grb2 SH3 domain, while the
C-terminus is a 310 helix with positive residues. The free peptide
shows beta regions and PPII sites. They used MD simulations in
explicit solvent with replica averaged backbone chemical shifts
in CamShift as structural restraints, to recover the free energy
landscape of Gab2. By mutating prolines to alanines, they can
reproduce the ranking in binding affinity of the mutant peptides,
just by looking at the amount of residual structure and the direct
contacts. The conformational ensemble has two clear minima,
one looking like the bound conformation and the other like a
random coil, again as suggested by the conformation selection
model. In stark contrast, simulations of calcium-loaded calmod-
ulin (Ca-CAM), using carbon, nitrogen, and hydrogen chemical
shifts as replica averaged constraints (Kukic et al., 2014), revealed
that Ca-CAM in the absence of its ligands does not sample
the bound conformation, at least down to 5–10% of the global
population, arguing for induced-fit in this case. The ensemble
generated agrees with data from RDC, PRE, SAXS, and FRET,
only when all the chemical shift restraints are used. Furthermore,

the behavior of the linker helix explains the behavior of the whole
protein to a good approximation, and can also explain the effect of
alanine mutations. In another exploration of the conformational
landscape, Granata et al. (2013) applied metadynamics to fold
the Ig-binding domain of protein G. Experimental chemical shifts
were used as one of the seven collective variables that guided the
sampling in explicit solvent. They ran 380 ns on seven parallel
replicas, with replica exchange at room temperature. They found
the native state as the lowest minimum on the landscape, and a
compact intermediate state.

Regarding residual structure in denatured proteins Ozenne
et al. (2014) characterize the acid unfolded state of ACBP, the same
protein studied by Lindorff-Larsen et al. (2012). The idea is that
the principle of minimal frustration implies that there is a bias in
the DSE toward native-like structure, and this shows in secondary
structure propensity and long-range contacts. There is evidence
from chemical shifts, RDCs and PRE for denatured ACBP. In this
paper they use PRE andmutants to obtain distance constraints for
acid-unfoldedACBP and dissect whether contacts cause helices or
the other way around. The mutants are at residues with high phi
values, so they form part of the folding nucleus. They use flexible-
meccano to generate a large pool of random coils, and then the
ASTEROIDS program to select five representative ensembles that
represent the experimental PREdata. The contactmaps showboth
native and non-native contacts, and the hydrodynamic radius
matches that expected from pulsed-field-gradient NMR data. It
is more compact than a random coil, but not as compact as
unrestrictedMD simulations suggest. To establish cause and effect
between contact formation and collapse, they performMD folding
simulations with a coarse-grained native-centric protein model,
and identify one intermediate between the TSE and the native
state. Notably, this intermediatewas described previously by relax-
ation dispersion. Also, they find that early contacts bias the DSE,
and themutants allow for the folding pathway to be reconstructed.
Long-range contacts make folding faster.

Abandoning disordered structures, the next ensemble of inter-
est is that of folding or functional intermediates. Neudecker et al.
(2012) studied an on-pathway intermediate for the folding of the
Fyn SH3 domain, that participates in amyloid fiber formation.
They used relaxation dispersion experiments to get structural
information on this intermediate: chemical shift, RDCs, and
chemical shift anisotropy. They then carried out REMD simu-
lations restrained by these data for 4 ns, in order to construct
a model of the intermediate, which was validated with H/D
exchangeNMRdata. The intermediate is native-like, but it exposes
a beta sheet with high propensity to form amyloid fibers, and this
is suggested as the beginning of the aggregation pathway. This also
hints that forming fibers requires just local unfolding to proceed.
Following with more amyloidogenic precursors, Bemporad et al.
(2012) track the precursor of fibers in acylphosphatase (AcP), by
deleting the 11 amino acids at the N-terminus. They monitor the
effect of the deletion with H/D exchange NMR experiments, and
use these protection factor data to restrict MD simulations that
annealed between 298 and 498 K to generate a large ensemble of
structures in water and in Trifluoroethanol (TFE); the latter was
used as a pro-fiber condition. The structurewithTFE is native like,
but it has larger root mean square distance or deviation (RMSD)
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fluctuations, an increased radius of gyration and less native con-
tact, explaining its tendency to form fibers.

Our last two examples relate to functional dynamics. The first
one (Nguyen et al., 2014) describes the motions of the acyl carrier
protein (AcpP) in the context of the fatty acid synthase. They
use chemical shift perturbation to understand how the protein
binds its substrate and to a partner, and to validate the AcpP-
FabA crystal structure obtained by cross-linking. In order to study
the ms dynamics they combined AMD with experimental RDCs,
tuning the boost energy until the best agreement with RDCs was
obtained. Standard MD simulations were run to obtain order
parameters in the ps–ns regime, starting from the accelerated
ensemble. AcpP has similar fast dynamics when bound to its
substrate (a fatty acid) or when bound to FabA. At the slower
timescale the protein behaves differently with each ligand: AcpP
exhibits a breathing motion, the interaction with FabA stabilizes
an open conformation that allows the release of substrate and the
capture by FabA. The last example (Kannan et al., 2014) describes
the dynamics of the long loops of the HU protein and compares
them to the conformation when bound to DNA. The bending of
DNA is due to a clamping mechanism, using pre-sculpted hinge
motions in free HU. They use methyl chemical shifts as replica-
averaged restrains in MD simulations (CH3Shift), alone or in
combination with backbone chemical shifts (CamShift) of the HU
dimer and look at the range of motions. They also compare it to
unrestrainedMD simulations.Methyl restrains seem to be enough
to guide the ensemble to a correct description of other NMR data
not used as restrains, both structural and dynamic, but the best
agreement is achieved by combiningmethyl and backbone chemi-
cal shifts. The conformational landscape of the “ears” of HU shows
two minima, one with the “ears” pointing outward and another
with collapsed “ears.” The DNA bound conformation lies between

these two, in an intermediate. They propose that HU samples
DNA segments in its extended state and then clamps on them, in
transit to the collapsed state. Clamping controls the space available
to DNA, while twisting wraps the “ears” along the minor groove.
Curiously, the maximum observed twist matches the trajectory
of the minor groove, so they propose that the propensity to bind
DNA is programmed into the intrinsic motions of HU.

Future Developments

From the cell surface and extracellular matrix all the way to
the interaction of proteins with DNA, protein dynamics is cen-
tral to function. Outstanding problems in MD simulations are
inaccuracies in the force fields and insufficient sampling for unre-
stricted MD runs. We are optimistic in that both these problems
will become smaller in the near future, as force field refinement
continues and computers and algorithms for simulations are
improved. This will also allow for the study of larger and more
complex proteins. On the NMR side, a common complaint in the
workswe discussed is the risk of overfitting, and the complications
arising from only looking at the backbone of the proteins. On
the bright side, better instruments, novel labeling schemes and
pulse sequences, the use of metals and other probes, and also
the development of the equations to deal with multiple states
simultaneously will continue to increase our capacity to study
more complex motions in proteins. In vivo NMR holds great
promise to study how proteins work in their natural milieu.
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