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The tripartite symbiosis between legumes, rhizobia and mycorrhizal fungi are generally
considered to be beneficial for the nitrogen (N) uptake of legumes, but the facilitation
of symbiosis in legume/non-legume intercropping systems is not clear. Therefore, the
aims of the research are as follows: (1) to verify if the dual inoculation can facilitate
the N uptake and N transfer in maize/soybean intercropping systems and (2) to
calculate how much N will be transferred from soybean to maize. A pot experiment
with different root separations [solid barrier, mesh (30 µm) barrier and no barrier] was
conducted, and the 15N isotopic tracing method was used to calculate how much N
transferred from soybean to maize inoculated with arbuscular mycorrhizal fungi (AMF)
and rhizobium in a soybean (Glycine max L.cv. Dongnong No. 42)/maize (Zea mays
L.cv. Dongnong No. 48) intercropping system. Compared with the Glomus mosseae
inoculation (G.m.), Rhizobium SH212 inoculation (SH212), no inoculation (NI), the dual
inoculation (SH212+G.m.) increased the N uptake of soybean by 28.69, 39.58, and
93.07% in a solid barrier system. N uptake of maize inoculated with both G. mosseae
and rhizobium was 1.20, 1.28, and 1.68 times more than that of G.m., SH212 and NI,
respectively, in solid barrier treatments. In addition, the amount of N transferred from
soybean to maize in a dual inoculation system with a mesh barrier was 7.25, 7.01,
and 11.45 mg more than that of G.m., SH212 and NI and similarly, 6.40, 7.58, and
12.46 mg increased in no barrier treatments. Inoculating with both AMF and rhizobium
in the soybean/maize intercropping system improved the N fixation efficiency of soybean
and promoted N transfer from soybean to maize, resulting in the improvement of yield
advantages of legume/non-legume intercropping.

Keywords: arbuscular mycorrhizal fungi, nitrogen uptake, nitrogen transfer, 15N, rhizobium, soybean/maize
intercropping

Abbreviations: AMF, Arbuscular mycorrhizal fungi; N, nitrogen; NI, no inoculation; SH212, inoculating Bradyrhizobium
japonicum SH212;G.m., inoculating Glomus mosseae; SH212+G.m., inoculating both Bradyrhizobium japonicum SH212 and
Glomus mosseae; PGPR, plant growth-promoting rhizobacteria.
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Introduction

