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Pool size measurements are important for the estimation of absolute intracellular

fluxes in particular scenarios based on data from heavy carbon isotope experiments.

Recently, steady-state fluxes estimates were obtained for central carbon metabolism

in an intact illuminated rosette of Arabidopsis thaliana grown photoautotrophically

(Szecowka et al., 2013; Heise et al., 2014). Fluxes were estimated therein by integrating

mass-spectrometric data of the dynamics of the unlabeled metabolic fraction, data on

metabolic pool sizes, partitioning of metabolic pools between cellular compartments

and estimates of photosynthetically inactive pools, with a simplified model of plant

central carbon metabolism. However, the fluxes were determined by treating the pool

sizes as fixed parameters. Here we investigated whether and, if so, to what extent

the treatment of pool sizes as parameters to be optimized in three scenarios may

affect the flux estimates. The results are discussed in terms of benchmark values for

canonical pathways and reactions, including starch and sucrose synthesis as well as

the ribulose-1,5-bisphosphate carboxylation and oxygenation reactions. In addition,

we discuss pathways emerging from a divergent branch point for which pool sizes

are required for flux estimation, irrespective of the computational approach used for

the simulation of the observable labeling pattern. Therefore, our findings indicate the

necessity for development of techniques for accurate pool size measurements to improve

the quality of flux estimates from non-stationary flux estimates in intact plant cells in the

absence of alternative flux measurements.

Keywords: flux profiling, Arabidopsis thaliana, metabolite pool sizes, metabolic flux analysis, photoautotrophic

growth, isotopic labeling, isotopically non-stationary, carbon metabolism

Introduction

Metabolism encompasses the entirety of largely enzyme-catalyzed reactions transforming the set
of nutrients into molecules that support various functions. Metabolic reactions do not operate
in isolation and collectively comprise functional networks, capable of bearing flux, fine-tuned by
other levels of cellular organization (i.e., transcriptional regulation and signaling) (Stitt et al., 2010).
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Therefore, metabolic reaction fluxes are integrated outcomes
of transcription and translation as well as their regulation.
Reaction fluxes mutually relate to the involved metabolic pools
and influence growth and other cellular tasks (Fell, 2005). For
this reason, understanding the determinants of fluxes and their
change upon perturbation is key to studying and controlling
cellular behavior (Yoon et al., 2013). The determination of
metabolic fluxes is challenging: fluxes cannot be measured
directly and are, instead, estimated from measureable quantities.
Classical approaches in plant physiology aim to infer the flux
through a pathway from the accumulation of its end product
(e.g., starch) (Sulpice et al., 2014) or by the accumulation of an
applied tracer (e.g., 14C or 13C). Short-term radioactive labeling is
also used to estimate the rate of synthesis of intermediates (Lunn
and Hatch, 1995). Both approaches require the accumulation
of the end product or the tracer within the time frame of the
experiment. Here we refer to such approaches as alternative flux
measurements. These approaches depend on a set of assumptions
(e.g., that degradation does not happen concomitantly with
accumulation in the case of an end product, Sweetlove et al.,
1996) which should be critically examined before usage in a
specific system. Nowadays, other more mathematically involved
methods have been developed to facilitate the estimation of fluxes
through selected components but also at a network level, as
detailed below.

Based on the assumption of metabolic steady-state, two
approaches have emerged to predict and estimate metabolic
fluxes, namely, flux balance analysis (Williams et al., 2008,
2010; Orth et al., 2010; Sweetlove and Ratcliffe, 2011) and
13C metabolic flux analysis (13C-MFA) (Matsuoka and Shimizu,
2010; Zamboni, 2010; Niedenführ et al., 2014; Buescher et al.,
2015), respectively. FBA predicts optimal flux distributions for
a given objective based on a stoichiometric model. In contrast,
13C-MFA seeks data-driven support of the flux distribution
based on 13C tracer studies in combination with a model.
Heavy isotopes of carbon, e.g., 13C, have been widely used as
tracers (label) to elucidate fluxomes, initially of prokaryotes,
and recently of more complex eukaryotes including plants
(Ratcliffe and Shachar-Hill, 2006; Allen et al., 2009; Kruger
and Ratcliffe, 2009, 2015). Organisms grown on 13C-labeled
substrates incorporate the label into metabolism, resulting in the
appearance of different isotopomers of the involved metabolites.
Although measurements of the complete isotopic composition of
a metabolite pose challenges, labeling state of metabolites can be
observed by either mass spectrometric (MS) (Antoniewicz, 2013)
or nuclear magnetic resonance (NMR) (Fan and Lane, 2012)
technologies. While MS allows resolving mass isotopomers of
entire metabolites or of fragments of metabolites, NMR enables
to measure positional labeling information. The observable
labeling states represent sums of different isotopomers. A
mathematical model is then used to describe these labeling states
in their dependence to flux distributions, considered as free
parameters fitted to the data. To this end, carbon transition
maps (CTMs) are used to derive a mathematical model of
isotopomer balance equations (Wiechert and De Graaf, 1997).
CTMs are necessary to describe the generation of labeled
products from their substrates in a cleavage-like reaction (Hörl
et al., 2013).

First, we briefly outline the most prominent approaches
in 13C-MFA, assuming that the system is in a metabolic
steady state, and their applicability to estimate fluxes in plant
cells. We then motivate and critically discuss the requirement
and advantages of pool size measurements to estimate fluxes.
The well-established method of isotopic stationary 13C-MFA
(stat.-13C-MFA) describes isotopic stationary labeling pattern
(Wiechert et al., 1997). The method allows resolving flux ratios
of alternative pathways at merging points of a reaction network,
if the merging fluxes contribute in distinguishable fashion to
the observed labeling pattern at such points. Therefore, the
applicability of the method depends strongly on the way the
label is applied. Since the isotopic stationary labeling patterns
are independent of the metabolic pool sizes, the method does
not depend on pool sizes. The flux ratio at branch points
in a metabolic network cannot always be estimated by stat.-
13C-MFA. The ratio can only be determined if the branched
pathways merge downstream the branch point. We refer to a
branch point which does not merge downstream as a divergent
branch point. To estimate fluxes at a divergent branch point one
requires alternative flux measurements (see definition above).
While stat.-13C-MFA has provided valuable insights into fluxes
in prokaryotes grown on specifically labeled substrates (Wiechert,
2001) as well as plant cell cultures (Williams et al., 2008), its
application to intact plants is hampered by several problems.
These problems are due not only to the nature of the introduced
label but also the complexity of plant cell (Allen et al., 2009;
Kruger et al., 2012). While photoautotrophic growth offers an
easy way to provide labeled carbon atoms as 13CO2 to the
plant with a minimal disturbance, stat.-13C-MFA fails to resolve
fluxes. In this case, all metabolic pools are fully labeled at
isotopic steady-state, irrespectively of the fluxes operating in
the system. Furthermore, flux ratios at branching points, which
cannot be estimated by stat.-13C-MFA in absence of alternative
flux measurements, become of interest, especially in the case
of secondary metabolism. In addition, 13C-MFA in plants is
hampered by the compartmentalization and parallel pathways at
the level of tissue and cell (Ratcliffe and Shachar-Hill, 2006; Allen
et al., 2009). This is largely due to the difficulty of measuring
compartment-specific labeling states, since existing methods
allow the quantification of the sum of all pools of a metabolite
in the sample. Moreover, compartmentalized metabolic pools
can take part in different biochemical pathways and transport
reactions have to be taken into consideration.

