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Crops are exposed to various environmental stresses in the field throughout their
life cycle. Modern plant science has provided remarkable insights into the molecular
networks of plant stress responses in laboratory conditions, but the responses of
different crops to environmental stresses in the field need to be elucidated. Recent
advances in omics analytical techniques and information technology have enabled
us to integrate data from a spectrum of physiological metrics of field crops. The
interdisciplinary efforts of plant science and data science enable us to explore factors
that affect crop productivity and identify stress tolerance-related genes and alleles. Here,
we describe recent advances in technologies that are key components for data driven
crop design, such as population genomics, chronological omics analyses, and computer-
aided molecular network prediction. Integration of the outcomes from these technologies
will accelerate our understanding of crop phenology under practical field situations
and identify key characteristics to represent crop stress status. These elements would
help us to genetically engineer “designed crops” to prevent yield shortfalls because of
environmental fluctuations due to future climate change.

Keywords: population genomics, transcriptome, epigenome, crop phenology, machine learning

Introduction

Abiotic stress conditions can have a negative effect on the productivity of agricultural
systems. According to a recent report from the Intergovernmental Panel on Climate
Change (IPCC), humanity is facing an increased risk of agricultural production shortfalls
(https://www.ipcc.ch/report/ar5/). Modern plant science has achieved remarkable advances in
elucidating the molecular systems associated with abiotic stress responses in plants under artificially
controlled conditions inside the laboratory. This is especially true for the model plant species
Arabidopsis thaliana, where functional genomic analyses after the completion of sequencing its
genome have identified key genes involved in the regulatory network of abiotic stress responses
(Hirayama and Shinozaki, 2010; Nakashima et al., 2014). However, several critical problems remain
regarding the practical application of this laboratory-derived knowledge to molecular science based
breeding of crops adapted to adverse environments. The next challenge in generating practical
stress-tolerant crops that can withstand future climate changes requires an understanding of the
responses of crops to multiple abiotic stresses under field growth conditions. Large fluctuations in
multiple abiotic stress conditions and large heterogeneity between stress levels for different plant
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genotypes and developmental stages are the chief causes of the
complexity underlying variations in abiotic stress responses in
crops under field conditions (Mittler and Blumwald, 2010).

The considerable recent advances in analytical technologies
in omics-based research have provided crucial resources for
investigating biological systems not only in model plants but
also crop species (Mochida and Shinozaki, 2010). With large-
scale transcriptome datasets, it will be feasible to perform
correlated gene expression analyses to identify candidate genes
involved in particular gene networks (Mochida et al., 2011;
Obayashi et al., 2014). Metabolome analyses provide information
on the accumulation patterns of metabolites in plants in
various biological contexts, such as changes in environment,
developmental stage, and genotype, and offer an efficient
approach to revealing the metabolic systems underlying complex
phenotypes (Tohge et al., 2011; Balmer et al., 2013; Fukushima
and Kusano, 2013). Hormonomic analysis, which enables
simultaneous profiling of phytohormones and their derivatives,
also plays an important role in investigating phytohormone
networks in different biological contexts (Kojima et al., 2009;
Kanno et al, 2010). Integrated approaches using synergistic
combinations of different omics systems, so called “trans-
omics,” are increasingly an effective means of investigating
plant cellular systems in response to abiotic stresses (Dinakar
and Bartels, 2013; Deshmukh et al., 2014). Furthermore, in
the last decade, rapid progress in next-generation sequencing
(NGS) technologies has enabled access to genome-scale sequence
information from a wide range of organisms, even those
with large and complex genome structures such as wheat and
barley (Mochida and Shinozaki, 2011, 2013). Whole genome
resequencing is a feasible NGS application for exploring genome-
scale polymorphisms in natural variations, and to identify the
association between genetic polymorphisms and phenotypic
variations including those induced by stress. Another NGS
application, RNA-seq, is highly scalable and can be used to
rapidly acquire comprehensive transcriptome data in any species.
The effective use of genome-scale datasets from various types
of omics analyses rely on computer-aided approaches that have
become increasingly important in studies to determine the
responses of plant cellular systems to environmental changes. A
broad range of bioinformatics techniques are essential to access
large-scale omics datasets and to efficiently discover biologically
significant information and then use this to answer specific
questions on stress responses in plants. Systems approaches with
mathematical modeling have recently received much attention
for understanding biological phenomena under both controlled
laboratory conditions and fluctuating field conditions.

With the currently available methods and resources for studying
plant stress responses, it is expected that interdisciplinary efforts
involving plant science and data science will enable exploration
of factors that affect crop productivity and will aid discovery
of genes and alleles associated with quantitative traits of stress
tolerance in crops. It is essential not only to examine a snapshot
of the cellular network under multiple stress conditions at a
particular moment but also to monitor throughout the life cycle,
since changes in physiological status over time might influence
the eventual phenotype. The identification and estimation of

the effects of parameters, based on an understanding of the
genetics and physiology of responses to environmental changes
of crops throughout their life cycle, are required to design a crop
with the required performance of stress tolerances in the field
condition. In this mini review, we provide an overview of recent
advances in technologies that are key components for data driven
crop design, such as crop population genomics, chronological
trans-omics analysis, and computer-aided molecular network
prediction (Figure 1).