Legume and non-legume intercropping cultivation has been
widely encouraged in sustainable agriculture because it has the
potential to improve the yield significantly and allow plants to
use soil N more efficiently (Eaglesham et al., 1981; Li et al.,
2001, 2011; Hauggaard-Nielsen et al., 2009; Gao et al., 2014),
which is beneficial for reducing the amount of chemical fertil-
izer supplies and has positive consequences on the environment
(Lekberg and Koide, 2005; Pelzer et al., 2012). N could be used
efficiently in the intercropping system because the N fixed by
legumes can be transferred to companion species, and this part
of N is a crucial source for the non-nodulated crop’s growth
and development (Moyer-Henry et al., 2006). For example, Fujiu
et al. (1990) have found that the amount of N transferred to
sorghum (Sorghum bicolor Moench cv. Yuldjirushi) accounted
for 32–58% of its N uptake in a soybean (Glycine max L.
cv. Kurosengoku)/sorghum intercropping system. A substantial
amount of N is transferred in different communities including
N2-fixed and non-N2 fixed plants (Chu et al., 2004; Sierra and
Daudin, 2010; Isaac et al., 2012; Frankow-Lindberg and Dahlin,
2013; Jamont et al., 2013; Chapagain and Riseman, 2014). In
addition, inoculating rhizobium can significantly increase the
yield and N uptake of wheat (Triticum aestivum L. cv. Long 17)
and faba bean (Vicia faba L. cv. Linxia Dacandou) and further
improve the intercropping advantages. This has been confirmed
by Xiao et al. (2006), who inoculated rhizobia strain NM353
for faba bean in faba bean/wheat intercropping system. Fang
et al. (2009) showed that the biomass and grain yield of faba
bean (V. faba L. cv. Lincan No. 2) and maize (Zea mays L.
cv. Zhongdan No. 2) and the number of faba bean nodules
were increased similarly when inoculated with rhizobia strain
GS374 in the faba bean/maize intercropping system. Several stud-
ies also indicated that inoculating both AMF and rhizobium
can promote the growth of crops and improve the yield and
nutrient uptake of crops (Lekberg and Koide, 2005; Antunes
et al., 2006; Varennesa and Goss, 2007; Tajini et al., 2011; Abd-
Alla et al., 2014). AMF is considered to be of great importance
in plant symbiosis and promoting nutrient uptake, especially
P (Li et al., 2004; Pasqualini et al., 2007; Xiao et al., 2010;
Tajini et al., 2011; Abd-Alla et al., 2014). The mycelium can
extend to the area outside the rhizosphere, connect roots with
the surrounding soil microhabitats and enlarge the area that
roots have to absorb nutrients (He et al., 2003). Thus, water
and nutrients can be transported by the huge hyphae network
to be finally absorbed by plants (Tobar et al., 1994; Vassilev
et al., 2001; Yao et al., 2001; He et al., 2003). The N transfer
in intercropping systems is assumed to be enhanced if N fixa-
tion by legumes can be improved by inoculation with AMF and
rhizobium, which have the potential to enhance plant produc-
tivity. However, the effects of inoculating both rhizobium and
AMF in legume/non-legume intercropping systems on N trans-
fer are currently uncertain. Therefore, the objectives of our study
are as follows: (1) to verify if the dual inoculation can facili-
tate N uptake and N transfer in a maize/soybean intercropping
system, (2) to use the 15N isotopic tracing method to calculate
how much N will be transferred between maize and soybean

intercropping under the inoculation of both rhizobium and
AMF.

Materials and Methods

Experiment Design
A pot experiment was conducted at a greenhouse in Northeast
Agricultural University in China. Three root separation patterns
between soybean and maize were designed (Figure 1) to study
N uptake facilitation in an intercropping system. They were as
follows: (1) solid barrier, roots were separated by hard plastic
sheet (0.5 mm) and had no root contact or material exchange;
(2) mesh barrier, roots were separated by a 30-µm nylon mesh
and had no contact but water, nutrient and hyphae were allowed
to exchange and permeate; (3) no barrier, which allowed for
complete contact between the roots of soybean and maize. Plastic
pots (3 kg capacity) were cut in the middle, separated into two
compartments and then reconstructed for solid barrier and mesh
barrier patterns.

Plant Growth Medium
The soil used in the experiment contained 6.28 g kg−1 of organic
matter, 1.2 g kg−1 of total N, 30.4 mg kg−1 of available N,
5.9 mg kg−1 of Olsen P and 167 mg kg−1 of available K. The
soil was sieved (2 mm) and sterilized at 120◦C for 2 h to elimi-
nate the AMF spores, and 1.4 kg of the soil was then put into each
compartment of the plastic pot. Then, basal nutrients were added
in solution to the pot (mg kg−1 soil): N 100 mg (NH4NO3), P
80 mg (KH2PO4), K 150mg (K2SO4), Mg 50 mg (MgSO4·7H2O),
the microelement Fe (FeSO4·7H2O), Mn (MnCl2), Cu (CuCl2),
Zn (ZnSO4·7H2O), and Mo [(NH4)4MoO4] 5 mg and were then
thoroughly mixed, and each compartment was provided with
200 ml of water.