The introduction of isotopic non-stationary 13C-MFA (non-
stat.-13C –MFA, also called isotopic instationary 13C-MFA) has
aimed at overcoming these problems by modeling the dynamic
toward isotopic steady state (Shastri and Morgan, 2007; Nöh
and Wiechert, 2011), and several publication already discuss the
benefits of non-stationary 13C-MFA in greater detail (Nöh and
Wiechert, 2011;Wiechert and Nöh, 2013). The approach requires
the monitoring of the labeling process at a sufficient number
of time-points and necessitates rapid quenching of the samples.
The mathematical description of the process comprises a system
of ordinary differential equations (ODEs), whose solution gives
the time-course of the labeling states of the involved metabolic
pools. The mathematical system of equations, and therefore
its solution, depends on the distribution of the metabolic flux
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and, in contrast to stat.-13C -MFA, on the metabolic pool sizes
(Nöh and Wiechert, 2011). The system of differential equations
incorporates information about the carbon transition in the
metabolic network. In the following we describe the general
structure of the system of ODEs capturing the dynamic of the
isotopomers in a isotopomer network. Such a system is complete
in the sense that its solution, given by the time-course of all
isotopomers, allows calculating the time-course of an observable
labeling pattern, such as mass isotopomers.

The dynamics of the absolute abundance xm,i of an
isotopomer i in the metabolic pool m can be described by the
following ODE:

dxm,i

dt
=

∑

r

Finr,mhr,m,i (t)−
∑

s

Fouts,m,i

xm,i

pm
,

where Finr,m denotes the metabolic steady-state flux of a reaction
r in which pool m participates as a product, and Fouts,m stands for
the metabolic steady-state flux of a reaction s in which pool m
participates as a substrate. The size of the metabolic pool m is
denoted by pm and is given by the sum over the abundance of all
isotopomers:

pm =
∑

i

xm,i.

The function hr,m,i (t), with the interval [0, 1] as its range,
describes the relative amount of newly synthesized molecules
of isotopomer i in pool m via Finr,m. It depends on the relative
amount of the isotopomers of all substrates of reaction r which
generate the isotopomer denoted by, i.e.,

hr,m,i (t) =
∏

n

∑

j∈Sn,r,m,i

xn,j(t)

pn
.

The absolute abundance of a particular isotopomer of a substrate
pool n resulting in the generation of xm,i is denoted by xn,j. The
set of indices of all such isotopomers is denoted by Sn,r,m,i (hence,
all hr (·) encode information about CTMs via the respective sets
of indices in Sn,r,m,i). Since each molecule in the pool has the
same probability to react, the relative amount of further reacting
molecules of isotopomers i via Fouts is given by the relative amount
of i in the pool m. Furthermore, if the system is in a metabolic
steady state, the sum of all Finr,m equals the sum of all Fouts,m as well
as the total flux through the pool m, denoted by Fm. The ODE
above can then be written as:

dxm,i

dt
=

∑

r

Finr,mhr,m,i (t)−
Fm

pm
xm,i.

This ODE can be applied to isotopomer reaction network
resulting in a system of ODEs, in which there is an ODE for
each isotopomer. The solution of the system describes the time-
course of the absolute isotopomer abundance and can be fitted
to the experimentally determined data. Therefore, while such a
procedure enables the estimation of absolutemetabolic fluxes and
pool sizes, it implicitly demands the quantification of the absolute

isotopomer abundance (and, thereby, absolute metabolic pool
sizes).

Alternatively, the fractional contribution x̃m,i of the
isotopomers can be measured, which may be more easily
accessible. The ODE can then be scaled to describe the fractional
contribution of the isotopomer i to its poolm as:

dx̃m,i

dt
=

Fm

pm

∑

r

Finr,m

Fm
hr,m,i (t)−

Fm

pm
x̃m,i (t) ,

where x̃m,i(t) =
xm,i

pm
. This ODE depends on hr,m,i(t), the flux

ratios, αr,m =
Finr,m
Fm

, and the total-flux-to-pool-size ratio, km =

Fm
pm

. The relative amount of newly synthesized isotopomers i of

metabolitem via all reactions, can be summarized by the effective
relative generation of x̃m,i, given by:

h
eff
m,i (t) =

∑

r

Finr,m

Fm
hr,m,i (t).

This leads to the following inhomogeneous first-order differential
equation:

dx̃m,i

dt
= kmh

eff
m,i − kmx̃m,i

whose solution can be expressed as:

x̃m,i (t) = km

t
∫

−∞

h
eff
m,i (t − τ)e−kmτdτ,

with h
eff
m,i (t) = x̃m,i (0) for t < 0.

We note that the ratio km acts as a time constant which

affects the relaxation of x̃m,i(t) toward h
eff
m,i (t), resulting in a delay

between their time courses (trajectories). A large time constant,
caused by a high total flux Fm or a low pool size pm, results in a

small delay and x̃m,i (t) is dominated by h
eff
m,i (t), i.e.,

lim
km→∞

x̃m,i(t) = h
eff
m,i (t) =

∑

r

Finr,m

Fm
hr,m,i (t).

Fitting the solution for x̃m,i (t) to time-resolved data of the
fractional contribution of an observable labeling pattern allows
the estimation of flux ratios, αr,m, at merging points of a reaction
network and the specific time constant, km, of the pool m. We
would like to note that both the flux ratio and the time constant
are characteristic for the metabolic pool m, since the ODEs for
all isotopomers of the same metabolic pool are of the same
values. Therefore, usage of additional data that describe the time-
course of the labeling process of a metabolic pool, e.g., other
mass isotopomers, typically results in a better determination
of the flux ratios αr,m and the time-constant km. Nevertheless,
the flux ratios at a merging point can only be estimated if the
contributions, hr,m,i (t) , of different reactions to the composition

of h
eff
m,i (t), is not identical for all reactions. The latter can even be
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possible in the case in which the contribution in isotopic steady
state is indistinguishable, and stat.-13C-MFA will fail to resolve
flux ratios at the merging point (e.g., like in photoautotrophic
growth). Therefore, the possibility to address this issue represents
a major advantage of non-stat.-13C-MFA. In the particular case
when the time constant of the product pool is sufficiently high,
and hence, it does not contribute to the time course of x̃m,i (t),
the pool size, pm, does not have to be provided to estimate the
flux ratios αr,m.

Another advantage of non-stat.-13C-MFA, as evident from the
provided mathematical formulation, is the determination of the
time constants, km, which enables the calculation of absolute flux
values Fm given the measured pool size (since km =

Fm
pm

). This

principle allows the estimation of fluxes in single reactions as well
as in linear chains and at branching points of a reaction network.
We note that at each branching point, a single time constant is
resolved for each reaction. Since the flux, Fm, of a reaction is given
by Fm = kmpm, the ratio of the branching fluxes still depends on
the ratio of the pool sizes. Furthermore, we note that flux ratios
at branching points can also be determined at a global level if the
branching pathways merge downstream of the branching point.
However, if the number of branching points exceeds the number
of merging points in a modeled network (with external in- and
out- fluxes), the flux ratio cannot be determined. In this case,
additional assumptions or measurements are needed to constrain
the steady-state flux distribution (see further details below for
existing applications).