Population Genomics in Crops

Genetic diversity in a crop population is a valuable resource
for identifying alleles that can be exploited to improve crop
productivity under a variety of adverse conditions (Huang
and Han, 2014). Population-wide molecular phylogeographic
analysis of a crop species can provide molecular evidence on
its demographic history as a domesticated species (Saisho and
Purugganan, 2007). Additionally, such analysis may identify
relationships between biased geographic distributions and genetic
differentiation, such as the particular genotype associated with a
trait providing adaptation to a particular local environment. For
example, in barley, a population-wide analysis of bio-geography
and the degree of vernalization requirement showed a biased
geographic distribution pattern of a quantitative growth habit
trait (Saisho et al., 2011). As another example, a population-
scale evolutionary analysis of HYAACT1I, which encodes a citrate
transporter involved in aluminum tolerance in barley and has a 1-
kb insertion for Al-tolerance in the upstream region, only occurs
in Al-tolerant cultivars in Japan, Korea, and China, suggesting
adaptation to the acid soils of these areas (Fujii et al., 2012). These
examples in barley demonstrate that population-scale exploration
of the association between geographic distributions and genotypes
could be an efficient strategy to identify alleles for locally adapted
traits. The development of NGS has allowed high-throughput
genotyping such as whole-genome re-sequencing, genotyping
by sequencing (GBS), RNA-seq based genotyping, and exome
sequencing, to rapidly generate genome-scale datasets on genetic
polymorphism.

Whole genome re-sequencing analysis with information from
a reference genome is a straightforward method to characterize
genome-wide polymorphism patterns among accessions.
Representative accessions, for example, elite lines in tomato,
soybean, maize, and rice, have been investigated by whole
genome re-sequencing, which has identified useful resources for
further genetic studies in each crop (Lai et al., 2010; Arai-Kichise
et al., 2011; Subbaiyan et al., 2012; Causse et al., 2013; Li et al,,
2013). In some species with smaller genomes, the whole genome
re-sequencing approach has been applied to population-wide
analyses of genome-wide polymorphism patterns; this approach
has been employed in poplar tree, tomato, common bean, and
rice (Evans et al., 2014; Lin et al., 2014; Schmutz et al., 2014).
Huang et al. (2012) carried out a whole-genome resequencing
analysis in wild rice populations to generate a genome variation
map, which also provided insights into the domestication history
of domesticated rice. More recently, a core collection of 3000 rice
accessions from 89 countries were re-sequenced and 18.9 million
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FIGURE 1 | Phenology datasets during the life cycle of a crop grown under field conditions. Time series omics data such as transcriptome, epigenome, and
metabolome/hormonome data can be acquired as sequential “snapshots” throughout the crop life cycle. Parameters regarding field environment including air and
soil conditions can be acquired as “streamed” datasets.

single nucleotide polymorphisms (SNPs) were found (Li et al,
2014a). A whole-genome resequencing dataset on a population
wide scale can provide an important resource especially for
understanding the demographic history of a domesticated
species, and facilitate recognition of alleles associated with
adaptive phenotypic variations, for example, tolerance of
particular environments, by applying the resequencing dataset
together with a dataset of the trait based on a genome-wide
association study (GWAS).

Genotyping by sequencing or RNA-seq based genotyping are
more affordable approaches than whole genome sequencing for
genome-wide and population wide genotyping. GBS is a popular
method that provides a rapid and robust approach for identifying
sequences with a low level of representation in multiplex samples
(Elshire et al., 2011; Poland et al., 2012). A number of genome-
wide polymorphism datasets have been obtained from GBS
analysis, for example, 2815 accessions of the USA national maize
inbred seed bank using 681,257 SNPs (Romay et al., 2013), 971
worldwide accessions of sorghum with ~265,000 SNPs (Morris
et al., 2013), and 304 short-season soybean lines with >47,000
SNPs (Sonah et al., 2015); these have also been applied to GWAS
analysis (so called GBS-GWAS analysis).

High-throughput genome-scale genotyping is a key technology
to finding adaptive genes that might be of promise for improving
crop productivity in particular environments. Careful analysis
of associations between genome-wide patterns of polymorphism
and phenotypic variations in adaptive traits holds great promise

for elucidating crop species domestication histories at both
the ecological and evolutionary levels (Huang and Han, 2014).
Furthermore, such analyses enable the estimation of the genetic
effects of candidate allelic combinations and quantification of
heritability, which are critical parameters to production of reliable
allelic combinations in the designed crop varieties.