Seeding and Inoculating
Seeds of soybean (Glycine max L. cv. Dongnong No. 42) and
maize (Z. mays L. cv. Dongnong No. 48) were sterilized by
immersion in 10% H2O2 for 30 min before seeding. Then, four
seeds of soybean were sown into one compartment of the pot

FIGURE 1 | Schematic diagram of the root separation in pots. (A) is
solid barrier, (B) is mesh (30 ţm) barrier and (C) is no barrier.
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on May 19th, and two seeds of maize were sown into the other
compartment on May 24th for intercropping. When the seeds
germinated, the soybean seedlings were thinned to two plants per
compartment and the maize seedlings were thinned to one plant
for further growth.

The experiment involved four microbial treatments: inoc-
ulating with Bradyrhizobium japonicum SH212 (SH212),
inoculating with Glomus mosseae (G.m.), dual inoculation
(both of Bradyrhizobium japonicum SH212 and G. mosseae,
SH212+G.m.) and NI as a control. The total was 12 treatments (3
barriers × 4 inoculations) with four replicates for each treatment.
The rhizobium used was B. japonicum SH212 obtained from the
rhizobium research group of Northeast Agricultural University
in China, and the AMF used was G. mosseae, originating from
a mycorrhizal research group of China Agricultural University.
At sowing, 30 g per compartment of AMF inoculum and 15 ml
per compartment of rhizobium (density was 8.2 × 108/ml)
were thoroughly mixed with the soil for inoculated treatments.
Because the AMF inoculum consisted of the AMF spores,
sand and colonized root fragments, the non-AMF inoculated
treatments were amended with steam-sterilized inoculum. All of
the pots were placed randomly.

15N Labeling
When the soybean was undergoing pod growth, an isotopic label-
ing experiment was conducted utilizing (15NH4)2SO4, enriched
with 99% 15N. Before labeling, a PVC board was inserted between
soybean and maize shoots, and a plastic film with two layers
of filter paper on top was set on the surface of soil to prevent
pollution from isotopic N. A microinjector (25 µL) was used to
inject 10 µL of 88 mM (15NH4)2SO4 solution into the petioles
of soybeans every day. Each labeling was replicated four times.
Soybean petioles were labeled for 9 days. The plants without
labeling were used as a control to examine the natural 15N
abundance.

Sampling and Analysis
Plants were harvested on July 18th. The shoots were first cut
off at ground level and separated by their different inoculated
treatments and root separation patterns; then, the whole soil in
the pot was removed and placed on a sieve with 1-mm mesh to
pick up the nodules. The roots of soybean and maize were then
washed with running tap water and separated the same way as
shoots. All of the fresh nodules (including the nodules removed
from the soil) of the soybean roots were counted and recorded.

Samples of fresh roots were cut into segments of ∼1 cm
and mixed thoroughly. One gram of fresh root was randomly
collected to estimate the root-colonization of AMF. The root
samples were stained with Trypan blue and faded with lactic acid
and glycerin; then, 30 pieces of root segments were observed
under a visible light microscope to estimate AMF coloniza-
tion (Phillips and Hayman, 1970). Every root segment was
defined according to the standard of the mycorrhizal infection.
Next, “MYCOCALC” software was used to calculate arbuscular
mycorrhizal colonization (Trouvelot et al., 1986).

The shoots and the remaining fresh roots were dried at 70◦C to
a constant weight after killing the enzymatic activity at 105◦C for

0.5 h. The plant samples were digested with H2SO4-H2O2 meth-
ods for N analysis, and the total N content of plants was measured
using the Kjeldahl procedure.

The 15N abundance of shoots was determined using a DELTA
PLUS XP isotope ratio mass spectrometer (FINNIGAN).