Several approaches were developed to apply the principles
of non-stat.-13C-MFA, described above. Kinetic Flux Profiling
(KFP) (Yuan et al., 2006, 2008) resolves the time constant from
the time-course of the unlabeled metabolic fractions, and can
be used to estimate forward fluxes for single monomolecular
reactions. Non-stationary flux ratio analysis (NFA) (Hörl et al.,
2013) extends the idea to general reactions by usage of CTMs and
allows the estimation of the flux ratios of influxes (at merging
points). In addition, it incorporates all massisotopic fractions.
As local approaches, both methods estimate the time course of
generation of mass isotopomers by additional assumptions based
on the time course of the labeling of the substrates. Local flux
estimates for the forward fluxes of different reactions in a network
can be employed to further analyze the entire flux estimates.

In contrast to these local methods, the dynamic of all (mass)
isotopomers of all metabolites can be simulated in a global
manner from the point of the application of the label. In this
case, the mathematical model comprises a system of ODEs which
incorporate knowledge of the biochemical pathways including
the CTMs. While global non-stat.-13C-MFA is computationally
intensive, for MS measurements the computational demands
can be reduced by decomposing the network in its elementary
metabolite units (EMUs) (Antoniewicz et al., 2007). The necessity
of measurement of pool sizes in non-stat.-13C-MFA in the global
approach has been questioned, since they can be directly included
as parameters in the optimization (Wiechert and Nöh, 2005;
Shastri and Morgan, 2007). The latter has been supported by the
observation that pool size measurements may be more corrupted
by losses during extraction and quenching in comparison to

the labeling states (Wahl et al., 2008). Furthermore, metabolic
pools might be in fast exchange with other pools, such that the
combined, and not the individual, pool affects the observed time
constant (Young et al., 2011). Since the effects of pool sizes on
the observed time constant may even be more complicated, the
corresponding estimated pool size might not reflect themeasured
pool size. Non-stat.-13C-MFA based on EMU decomposition has
been applied to the cyanobacterium Synechocystis sp. PCC6803
photoautotrophically grown on 13CO2 (Young et al., 2011). Flux
ratios and time constants were estimated and absolute fluxes as
well metabolic pool sizes were calculated from the measured CO2

uptake rate.
However, also in the global modeling approach, fluxes or

flux ratios of reactions on branched chains which do not
merge cannot be estimated from the time courses of the (mass)
isotopomers without additional knowledge of the pool sizes. A
recent study applied global non-stat.-13C-MFA based on EMU
decomposition to time-resolved labeling data of Arabidopsis
rosettes grown on 13CO2 (Ma et al., 2014). The study estimates
flux ratios and pool sizes. In particular, the ratio of the
photorespiratory flux and the net (gross) carbon fixation were
estimated. However, fluxes or flux ratios on branching chains
were provided by independent measurements or constrained by
additional assumptions. The flux of the synthesis of starch was
estimated by the average starch accumulation and the ratio of
fluxes of the synthesis of sucrose and amino acids was constrained
by observed ratios of pool sizes.

The compartmentation of plant cells presents an additional
problem inMFA. To this end, the measurement of compartment-
specific labeling pattern is challenging. Alternatively, simulated
time-courses of two pools x̃1(t) and x̃2(t) of the same metabolites
can be weighted-summed to describe the measured time-course
of the fractional metabolic content z̃ (t) of the quantity expressed
by x̃:

z̃ (t) = βx̃1 (t) + (1− β) x̃2 (t) .

Additionally a metabolically inactive fraction ϕ can contribute
to the measured content, the fractional metabolic content is
given by:

z̃ (t) =
βx̃1 (t) + (1− β) x̃2 (t)

1− ϕ
+ ϕ.

The metabolically inactive fraction corresponds to a
metabolically inactive pool, which can occur due to
compartmentation at the level of cell or tissue. Here, we
use the notion of content to denote the sum of all pools of the
same metabolite. The weight β can be an independent parameter
or reflect the ratio of the pool sizes of the compartmented
metabolite. Given the abovementioned arguments, the latter
might be misleading in the case where the time constants
are influenced by a combined pool of metabolites in rapid
equilibrium. On the other hand, if this is not the case, it offers
the additional possibility to resolve ratios of pool size and, thus,
flux ratio in parallel pathways via inst.-13C-MFA (provided the
involved compartmented metabolite label on distinguishable
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time scales). We would like to stress that the weight β can be
determined experimentally, e.g., by non-aqueous fractionation
(n.a.f.) (Gerhardt and Heldt, 1984; Stitt et al., 1989), while the
estimation of the metabolically inactive fraction requires further
assumptions and may pose further challenges (see Materials and
Methods).

We recently published estimates of photosynthetic carbon
fluxes in Arabidopsis rosettes based pool sizes as parameters
to be optimized affect the correspondence between benchmark
values for fluxes of canonical pathways. To this end, we
included the variance-weighted differences between measured
and estimated pool sizes to the variance-weighted sum of
squared errors. Accordingly, we distinguished between time-
course-related (referred to as time-related) and pool size error.
We considered the scenarios in which the estimated pool sizes
are either required to fall in the intervals of measured values
or are practically unbounded. We used this procedure and
scenarios to determine which metabolic pools, when optimized
as free parameters, differ most from the measured quantities
employed in the earlier studies to obtain absolute flux estimates.
In addition, we conducted a sensitivity analysis which revealed
the metabolic pools with large effect on the flux estimates and
the variance-weighted difference due to the time course of the
unlabeled fractions. Altogether, our study points at the necessity
for accurate pool size measurements for reliable flux estimates in
intact plant cells in the absence of alternative flux measurements.

Materials and Methods

Plant Material
The experimental procedure was performed as described in detail
(Heise et al., 2014). Plants were grown in short 8-h day/16-h
night cycles under an average irradiance of 115µmol/m2/s. The
temperature was 22◦C day/20◦C night and the relative humidity
was 50%. Five-week-old plants were rapidly transferred from a
growth to a labeling chamber, which was continuously washed
through the whole experiment by a stream of air containing
N2, O2, and

13CO2. Beginning with the transfer, the plants start
fixing 13C. Plants were harvested 5 and 10 s and 1, 3, 10, 20,
and 60min after transfer. Samples were analyzed using three
analytical platforms, namely, GC-TOF-MS, ion exchange LC-
MS/MS and reverse-phase LC-MS/MS. The obtained data of the
time-course of the unlabeled fraction was corrected for natural
abundance of 13C.

Flux Analysis
The flux analysis was performed as described in detail in
(Heise et al., 2014). The mathematical approach is based on
simultaneous modeling of the time course of all unlabeled
metabolic fractions at metabolic steady state and coincides
with the simulation of EMU-state-variable of mass-state zero
(Antoniewicz et al., 2007). For this purpose a system of ODEs
is constructed from the considered pathway model. The pathway
model describes photosynthetic active tissue and neglects effects
related to growth or oxidative respiration. It comprises the
fluxes through the Calvin–Benson cycle (CBC), a simplified
photorespiratory pathway and the reactions involved in synthesis

of starch, sucrose and trehalose (see Supplementary Figure 1).
The steady-state flux distribution is described by 11 parameters φ

as a linear combination of the corresponding 11 flux modesM:

Fr =

11
∑

i=1

φiMi
r.

