AUTHOR=Elia Antonio , Conversa Giulia TITLE=A decision support system (GesCoN) for managing fertigation in open field vegetable crops. Part I—methodological approach and description of the software JOURNAL=Frontiers in Plant Science VOLUME=6 YEAR=2015 URL=https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2015.00319 DOI=10.3389/fpls.2015.00319 ISSN=1664-462X ABSTRACT=

Reduced water availability and environmental pollution caused by nitrogen (N) losses have increased the need for rational management of irrigation and N fertilization in horticultural systems. Decision support systems (DSS) could be powerful tools to assist farmers to improve irrigation and N fertilization efficiency. Currently, fertilization by drip irrigation system (fertigation) is used for many vegetable crops around the world. The paper illustrates the theoretical basis, the methodological approach and the structure of a DSS called GesCoN for fertigation management in open field vegetable crops. The DSS is based on daily water and N balance, considering the water lost by evapotranspiration (ET) and the N content in the aerial part of the crop (N uptake) as subtraction and the availability of water and N in the wet soil volume most effected by roots as the positive part. For the water balance, reference ET can be estimated using the Penman–Monteith (PM) or the Priestley–Taylor and Hargreaves models, specifically calibrated under local conditions. Both single or dual Kc approach can be used to calculate crop ET. Rain runoff and deep percolation are considered to calculate the effective rainfall. The soil volume most affected by the roots, the wet soil under emitters and their interactions are modeled. Crop growth is modeled by a non-linear logistic function on the basis of thermal time, but the model takes into account thermal and water stresses and allows an in-season calibration through a dynamic adaptation of the growth rate to the specific genetic and environmental conditions. N crop demand is related to DM accumulation by the N critical curve. N mineralization from soil organic matter is daily estimated. The DSS helps users to evaluate the daily amount of water and N fertilizer that has to be applied in order to fulfill the water and N-crop requirements to achieve the maximum potential yield, while reducing the risk of nitrate outflows.