Calculating and Statistical Analysis
N transfer was calculated as follows:

N% = N1% − Nc% (1)

Where N% indicates the atomic percentage of 15N excess of the
plant (maize or soybean), Nl% indicates the atomic percentage of
15N in the labeled plant and Nc% indicates the atomic percentage
of 15N in the control plant;

Nt% = Nm × Nm%
Nm × Nm% + Ns × Ns%

× 100 (2)

Where Nt% indicates the percentage of N uptake by soybean
transfer to associated maize, Nm and Ns indicate the uptake of
maize and soybean (mg/pot) and Nm% and Ns% indicate the
atomic percentage of 15N excess in maize and soybean, respec-
tively;

Nt = Nt% × Ns (3)

Where Nt indicates the amount of N that soybean transferred to
maize (mg/pot); and

No% = Nt

Nm
× 100 (4)

Where No% indicates the percentage of transferred N that occu-
pies the maize N uptake.

Statistical analysis was performed using SPSS19.0 software
(SPSS, Inc., Chicago, IL, USA). The differences of treatments were
compared using the least significant difference (LSD) and the
t-test at a significance level of p ≤ 0.05 after analysis of variance
(ANOVA).

Results

Biomass
Dual inoculation treatment (SH212+G.m.) significantly
increased soybean total biomass by 67.70% with a solid
barrier, by 70.40% with a mesh barrier and by 72.80% with
no barrier patterns compared with NI treatment (Table 1).
Rhizobium SH212 and G. mosseae as single inocula also
significantly facilitated soybean’s growth; the biomass of
the soybean shoots and roots were significantly higher than
that of the NI group in all three root separation patterns
(Table 1). However, no significant difference was observed
in soybean shoots, roots, and total biomass between SH212
and G.m. treatments (Table 1). The root separation had no
significant influence on soybean biomass in each inoculated
and non-inoculated treatment (Table 1). Additionally, no
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TABLE 1 | The biomass of shoots and roots of soybean and maize inoculated with AMF and rhizobium with solid barrier, mesh barrier and no barrier
(g/pot).

Treatments Soybean Maize

Shoot Root Total Shoot Root Total

Solid barrier NI 4.36 ± 0.04 caAb 1.12 ± 0.04 cA 5.48 ± 0.07 cA 8.48 ± 0.03 cC 5.02 ± 0.05 cC 13.5 ± 0.08 cC

SH212 5.33 ± 0.02 bA 2.18 ± 0.03 bA 7.50 ± 0.05 bA 9.50 ± 0.02 bB 6.03 ± 0.05 bB 15.53 ± 0.04 bB

G.m. 5.36 ± 0.04 bA 2.22 ± 0.07 bA 7.58 ± 0.11 bA 9.51 ± 0.03 bB 6.05 ± 0.03 bB 15.56 ± 0.07 BC

SH212+ G.m. 6.67 ± 0.13 aA 2.53 ± 0.01 aA 9.19 ± 0.04 aA 10.79 ± 0.04 aB 7.31 ± 0.05 aB 18.10 ± 0.08 aB

Mesh barrier NI 4.30 ± 0.06 cA 1.14 ± 0.08 cA 5.44 ± 0.13 cA 8.60 ± 0.02 cB 5.15 ± 0.03 cB 13.75 ± 0.03 cB

SH212 5.37 ± 0.02 bA 2.24 ± 0.02 bA 7.61 ± 0.03 bA 9.64 ± 0.02 bAB 6.24 ± 0.03 bA 15.88 ± 0.06 bA

G.m. 5.44 ± 0.03 bA 2.25 ± 0.01 bA 7.69 ± 0.08 bA 9.65 ± 0.03 bB 6.22 ± 0.02 bA 15.87 ± 0.05 bB

SH212+ G.m. 6.72 ± 0.03 aA 2.55 ± 0.04 aA 9.27 ± 0.07 aA 10.95 ± 0.03 aA 7.53 ± 0.03 aA 18.48 ± 0.06 aAB

No barrier NI 4.21 ± 0.03 cA 1.12 ± 0.04 cA 5.33 ± 0.06 cA 8.70 ± 0.05 cA 5.28 ± 0.02 cA 13.98 ± 0.07 cA