Four of these modes depict elementary flux modes
(Supplementary Table 1), which describe the net flux distribution
and considering all reactions of the CBC. The remaining 7
modes represent (futile) cycles, which describe the exchange
flux (Wiechert and De Graaf, 1997; Wiechert, 2007), for each
reversible reaction as the difference between forward and net flux
or the backward flux, respectively. To avoid the computational
demanding simulation of all intermediates of the CBC by three
assumptions: (1) the time-course of the unlabeled fractions
only depends on the labeling state of ribulose-1,5-bisphosphate
(RuBP). All further influences of intermediates of the CBC are
neglected. Therefore, all dependencies of the unlabeled fractions
can be exclusively traced to RuBP (EMUs of RuBP) or CO2; (2)
the time-course of the unlabeled fraction of CO2 is assumed
to be zero from the beginning; and (3) a uniform distribution
of label within each mass isotopomer of RuBP is assumed.
The latter implies that each isotopomer of a particular mass
isotopomer has the same relative abundance. As a consequence,
all EMU-state-variables of RuBP of the same EMU-size are
equal and can be simulated by a single variable. Therefore, our
approach bridges the local and global approaches presented in
the introduction, above. We note that an EMU-state-variable
of mass-state zero coincides with a cumomer (Wiechert and
De Graaf, 1997) fraction describing the sum of all isotopomers
unlabeled at a particular position. The weight of a cumomer
equals the size of the corresponding EMU and denotes the
number of unlabeled positions. Following the assumption (3),
the relative contribution θis of the i-th mass isotopomer to an
unlabeled cumomer of size s is, thus, independent of the time
and approximated by:

θis ≈

(

N − s
i

)

(

N
i

) .

This allows the description of the time-course of a cumomer
fraction yRuBP,s(t) of RuBP and size s from the time-course of the
mass isotopomer fraction x̃iRuBP(t) of RuBP:

yRuBP,s (t) ≈

5
∑

i=0

θisx̃
i
RuBP (t),

and relates the cumomer fraction yRuBP,s(t) with the measured
massisotopic abundance x̃iRuBP (t) at a particular time point t.
To model the time courses of the necessary cumomers fractions
yRuBP,s(t), a sum of two exponential functions is fitted to available
yRuBP,s(t) for each s:

y
input
RuBP,s (t) = Ase

−ast + Bse
−bst, where As + Bs = 1.
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We call these functions input models y
input
RuBP,s (t), whose

parameters we fit prior to integrating the system of ODEs
(Supplementary Table 2). The input models represent the
inhomogeneous terms in the system of ODEs, provided in
Supplementary Equations.

The experimentally obtained time courses of the most
unlabeled metabolic fractions do not decay completely; instead,
they plateau at a certain level. In addition, for some metabolites,
this plateau is higher than the one of the direct downstream
products (Szecowka et al., 2013). Therefore, the model assumes
a metabolically inactive pool for all metabolites m with such
behavior, expressed as the inactive fraction ϕm. Such an inactive
pool could result from the presence of several cell and tissue types
in the Arabidopsis rosette which might not labeled within the
time-frame of the experiment. For trehalose, the inactive fraction
was fixed to zero, since a plateau was not observed.

Here, for a given metabolite, we distinguish between its
pool size, which refers to the size of a particular modeled
pool (e.g., in different compartments) and the metabolic
content, which represents sum of all pools of the same
metabolite. Compartmentalization data based on n.a.f. (Gerhardt
and Heldt, 1984; Stitt et al., 1989) are used to distinguish
between metabolites in different compartments. The term
compartmentalized content cn refers either to the content of
a metabolite for non-compartmented metabolites or to the
content of a metabolite in a particular compartment, which was
obtain from the n.a.f. data. For each pool n of the model a
compartmentalized content cn is provided, which is factored in
active and inactive pool sizes. The inactive fractions of two pools
of the same metabolite in different compartments are assumed to
be equal, since it is unclear how an inactive pool is partitioned
based on the n.a.f. data.

The active pool sizes (obtained from measurements or
estimated as free parameters) are used together with the system
of ODEs to numerically integrate it; this results in the simulated
time course of the unlabeled fraction x̃t,n of each pool n. The
simulated x̃t,n were used to calculate the unlabeled fractional
content z̃t,m of metabolite m. For the metabolites which appear
with only one pool n (not partitioned between compartments), it
is given by:

z̃t,m = (1− ϕm) x̃t,n + ϕm,

while for the metabolites which appear with two pools, n and l, is
given by:

z̃t,m = (1− ϕm)
x̃t,npk + x̃t,lpl

pn + pl
+ ϕm.

To obtain estimates of flux and/or pool size the variance-
weighted sums of squares (VWSS) between was minimized. Here
we distinguish between the error of time-course of the unlabeled
metabolic content:

VWSSt =
∑

m

∑

t

(

z̃obs.,t,m − z̃sim.,t,m

)2

σ2z̃obs.,t,m

,

and the error of the total metabolic content:

VWSSc =
∑

n

(

cobs.,n − csim.,n

)2

σ2cobs.,n

.

The observed and simulated unlabeled fractional content at
time t of metabolite m was denoted as z̃obs.,t,m and z̃sim.,t,m

and the metabolic content as cobs.,n and csim.,n. For the
analysis of different scenarios we use either VWSSt or the total
error:

VWSSall = VWSSt + VWSSc,

The corresponding variance of observed values is denoted
by σ2. To avoid over-fitting to single data points of the
time course of measured unlabeled content, we substituted
the variance of the data at each time point with the
mean variance of the corresponding metabolite over all time
points.

The numerical integration of the system of differential
equation (see Supplementary Equations) is performed by the
backward differentiation formula of sundials CVODE (Cohen
andHindmarsh, 1996) suitable for the integration of stiff systems.
The optimization was performed by the Subplex algorithm
(Rowan, 1990) suitable for local optimization. To avoid the
possibility of local minima, we performed 100 repetitions and
selected the best performing with respect to the error function.
The initial conditions for the metabolic content were randomly
chosen from assumed distributions (see Supplementary Table
3). The upper and lower boundaries of the optimization for
the metabolic content are shown in Supplementary Table 3.
The parameters describing the magnitude of an exchange flux
were hyperbolically transformed (see Supplementary Table 3)
(Wiechert and De Graaf, 1997). The confidence intervals were
calculated by Monte Carlo simulation (Press et al., 2007) as
described in (Heise et al., 2014).

Sensitivity Analysis
Each optimized parameter, corresponding to a particular
metabolic content, was changed by 50, 60, 70, 80, 90, 95, 99, 101,
105, 110, 120, 130, 140, 150% from its value in the optimum.
The system was re-optimized while keeping the selected content
fixed to the imposed relative change. A linear regression was then
fitted for the relative change in the parameter whose value was
kept fixed and the relative change in the re-optimized quantity of
interest (fluxes and time-related error). The slope of the obtained
line could be regarded to express the sensitivity of the quantity
of interest. If the absolute value of the corresponding correlation
coefficient is below 0.5 the sensitivity is set to zero (we note that in
such a case the obtained sensitivity is always low). This procedure
is illustrated in Supplementary Figure 2 for the pools of 3PGA
and DHAP. For instance, the relative change of 3PGA has largest
effect (as quantified by the absolute value of the slope of the fitted
line) on the relative change in the flux to starch, while the relative
change of DHAP has very small effect on the relative change in
this flux.
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Results

Model Scenarios
By using the described set-up (see Materials and Methods), here
we compared three scenarios, referred to as Scenarios A, B, and C.

In Scenario A the compartmentalized contents were not
treated as parameters to be optimized, i.e., they were fixed to the
measured values. To this end, the error function to be optimized
is given by VWSSt (see Materials and Methods). Therefore, for
Scenario A, the model included 24 parameters, of which 11
described the steady-state flux distribution and remaining 13, the
inactive fractions, leading to 73◦ of freedom (as there are 98 data
points used) (Supplementary Table 3).

In contrast, in Scenario B, the compartmentalized contents
were included as parameters to be optimized in the error function
VWSSall (see Materials and Methods). Hence, additional 18
pool sizes appeared as parameters for which corresponding
data points were used (see Supplementary Table 3), resulting
in 73◦ of freedom. The findings from Scenarios B were the
basis for conducting a sensitivity analysis which facilitates the
investigation of the effect of pool size measurements.

In addition, we considered a third scenario, referred to as
Scenario C, in which the estimated pool sizes are not required
to fall within a pre-specified interval obtained from the measured
data (but were bounded from below by 0.00001 and from above
by 40000 C-atoms per gFW). In this case only ratios of fluxes
and pool sizes can be estimated (see introduction). Therefore,
the pool sizes of the pools of 3PGA, DHAP, and 2PGA are
fixed to the measured values; in addition, the exchange fluxes
between these pools are fixed to the maximum value used during
the optimization. As a result, the pools act as one combined
pool with a fixed size. This procedure allows the normalization
of the fluxes and pool sizes during the optimization, but
considers the presence of the mentioned combined pool. The
assumption is driven by the observation that 3PGA, DHAP,
and 2PGA show similar time-course of the unlabeled fraction.
This observation can be explained either by the assumption of
a combined pool or by negligible small pool sizes of DHAP
and 2PGA. Moreover, in Scenarios A and B they are estimated
to be close-to-rapid equilibrium. Like in Scenario A, the error
function to be optimized is given by VWSSt (see Materials and
Methods). Careful testing indicated that, in Scenario C, it is not
possible to find a unique optimal flux distribution for the flux
modes concerning the synthesis of starch, sucrose and trehalose;
however, the ratio of the flux of photorespiratory pathway to the
gross fixation could be reliably quantified.

In doing the statistical analysis, we were aware that the
assumptions used in the modeling as well as any systematic
errors in the evaluation of the time-course data (e.g., too slow
quenching) or the metabolic content (e.g., due to metabolic
losses) directly affected the goodness-of-fit. Although the
treatment of the pool sizes as optimization parameters in
Scenarios B resulted in a smaller error in comparison to that in
Scenario A (109.6 and 126.4, respectively), the value did not fall
in the statistically acceptable interval (95% confidence) of 54–
94 (with 73◦ of freedom). However, the value of the error for
Scenario C, in which the pool size parameters were practically

unbounded (see Supplementary Table 3) was 2-fold lower, 62.3,
and fall in a statistically acceptable interval of 42–78 (with 59◦ of
freedom).

The effect of the three scenarios on the time-course error,
VWSSt , per metabolite is shown in Supplementary Table 4. In
Scenario C, the drop in VWSSt for ADPG is due to neglecting
the measurement in the third time point of ADPG (marked
in Supplementary Figure 3) in the fit (inclusion of this point
did not have a strong effect on the ratio of photorespiratory
flux to gross fixation, although it slightly increased the overall
VWSSt error). Across all scenarios, FBP and Tre6P has the largest
contribution to the overallVWSSt . This is due to the slower decay
of the unlabeled fractional content of FBP in comparison to the
metabolites in the CBC, which we speculate to be caused by the
involvement of FBP in metabolic channeling (Winkel, 2004).

Flux Estimates for the Three Scenarios
As indicated in the values reported in Table 1, fluxes of starch
and sucrose synthesis were slightly increased by 10–14%, while
photorespiratory flux (i.e., rate of releasing carbon atoms via
photorespiration) was slightly decreased by 3% in Scenario B in
comparison to Scenario A. The flux of the synthesis of trehalose
remained unchanged.

In Scenario C, the ratios of the fluxes the net C fixation, the
synthesis of starch, sucrose, and trehalose, could not be uniquely
determined within a meaningful range.We argue that the issue of
unidentifiability is largely due to the nature of the branched chain
with two branching points. The first branching point appears at
the splitting between the synthesis of starch in the chloroplast
and the flux of the synthesis of sucrose and starch in the cytosol,
while the second is at the splitting between the synthesis of
sucrose and trehalose. In contrast, the ratio of photorespiration is
resolved at themerging point as the best-fitting flux ratio between
the influxes from the pools of RuBP and Glyc to the pool of
3PGA. The observed ranges of the flux estimates are shown in
Table 2 as fractions of the gross fixation. Table 2 also includes
an optimal fit and the observed ranges obtained from a set of
fits, which have an error lower than an indicated boundary. We
would like to note that the chosen boundaries for the error fall in
the statistically acceptable interval of 43–79. The relative amount
of photorespiration to gross C fixation could be estimated to be
between 16 and 22%. While the fluxes of the synthesis of sucrose
and trehalose range from 0 to 82% and 83%, respectively, of gross
fixation, the flux toward starch reaches from 0 to 50% and the
sum of the fluxes toward sucrose and trehalose reaches from 30
to 83%. Moreover, we further investigated this effect by fixing the
modes of the synthesis of trehalose and sucrose to a very low value
(0.0001) and fitting the model to the data. In this case, the lowest
observed error was around 80, i.e., 130% higher than the lowers
observed error in the original setting. Therefore, we concluded
that an optimal fit of our model to the experimental data requires
a minimum flux in the cytosolic branches.

We speculate that this finding is due to the use of the pool sizes
as weights in the observation model which affect the flux ratio at
this branching point between cytosol and chloroplast. The decays
of the unlabeled fractional content of FBP and F6P are rather slow
in comparison to the decay of the CBC intermediates (Szecowka
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TABLE 1 | Flux estimates in Scenarios A and B.

Net flux Value of net flux (nmol gFW−1sec−1C atoms)

Scenario A Scenario B

Opt Lower Upper Opt Lower Upper

Starch synthesis 2.39 1.23 3.91 2.73 1.45 5.1

Sucrose synthesis 6.99 4.93 9.15 7.71 4.71 9.68

Photorespiration 3.93 3.07 5.06 3.81 2.94 4.91

Trehalose synthesis 0.00059 0.00031 0.00092 0.00059 0.00027 0.00092

Gross C fixation 13.31 10.94 16 14.25 11.66 16.65

Net C fixation 9.37 7.3 11.59 10.44 8.3 12.32

Exchange flux Value of exchange flux (nmol gFW−1sec−1C atoms)

3PGA ↔ DHAP Inf. Inf. Inf. Inf. Inf. Inf.

G6Ppl ↔ G1Ppl Inf. 0 Inf. Inf. 0 Inf.

F6Pcyt ↔ G6Pcyt 4.91 0.72 10.51 5.77 1.86 10.17

G6Pcyt ↔ G1Pcyt Inf. 21.12 Inf. 244.99 0 Inf.

G1Pcyt ↔ UDPG Inf. 0 Inf. 8.76 0 Inf.

Ser ↔ Glyc Inf. 0 Inf. Inf. 0 Inf.

3PGA ↔ 2PGA 31.95 9.38 Inf. 64.7 14.49 Inf.