SH212 5.36 ± 0.03 bA 2.21 ± 0.04 bA 7.57 ± 0.06 bA 9.83 ± 0.05 bA 6.30 ± 0.02 bA 16.12 ± 0.03 bA

G.m. 5.34 ± 0.06 bA 2.19 ± 0.07 bA 7.53 ± 0.13 bA 9.90 ± 0.06 bA 6.31 ± 0.02 bA 16.21 ± 0.07 bA

SH212+ G.m. 6.70 ± 0.08 aA 2.51 ± 0.04 aA 9.21 ± 0.08 aA 11.09 ± 0.06 aA 7.66 ± 0.06 aA 18.75 ± 0.06 aA

Inoculation ∗ ∗ ∗ ∗∗ ∗∗ ∗∗

Root separation ns ns ns ∗∗ ∗∗ ∗∗

Inoculation × root separation ns ns ns ns ns ns

The data above are expressed as the means ± SD (n = 4).
aMean values of inoculated treatments with same root barrier followed by different lower case letters (a, b, c, and d) are significantly different (p < 0.05).
bMean values of three root barriers with the same inoculation treatment followed by different capital letters (A, B, and C) are significantly different (p < 0.05).
ns, indicates no significant difference; ∗ and ∗∗ mean significant at 5 and 1% levels, respectively.

interaction was found between root separation and inoculation
treatments.

With regard to maize, the highest biomass of maize was
also observed in the group treated with SH212+G.m. and was
significantly higher than that of SH212, G.m. and NI treatments
in every root separation pattern (Table 1). Rhizobium SH212
inoculation increased maize shoot and root biomass by 12.99
and 19.32%, respectively, compared with NI in the no root sepa-
ration pattern (Table 1). In addition, G. mosseae inoculation
also increased both shoot biomass and root biomass (Table 1).
Moreover, a trend was observed that maize biomass in the no
barrier pattern was significantly higher than that of mesh barrier
or solid barrier patterns whether inoculated or not (Table 1).
For example, the total biomass of maize in the no barrier system
increased by 3.56 and 1.67% compared with solid barrier and
mesh barrier systems under non-inoculated treatments (Table 1).
However, no interaction was found between inoculation and root
separation treatments.

The AMF Colonization Rate
No AMF colonization was found in the roots of soybean and
maize not inoculated with G. mosseae, and the AMF coloniza-
tion rate was 0 (data not shown). The AMF colonization rate
of soybean was increased when plants were inoculated with
G. mosseae, and the increase was more significant when rhizo-
bium SH212 was also inoculated concurrently (Figure 2A).
Hence, AMF colonization increased by 35.55, 26.73, and 43.59%
in solid barrier, mesh barrier and no barrier systems when
co-inoculated with SH212 (Figure 2A). The AMF coloniza-
tion rate of soybean plants was significantly increased through
intercropping with maize. In addition, the AMF colonization

rate of maize in a no barrier system was higher than that of a
solid barrier both in G.m. and SH212+G.m., but no significant
difference was observed (Figure 2B).

The Number of Soybean Nodules
The number of soybean root nodules increased as a result of
inoculation of microsymbionts (Figure 2C). TheG.mosseae inoc-
ulation alone (G.m.) and rhizobium SH212 inoculation alone
(SH212) significantly increased the number of nodules. However,
the greatest increase was observed when both G. mosseae and
rhizobium SH212 were inoculated (Figure 2C). Compared to
NI, the number of nodules was increased 2.6, 2.0, and 2.0 times
with dual inoculation in solid barrier, mesh barrier and no
barrier system, respectively (Figure 2C). A small but insignifi-
cant increase in the amount of soybean root nodules was found in
the no barrier pattern compared with the mesh barrier and solid
barrier systems regardless of inoculation status (Figure 2C).