Error 126.43 – – 109.59 – –

Estimates of fluxes via each mode and exchange fluxes. (A) The pool sizes were excluded from the optimization. (B) The pool sizes were included as parameters in the optimization and

were required to fall in the measure interval (see Supplementary Table 3). The flux of photorespiration is denoted by released carbon atoms. The optimal fit is indicated by opt, and the

error of the fit indicates the variance-weighted sum of squares VWSSt for Scenarios A and VWSSall for Scenario B (see Materials and Methods). The lower and upper confidence limits

(95%) were obtained by Monte-Carlo simulation, indicated in the column titled lower and upper. The upper bound of an exchange flux used during the optimization was 245, indicated

by inf. The plastidic and cytosolic pools of a compartmentalized metabolite are indicated by pl and cyt. Most exchange fluxes are not identifiable and/or are high.

et al., 2013), since the fluxes in the CBC are larger and the
CBC reactions are included in all flux modes (see Supplementary
Figure 1). The assumption that the observed slow decay is caused
by the cytosolic pool, would imply that this pool is to be large
enough to constrain the ratio between the cytosolic and plastidic
pool sizes. In addition, a larger flux toward starch in the plastid
would demand a larger pool size of the plastidic pool to explain
the data and, due to the constrained ratio of the pool sizes, a
larger pool in the cytosol. On the other hand, a larger flux ratio
toward starch is accompanied by a smaller flux in the cytosol
toward sucrose and trehalose, which demands a smaller size of
the cytosolic pool to explain the data. This contradiction imposes
a lower limit to the flux through the cytosol. However, we assume
the effect to be low, since, as indicated in Table 2, the set of fits
with a maximal error of 65 shows a minimum cytosolic flux of
12% of the net fixation.

In all scenarios some pools are estimated to be in rapid
equilibrium, indicated by the high exchange flux between the
pools in the optimal fit (see Table 1 and Supplementary Table
5). Such pools can be considered to affect the dynamics of
the labeling as one combined pool. We referred to such a
combined pool by its components as, e.g., 3PGA-DHAP-2PGA.
Several other pools are indicated be close to rapid equilibrium,
namely, Ser-Glyc, G6P-G1P in the chloroplast and G6P-G1P-
UDPG in the cytosol. We would like to indicate that the
latter pools do not necessarily have to be in rapid equilibrium,
since the exchange flux are mostly unidentifiable. Nevertheless,
the issue of unidentifiabliliy corresponds to the absence of a

delay between the time-course of these pools. Therefore, a
combined pool have to be understood as a set of connected
pools showing a similar labeling time-course, either due to
a large exchange flux or to small sizes of the downstream
pools.

Due to the findings described above, only the ratio between
the flux of photorespiration (carbon atoms released) and gross
carbon fixation can be compared in the different scenarios.
In Scenario C this ratio could be estimated to ∼20% with a
95% confidence interval of 5–34%. The corresponding optimal
value in Scenario A was 30% with a confidence interval of 24–
36%, while in Scenario B, the value was 27% with a confidence
interval of 21–33% (see Table 3). Alternative estimates of the
rate of photorespiration cover a range from 13 to 33% of the
gross fixation in different species and depend on the applied
method (Sharkey, 1988; Busch, 2013). Kinetic modeling of the
carboxylation and oxygenation of RuBP conclude to a carbon
release of ∼26% of the net fixation (21% of gross fixation) and
consider the partial pressure of CO2 in the leaves to be about 60–
70% of the one in air (Sharkey, 1988). Since we have no direct
access to the partial pressure in our system we rely on the general
assumption of such a partial pressure in C3-plants. Investigation
of the time-course of the 13C enrichment of CBC intermediates
in soy bean estimate the rate of photorespiration to be 21% of
the net C fixation (17% of gross fixation) (Cegelski and Schaefer,
2006). The study aimed at quantifying the ratio between newly
fixed carbon atoms and the backflow of unlabeled atoms from
photorespiration intermediates to the intermediates of the CBC.
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In summary, the consideration of the pool sizes in Scenario
C as unbounded parameters to be optimized resulted in flux
ratio estimates which were in better agreement with benchmark
value for the ratio of photorespiration to gross fixation. We
argue that in this case the ratio is resolved at the merging
point as the best-fitting flux ratio between the influxes from
the pools of RuBP and Glyc to the combined pool of 3PGA-
DHAP-2PGA, while in the Scenarios A and B the fluxes are more
strongly determined by the measurements of the pool sizes of
the intermediates of the photorespiratory pathway (i.e., Gly, Ser,
Glyc).

We note that the estimates of net carbon fixation in Scenarios
A and B are 2-fold smaller in comparison to those reported
from experiments under similar conditions (Florian et al., 2014;
Sulpice et al., 2014). The reasons for the underestimation could be
due to the lower irradiance in the labeling box, not considering
the time needed to replace 12CO2 in the leaves with 13CO2,
and to the combined effect from possible underestimation of
pool sizes for some metabolites (see Section Pool Size Estimates,
below). An underestimation of the net fixation can also explain
the underestimation of the ratio of photorespiration.

TABLE 2 | Estimates via each net flux mode as fraction of gross carbon

fixation in Scenario C.

Net flux mode Fraction of gross C fixation (Scenario C)

Max error 63 Max error 65

Opt Lowest Largest Lowest Largest

Starch synthesis 0.28 0.00 0.51 0.00 0.70

Sucrose synthesis 0.23 0.00 0.82 0.00 0.82

Photorespiration 0.20 0.16 0.22 0.15 0.23

Trehalose synthesis 0.29 0.00 0.83 0.00 0.83

Cytosolic flux 0.53 0.30 0.83 0.12 0.84

Gross C fixation 1.00 1.00 1.00 1.00 1.00

Net C fixation 0.80 0.78 0.84 0.77 0.85

The values in the column indicated by opt correspond to the minimal error of 62.3. The

additional column show the ranges of the obtained flux estimates with a corresponding

error lower than 63 and 65, respectively. The term “Cytosolic flux” refers to the sum of the

fluxes of the synthesis of sucrose and trehalose.

Pool Size Estimates
The optimal values of the compartmentalized content of Scenario
B together with the confidence intervals from the Monte Carlo
simulation (see Methods) were provided in Table 4 (illustrative
summary of the Monte Carlo simulation results could be found
in Supplementary Figure 4). The compartmentalized content was
divided into inactive and active pool, shown in Supplementary
Tables 6, 7, respectively. The optimal values for the inactive
fraction in the three considered scenarios were almost equal and
the corresponding confidence intervals were largely overlapping
for Scenarios B and C. Notable differences in Scenario C were
observed for 3PGA, DHAP, and 2PGA, for which larger inactive
fractions were estimated. Therefore, the major differences in
the estimates of the fluxes and the reduction in the total
error, in Scenario B, and the error due to fitting the time
courses, in Scenario C, could be attributed to the estimation
of the compartmentalized content or to the size of the active
pool, which are, for the purpose of comparison of different
scenarios, proportional. Therefore in the rest of this study we
will use the term (active) pool size to mean compartmentalized
content.

We visualized the estimates of the compartmentalized content
of Scenario B relative to the measured values weighted by
the respective standard deviations. This visualization helps in
illustrating the likelihood that the optimized value can be
explained by the assumed normal distribution of the measured
values. In Scenario B the optimized values were well within
the range of the normal distribution with means corresponding
to the measured values of the pool sizes with three notable
exceptions: As shown on Figure 1, the pools of 3PGA and
Ser as well as the pool of F6P in the cytosol exhibited the
largest differences in comparison to the measured values. The
remaining estimated pools only slightly changed away from the
experimentally determined values. A change in a pool size in
comparison to the measured values during optimization has two
effects on the variance-weighted sum of squared error in Scenario
B: First, this change always directly contributes to the error of
the metabolic content VWSSc; second, it can influence the time-
course of the unlabeled content by introducing a delay if the pool
size is not too low. If a pool has no influence on the time-course
of the unlabeled content, it has no influence on the time-course

TABLE 3 | Estimates via each net flux mode as fraction of gross carbon fixation in Scenarios A and B.

Net flux mode Fraction of gross C fixation

Scenario A Scenario B

Opt Lower Upper Opt Lowest Largest

Starch synthesis 0.18 0.09 0.27 0.19 0.11 0.35

Sucrose synthesis 0.53 0.42 0.62 0.54 0.36 0.63

Photorespiration 0.30 0.24 0.36 0.27 0.21 0.33

Trehalose synthesis 0.000044 0.000021 0.000070 0.000041 0.000020 0.000069

The flux of photorespiration refers to released carbon atoms. The optimal fit is indicated by opt, and the error of the fit indicates the variance-weighted sum of squares VWSSt for

Scenario A and VWSSall for Scenario B (see Materials and Methods). The lower and upper confidence limits (95%) were obtained by Monte-Carlo simulation, indicated in the column

titled lower and upper. The plastidic and cytosolic pools of a compartmentalized metabolite are indicated by pl and cyt.
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TABLE 4 | Estimates of metabolic content.

Pool Compartmentalized content c (nmol gFW−1 C atoms)

Measured Optimized (Scenario B)

Mean Std Opt Lower Upper

3PGA 600.3 135 873.6 687 1038.9

DHAP 47.6 1.8 47.7 44 51.5

FBPpl 37.5 9.7 36.8 19.4 56.7

F6Ppl 176.2 29.8 171.6 111.4 227.3

G6Ppl 176.4 52 173.2 89.5 277

G1Ppl 5.6 1.1 5.7 3.9 7.8

ADPG 3.3 0.3 3.3 2.7 3.9

FBPcyt 16.1 4.1 14.4 4.5 23.1

F6Pcyt 342 57.8 265.5 114.6 372.4

G6Pcyt 861.1 254 995.2 459.8 1353.7

G1Pcyt 64.5 13.3 63 31.4 87.7

UDPG 214.5 34.2 218.2 150.8 278.1

Suc6P 9.8 4.3 7.9 2.5 17.9

Tre6P 1.9 0.5 1.9 0.9 3

Gly 1086.3 118 1102.3 843.7 1343.6

Ser 12793.9 978 12047.2 10014.7 13799.1

Glyc 506.5 195 477.8 149.4 843.4

2PGA 60 13.5 63.2 39.3 90

The table contains the measured values of the compartmentalized metabolic content c

and the respective optimized values in scenarios B. The compartmentalized metabolites

in the cytosol and chloroplast, indicated by the subscript c and p, were determined from

the measured total metabolic content by splitting them according to the ratio given by the

n.a.f. data. The corresponding standard deviations were calculated such that their ratio

equals the ratio of the pool sizes and the sum of the variances equal the total measured

variance. Variances for the n.a.f. data are not reported by the existing computational tools.

This compartmentalized metabolic content is the sum of the active and inactive pool.

The optimal fits are denoted by opt. The lower and upper confidence limits (95%) were

obtained by Monte–Carlo simulation. All values are denoted in nmol gFW−1 C atoms.

error, VWSSt , and thus it only contributes to the error of the
content. In this case, the optimized value must be equal to the
measured value. Conversely, each optimized pool size which
differs from the measured value must affect the time-related
error.

To further determine the effect of the changes to the optimized
values for the metabolic content in scenarios B, we conducted
a sensitivity analysis for the time-related error and the flux
estimates by perturbing the optimal pool sizes. As shown in
Figure 2, the flux estimates were most sensitive to changes in the
optimal value of the pool sizes for 3PGA, G6P in cytosol and
plastid, F6P in cytosol, Tre6P, and Ser. In addition, as shown in
Supplementary Figure 5, illustrating the delay between the time
course of the unlabeled content and the time course of newly
synthesized unlabeled molecules for the investigated Scenario B,
these six pools introduced a large delay. Moreover, a delay is not
observed between the members of the combined pools: 3PGA-
DHAP-2PGA, Ser-Glyc, G6P-G1P in the plastid and G6P-G1P-
UDPG in cytosol. We conclude, that in Scenario B the absolute
fluxes are mainly resolved by the pool size, which are large
enough to introduce a delay to the time-courses. Remarkably,
the pool sizes of Suc6P and ADPG are too small to introduce

FIGURE 1 | Changes of optimized metabolic content in Scenario B. The

differences (errors) between the optimized metabolic content csim,n (red circle)

as well as their lower and upper 95%-confidence limits (error bars) to the

measured values cobs,n were scaled by the measured standard deviation by

c∗
obs.,n

=
cobs,n−csim,n

σcobs,n
. All changes of the values by the optimization can be

explained by measurements errors. Note that for the assumed normal

distribution of the measurement errors, the 95% confidence intervals

corresponds to 2 σcobs.,n
.

FIGURE 2 | Sensitivities of flux estimates and time error to

perturbation in metabolic content for scenario B. The heatmap shows

the relative changes in flux estimates and time error upon relative changes in

metabolic content in Scenarios B. The content of a selected metabolic pool

was changed and fixed and the model was re-optimized for the remaining

parameters (see Material and Methods).

a delay and therefore do not contribute to the determination
of the fluxes in the corresponding pathways. The effective size
of a combined pool in rapid equilibrium is then given by the
sum of the involved pool sizes. The corresponding error of
the effective pool size (change of pool size by optimization)
is given by the sum of the errors of the involved pool sizes,
while the ratio of the single errors is determined by the ratio
of the corresponding variances to the sum of all variances. If
these variances differ strongly, the size of a combined pool is
altered mainly due to the change of the pool with the largest
variance. This explains why, for instance, the size of the combined
pool 3PGA-DHAP-2PGA is change by the size of the pool of
3PGA, while the size of the pools of DHAP and 3PGA remain
unchanged.

Since in Scenario C the fluxes of the net C fixation cannot
be determined, the compartmentalized content and the active
pool sizes also cannot be estimated. The observed ranges of
the compartmentalized contents range from very small values
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(often the lower boundary used during the optimization) to
the maximum (see Supplementary Table 5). This is caused by
two effects. First, the set of optimal fits comprise estimates with
different distributions of the three fluxes of the net fixation, which
are accompanied by different estimated (or ranges of estimates)
of the pool sizes. Since the time constants are determined by
the data, a higher flux is accompanied by a higher pool size.
While the lowest observed sizes of pools in the chloroplast are
identical with the lower boundaries used in the optimization,
the lowest sizes of the pools in the cytosol are typically higher.
This is in agreement with the finding of a minimum flux though
the cytosol and most evident for the pool of UDPG. Second,
even for a given distribution of the net fluxes, there can be
different distribution of exchange fluxes due to the reversibility
of the reactions and the associated exchange fluxes, which
corresponds to different best-fitting pool sizes. The relation
between exchange flux and pool size can be demonstrated by
the estimates of the photorespiratory pathway, since the flux
through this pathway is determined in Scenario C. The pool
size of Gly, as an intermediate of the pathway, is estimated
within certain boundaries (see Supplementary Table 5), while
the pool size of Ser and Glyc range from zero to and the upper
boundary. The time-course of Ser and Glyc are quite similar,
and both show a delay to the time-course of their precursor
Gly. Two modeling assumptions can explain this observation:
(1) The delay to Gly is explained by the pool size of Ser, while
the pool size of its downstream Glyc is too small to introduce
a further delay. In this case, the exchange between the latter
two can have any value and the reaction might be irreversible
(Supplementary Figure 5C); (2) The pool size of Ser can be
very small, but Ser is in rapid equilibrium with a large pool of
Glyc such that they influence the time-course as one combined
pool. The size of the combined pool is then equal to the size
of the pool of Ser in the first case. Therefore, the sum of both
pools can still be determined from the data (see Supplementary
Table 5, Supplementary Figure 6). We note that, in principle,
in cases with high exchange fluxes, the pool sizes or their ratios
could be estimated from the time-courses, but this demands
the resolution of the different involved time-constants from the
time-course data; the latter is strongly limited by the number
of time points and the precision of the measurements. We
note that similar considerations hold for the combined pools
in cytosol and chloroplast, but are here not in the scope of
interest.