N Concentration and N Uptake
SH212+G.m. treatment significantly increased the N concen-
trations in soybean shoots and roots by 13.72 and 18.47%,
respectively, compared with NI treatment in no barrier patterns
(Table 2). In addition, a uniform facilitation was found in maize
shoots and roots, as the N concentrations increased by 28.34
and 34.94%, respectively (Table 2). The root separation patterns
had little influence on the N concentration of soybean shoots
and roots (Table 2). However, separating maize from soybean
plants by a plastic sheet significantly decreased the N concentra-
tion of maize shoots (by 5.04–13.25%) compared with no barrier
patterns in all inoculated treatments (Table 2).
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FIGURE 2 | Arbuscular mycorrhizal fungi colonization rates of
soybean (A) and maize (B) inoculated with AMF and rhizobium with
three root separation patterns. Bars with different lower case letters
indicate significant differences between different root barriers in the same
inoculated treatments (p < 0.05). Asterisks (∗ and ∗∗ ) indicate significant
differences between different inoculated treatments in the same root
separation patterns (p < 0.05). (C) is the number of soybean nodules
with three root separation patterns and inoculating AMF and rhizobium.

The NI, SH212, G.m., and SH212+G.m. in the figures represent NI
treatment, SH212 inoculation treatment, Glomus mosseae inoculation
treatment and both SH212 and G. mosseae inoculation treatment,
respectively. Bars with different lower case letters indicate significant
differences between different inoculated treatments in the same root
separation patterns, and bars with different capital letters indicate
significant differences between different root separation patterns in the
same inoculated treatment (p < 0.05). Means ± SD of four replicates.

The highest N uptake of soybean was found with SH212+G.m.
treatment in all three root separation patterns (Table 2 and
Figure 3A). No significant difference was observed in the N
uptake of soybean shoots and roots between different root
separation patterns (Table 2). For maize, both the root separation
and microbial inoculation had significant effects on N uptake
(Table 2 and Figure 3B). Dual inoculation increased maize shoot
N uptake by 59.93, 63.00, and 63.62% and root N uptake by 78.57,
93.87, and 96.08% compared with NI treatment in solid barrier,
mesh barrier and no barrier patterns, respectively (Table 2). In
addition, the N uptake of maize was significantly enhanced by
intercropping with soybean, and the N uptake of the no barrier
pattern was 12.01% higher than the solid barrier pattern under
non-inoculated conditions (Figure 3B).

The N Transfer in Soybean/Maize
Intercropping Systems
The results of 15N labeling showed thatG.mosseae and rhizobium
SH212 inoculation alone enhanced the N transfer from soybean
to maize in a soybean/maize intercropping system (Table 3).
However, the more significant enhancement was observed in dual
inoculation in mesh barrier and no barrier systems (Table 3).
The amount of N transferred from soybean to maize (Nt) of
SH212+G.m. was 11.45 and 12.46 mg more than that of NI,

and it was also significantly more than SH212 or G.m. alone in
mesh barrier and no barrier patterns (Table 3). In addition, the
transferred N from soybean to intercropped maize accounted for
3.13–6.01% of the N uptake of maize (Table 3). However, no
significant difference was observed in the percentage of trans-
ferred N that occupied maize N uptake (No%) between G.m. and
SH212 (Table 3). The N transfer was also increased by intercrop-
ping. For example, the amount of N transferred from soybean to
maize (Nt) in a no barrier system was 19.63–43.33% more than
that in a mesh barrier system (Table 3).

Discussion

The growth of maize plants in a no barrier system was facilitated
greatly over those with a mesh barrier or solid barrier, regard-
less of the status of inoculation, confirming the yield advantage
inmaize/soybean intercropping systems in agreement with previ-
ous reports (Hauggaard-Nielsen and Jensen, 2005; Chapagain
and Riseman, 2014). The biomass of soybean and maize inoc-
ulated with both AMF and rhizobium were more than that of
NI in all root separation patterns, which illustrates that inoc-
ulating rhizobium and AMF can enhance the biological yield
advantages of soybean and maize. This is consistent with our
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FIGURE 3 | Nitrogen uptake of the whole plant of soybean (A) and maize
(B) inoculated with AMF and rhizobium and with three root separation
patterns in a soybean/maize intercropping system. The NI, SH212, G.m.,
and SH212+G.m. in the figures represent NI treatment, SH212 inoculation
treatment, G. mosseae inoculation treatment and both SH212 and G. mosseae