The unidentifiablity of the distribution of the net fluxes
and the corresponding pool sizes in Scenario C handicaps the
comparison of the scenarios. Nevertheless, in Scenario C the ratio
between the the pool size of Gly and the sum of Ser and Glyc was
obtained. While this ratio is ∼0.025 in Scenario A and 0.027 in
Scenario B, the value of 0.56 in Scenario C allows an optimal fit to
the time-course data (see Supplementary Table 4, Gly). However,
it is questionable whether this due to measurements error of the
content or to incompleteness of the pathway model.

Sensitivity Analysis
Sensitivity analysis revealed that the metabolic content of 3PGA
had the strongest effect on the time-related error in Scenario B

(see Figure 2). Perturbation of the optimal value of 3PGAmainly
affected the flux of the synthesis of sucrose and starch. Our
findings indicated that the increased pool of 3PGA increased the
delay in both 3PGA and DHAP, and therefore, resulted in a better
fit to the data, as shown in Supplementary Table 4 supporting the
strong reduction in time-course error for 3PGA and DHAP in
Scenario B. Moreover, this enables a higher flux through these
pools and finally leads to an increase in the estimated net fixation.
While the effect can still be explained as a measurement error of
the metabolic content, it could also point to the possibility of an
increased effective pool size. For example, intermediates of the
CBC or glycolysis could contribute to the effective pool size, due
to reversibility of the reactions of both pathways (Raines, 2003;
Plaxton and Podestá, 2006).

The pool size of Ser, expectedly, exhibited the largest effect
on the photorespiratory flux in Scenarios B (see Figure 2). The
decreased pool size of Ser in Scenarios B was accompanied by
decrease in the flux via photorespiration. This provided a better
fit to the data of Ser and Gly, although the simulation indicated
that the decay was still too large (Supplementary Figures 5),
reflected in the relatively small effect on the time-course error
of these metabolites (Supplementary Table 4). Remarkably, in
Scenario C the time-course error of Gly is strongly reduced in
comparison to the other scenarios and the ratio of Gly and
Ser (Ser-Glyc) is strongly changed toward Gly. A larger pool
of Gly can introduce the observed delay in the time-course of
this pool. Alternatively, the delay can be affected by the pools
of glycolate and glyoxylate, which were not considered in the
pathway model, or by discrepancy from the random labeling
assumption. However, in such a case the size of the pool of Ser
would additionally need to be reduced to fit to the time-course
data of Ser.

The sensitivity analysis indicated that perturbation of the
optimized values of the plastidic G6P pool had the strongest effect
on the flux of starch synthesis, while changes to the cytosolic
G6P and F6P pools largely affect the flux toward sucrose. These
pools introduce a strong delay to the time-course (Supplementary
Figure 5).

We speculate that the time-courses of the unlabeled content
of G6P and G1P was mainly dominated by the cytosolic part,
since these pools were, according to n.a.f. data, larger than their
counterpart in the plastid. The assumption is further supported
by the observation that the unlabeled content of ADPG decays
faster than the unlabeled content of G6P and G1P. The unlabeled
metabolic fractions of G6P and G1P in the plastid cannot
decay faster than the one of their downstream product ADPG.
Therefore, the estimated flux toward starch synthesis was mainly
determined by the pool size of G6P in the plastid and the time-
course of ADPG, which was the only observed intermediate of
this branch of the plastidic pathway. The optimization resulted
in an estimate of the starch synthesis flux to better fit the
time-course of ADPG and the measured pool sizes of the
other intermediates of this branch, mainly G6P. In contrast, the
flux toward the synthesis of sucrose was much more strongly
determined by the time-courses of the hexose-phosphates. The
decrease in the pool size of F6P and the increase in the pool size
of G6P therefore provided a better fit to the observed delay in the
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time-courses. Following this reasoning, the flux toward sucrose
was more strongly constrained by the data set.

Our sensitivity analysis (see Figure 2) demonstrated that the
flux of the synthesis of trehalose was nearly exclusively influenced
by the pool of Tre6P. In addition, perturbations of this pool size
have small effect on the time-related error and, consequently, no
effect on other flux estimates. These findings indicated that the
pool size of Tre6P largely determines the flux of the synthesis
of trehalose. The claim about the effect of the Tre6P pool size
can be explained by the high overlap of the flux modes of the
synthesis of sucrose and trehalose. The data of the overlapping
(shared) intermediates resolve the sum of both fluxes. While
the high flux toward sucrose is determined by the data of these
shared intermediates, the much lower flux toward trehalose is not
determined in the same way. In fact, small perturbations of the
flux of the synthesis of trehalose have nearly no effect on the time-
course of the shared intermediates. Moreover, the observed delay
of the time-course of Tre6P determines the ratio between the flux
of the synthesis of trehalose and the pool size of Tre6P. Since this
flux is not fully determined by the labeling data of the shared
intermediates, it largely depends on the pool size measurement
of Tre6P.

Conclusion

As demonstrated theoretically in the introduction, in the
absence of alternative flux measurements, data on pool sizes are
mandatory for the estimation of fluxes at divergent branch points
from non-stat.-13C-labeling data. Pool size ratios can be provided
to enable the estimation of flux ratios at branching points. We
found, that pools, which introduce a delay in the time-course of
the labeling process, are, therefore, of critical interest. In addition,
factoring in information about the inactive pool sizes and their
distribution across compartments will have an effect on the
estimated fluxes. Here, for simplicity, we treated the total inactive
pool equally distributed in the two compartments, although one
could consider the more involved scenario of having two free
inactive pools treated as parameters summing to a given number.
Therefore, n.a.f. data about the inactive pools and more robust
procedures for their measurement is expected to increase the
reliability of the flux estimates.

The three considered scenarios were instrumental in
determining the discrepancy between measured and estimated

pool sizes. The findings from this analysis could be readily
used to determine if there were systemic inaccuracies in the
measurement of, usually large, pool sizes which would have to
be addressed by development of new or improved measurement
methods. On the other hand, since absolute fluxes could
readily be determined by considering data about the size of
the involved metabolic pools, the used in silico set-up shed
light on the discrepancy between flux estimates in the three
scenarios as influenced by the introduction of parameters
to be estimated. More specifically, while the optimization of
the pool sizes had a variable influence on the absolute values
of the fluxes, depending on the constraints on the pool size
estimates, the ratio of photorespiration to the gross fixation
was closer to its existing estimates from other techniques

under similar conditions (Sharkey, 1988; Cegelski and Schaefer,
2006).

In addition, the optimized pool sizes were the basis for a
sensitivity analysis providing insights into sizes of particular
metabolic pools which have strong effect on the flux estimates
of canonical pathways. Although the analysis depended on a
simplified model of central carbon metabolism, it was interesting
to observe that the small pool of Tre6P was a key determinant of
the flux to trehalose synthesis, while the sucrose synthesis rate is
resolved by the delay of hexose-phosphates.

Altogether, our study points that pool size measurements
of greater precision are needed to determine accurate
flux estimates, especially for pathways emerging from a
divergent branch point, irrespective of the method used.
These requirements will become particularly relevant for flux
estimation in secondary metabolic pathways which have such
structure.
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