inoculation treatment, respectively. Bars with different lower case letters indicate
significant differences between different inoculated treatments in the same root
separation pattern, and bars with different capital letters indicate significant
differences between different root separation patterns in the same inoculated
treatment (p < 0.05). Means ± SD of four replicates.

TABLE 3 | Nitrogen transferred from the 15N labeled soybean to the associated maize with three root separation patterns and inoculation with AMF and
rhizobium.

Treatments Nt% Nt (mg/pot) No%

Mesh barrier No barrier Mesh barrier No barrier Mesh barrier No barrier

NI 5.19 caBb 7.57 cA 5.52 cB 7.84 bA 3.13 bB 4.10 bA

SH212 6.29 bB 8.36 bA 9.96 bB 12.72 aA 4.25 bB 5.09 aA

G.m. 6.08 bB 9.16 bA 9.72 bB 13.90 aA 3.88 bB 5.36 aA

SH212+ G.m. 8.10 aB 9.88 aA 16.97 aB 20.30 aA 5.48 aB 6.01 aA

The data above are expressed as the means (n = 4).
aMean values of inoculated treatments with the same root barrier followed by different lower case letters are significantly different (p < 0.05).
bMean values of three root barriers with the same inoculation treatments followed by different capital letters (A and B) are significantly different (p < 0.05).

former research results that the biomass of soybean supplied
with different phosphorus sources was improved significantly
when inoculated AMF and rhizobium (Tong et al., 2009). Xiao
et al. (2010) have found that inoculating AMF in upland rice
(Oryza sativa ssp. Japonica Nipponbare) and mungbean (Vigna
radiata L. cv. Chuanyuan) intercropping systems increased the
biomass of mungbean by 288.8%. In addition, Mei et al. (2012)
found that the average grain yields of faba bean (V. faba L.) and
maize (Z. mays L.) increased by 30–197% and 0–31%, respec-
tively, after inoculating with rhizobium in maize and faba bean
intercropping systems in reclaimed desert soil. In our study, we
inoculated both rhizobium and AMF in a soybean/maize inter-
cropping system. The soybean and maize biomass was 21.66 and
16.32% higher than that of SH212 alone and 22.31 and 15.67%
higher than that of G.m. alone in a no barrier pattern (Table 1).
That suggested synergistic facilitation for yield advantage was
observed in maize/soybean intercropping because of inoculating
both AMF and rhizobium.

Why Did Inoculating Rhizobium and AMF in
Soybean/Maize Intercropping System
Improve Growth of Maize and Soybean?
In our experiment, both AMF and rhizobium colonization inde-
pendently increased the total biomass of soybean in solid barrier
patterns compared with their respective controls, and the total

biomass of soybean with dual inoculation was 1.68 times as
much as that of NI (Table 1). We found synergistic effects of
AMF and rhizobium on soybean growth, which was consistent
with the results of Abd-Alla et al. (2014), who found that dual
inoculation with rhizobium and AMF was more efficient for
promoting growth of faba beans (V. faba L.). Rhizobium symbio-
sis is involved in the fixation of atmospheric N, whereas AMF
improves the ability of a plant to absorb P and other nutrients (Li
et al., 2006; Erman et al., 2011; Tajini et al., 2012; Pellegrino and
Bedini, 2014). Our previous study found that maize overyield-
ing in maize/faba bean or soybean intercropping resulted from
its uptake of phosphorus mobilized by the acidification of the
rhizosphere via fababean root by using mesh (permeable) and
solid (impermeable) root barriers. The level of soybean to acidify
rhizosphere is lower than faba bean (Li et al., 2007). The present
study showed that N uptake by soybean inoculated with both
AMF and rhizobium with no barriers was 1.98 times as much
as that of the NI group (Figure 3A). Therefore, the increase in
dry matter accumulation could be attributed to the incremental
increase on nodulation, N fixation and nutrient acquisition.

In this experiment, we found that the N uptake of maize
with no barriers was 8.63 and 12.01% more than that with
mesh barriers or solid barriers under non-inoculated conditions,
and 9.08 and 17.94% more under dual inoculated conditions
(Figure 3B). In addition, the results showed that N transfer
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from soybean inoculated with both AMF and rhizobium to maize
in no barrier and mesh barrier patterns increased 12.46 and
11.45 mg/pot compared with the NI group (Table 3), which
means that the N transfer was improved due to the dual inocu-
lation. Therefore, the biomass of maize was improved due to the
increase of N uptake after intercropping with soybean and inoc-
ulating with AMF and rhizobium. This is in agreement with the
results of Zarea et al. (2011), Larimer et al. (2014), and Pellegrino
and Bedini (2014).

AM Fungal Hyphae Contribute to N Transfer
in Soybean/Maize Intercropping Systems
Arbuscular mycorrhizal fungi are important components in
intercropping agrosystems (Li et al., 2009; Yan et al., 2014). In
our study, Nwas transferred under non-inoculation conditions in
mesh barrier patterns, but the rate and amount of N transferred
in SH212+G.m. inoculations were 1.56 and 3.07 times more than
that of the NI group (Table 3), which resulted from the improved
AMF colonization rate of soybean and maize by inoculating with
both rhizobium and AMF. The 30-µm nylon-net prevented the
direct contact of the roots of soybean and maize but allowed
hyphae to penetrate and link, and the hyphae enhanced the
degree of contact of soybean and maize and the degree of contact
of roots affected N transfer significantly, in agreement with Chu
et al. (2004).

Many researchers suggested that there were two pathways for
N transfer. One is a direct transfer that N fixed by legumes
is transferred to associated non-N2 fixed plants via a mycor-
rhizal fungal hyphae network (Cardoso and Kuyper, 2006; Sierra
and Nygren, 2006). The N concentration of legumes is generally
higher than graminaceous; therefore, N could transfer to inter-
cropped graminaceous along the gradient of concentration via
hyphae (Chu et al., 2004). The other pathway is an indirect trans-
fer, in which the residual and root exudates (Jalonen et al., 2009)
of legumes release N to the rhizosphere when they decompose,

and the mineralized inorganic N can then be absorbed by
the intercropped graminaceous or mycorrhizal hyphae (Tomm
et al., 1994; Johansen and Jensen, 1996; He et al., 2003). In
our experiment, the rate and the amount of N transferred from
soybean to maize were improved by microbial inoculations.
Hence, no matter which way the N is transferred, the hyphae
play an important role in N transfer from soybean to associated
maize.

In addition, we found that inoculating rhizobium also
promoted the growth of maize. Some studies have confirmed
that PGPR were beneficial for plant growth, yield and crop
quality (Zafar et al., 2012; Stefan et al., 2013; Güneş et al., 2014;
Yadav and Verma, 2014). PGPRs could enhance asymbiotic N2
fixation and nutrient uptake and compete against detrimental
microorganisms (Dey et al., 2004; Lucy et al., 2004; Khan, 2005;
Yadav and Verma, 2014), which would be the reason that the
growth of maize increased with rhizobium inoculation in our
experiment.

Arbuscular mycorrhizal fungi and rhizobium estab-
lish beneficial symbiosis with legumes and enhance the
advantage of intercropping, and the nutrient uptake and
biomass of intercropped crops were significantly increased.
Therefore, co-inoculation with both AMF and rhizobium
should be considered for the sustainable development of the
legume/graminaceous intercropping pattern.
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