Omics-Based Elucidation of Crop
Phenology

Crops in the field are exposed to multiple environmental stimuli.
Crop life cycle changes are often triggered by environmental
signals, for example, temperature- and photoperiod-related cues
for flowering, and timely initiation of these developmental
changes is critical to final productivity. Therefore, understanding
the physiological responses of crops to seasonal and short-
term fluctuations in the environment is vital to estimation
of their potential impact on the crop life cycle and eventual
yield. For this purpose, omics-based long-term chronological
profiling of crops under field conditions is an efficient strategy
for characterizing phenological responses in gene regulatory
networks. Such analyses provide insights into the regulation of
gene functions in response to environmental fluctuations and
are an aid for the identification of genes that are key mediators
between environmental signals and crop productivity (Gibson,
2008).
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Time-series transcriptome analysis during plant life cycles has
become an efficient approach to infer phenological responses
under variable environmental conditions. Richards et al. (2012)
performed a time-series transcriptome analysis in A. thaliana
shoots in the field from seedling to reproductive stages and
found enrichment of several co-expressed gene clusters that
were induced by abiotic and biotic stresses. Several studies
have investigated the dynamics of genome-scale gene expression
patterns using transcriptome analysis of a life cycle sample series
from cultivated rice plants grown under field conditions (Sato
et al., 2011; Nagano et al., 2012; Matsuzaki et al., 2015). It was
shown that mathematical modeling and prediction of genome-
wide transcriptional changes under field conditions could be
successfully carried out based on life cycle transcriptome datasets
and meteorological datasets (Nagano et al, 2012). Similarly,
the transcriptome in a single clone of a grapevine cultivar was
recorded over three consecutive years in 11 vineyards and it was
demonstrated that the additive effects of temperature and water
availability particularly influenced grape quality (Dal Santo et al.,
2013).

Gene expression in response to developmental and
environmental signals are often regulated by epigenetic
mechanisms through small RNAs, histone modifications
and DNA methylation (Chinnusamy and Zhu, 2009; Kinoshita
and Seki, 2014). Recent studies in plants have shown that
epigenetic mechanisms are involved in some important biological
processes such as genomic imprinting, defense responses to
pathogens, acclimation to abiotic stresses, and vernalization
responses (Ikeda, 2012; Kim et al., 2012; Woods et al., 2014;
Liu et al, 2015). Furthermore, some of these epigenetic
modifications are inherited through mitotic and meiotic cell
divisions. The meiotically heritable epigenetic modifications
are termed “epialleles” and can cause heritable phenotypic
variation (Kalisz and Purugganan, 2004; Weigel and Colot,
2012). In epigenetic regulation of plant stress tolerance, non-
heritable epigenetic modifications are involved in acclimation
as a short-term stress resistance response. Mitotically and
meiotically heritable epigenetic modifications function as a
“stress memory” within and across generations, respectively
(Chinnusamy and Zhu, 2009). A recent study of epigenetic
recombinant inbred lines (epiRILs) of A. thaliana showed that
variations in DNA methylation cause heritable variation of
ecologically important plant traits, such as root allocation,
drought tolerance and nutrient plasticity (Zhang et al., 2013).
Plant epigenome data are therefore vital to the understanding of
epigenetic and genetic regulation of phenotypic diversity (Schmitz
et al., 2013). It is now recognized that epigenetic diversity in
populations and epigenetic changes in response to environmental
fluctuation are also considerable factors in adaptation and
evolution and could be a resource for improvement of crop stress
tolerance.

Phenome analyses provide datasets on a variety of phenotypes
using mutants and/or natural variants. With large-scale loss-of-
function or gain-of-function mutants, phenome analyses using
artificially induced mutants have played an essential role in
discovering genes involved in phenotypic changes and for
determining their biological functions (Kuromori et al., 2006,

2009). Recent advances in technologies such as sensors, imaging,
and internet communication have begun to provide various tools
for high-throughput plant phenotyping under field conditions
(Klukas et al, 2014; Li et al, 2014b; Fahlgren et al, 2015;
Grosskinsky et al., 2015). Remote phenotyping of crops in the
field is emerging as a feasible application for drones with multiple
sensors, not only for trait analysis in genetics but also for
precision agriculture (Liebisch et al., 2015). Hand-held devices
that aid phenotyping can be an efficient tool to carry out high-
throughput phenotypic data acquisition (Vankudavath et al,
2012). Integration of imaging and sensing technologies have
provided tools for non-invasive approaches to monitor biometrics
of growing crops (Busemeyer et al, 2013; Li et al, 2014b;
Kjaer and Ottosen, 2015). High-throughput plant phenotyping
approaches have been synergistically applied to genetics to
accelerate gene discovery in crops. For example in rice, a high-
throughput rice phenotyping facility (HRPF) makes it possible
to monitor 15 traits during the rice growth period; and these
data can be applied to GWAS (Yang et al., 2014). In addition
to conventional phenotyping, quantitative molecular profiles
from various high-throughput analytical techniques such as
metabolomics could be used as a comprehensive dataset of
molecular phenotypes.

Metabolome analysis provides a comprehensive molecular
snapshot based on metabolites synthesized in biological reactions.
It can be affected by various factors, such as genetic and epigenetic
factors, developmental stages and organs, environmental stimuli
and diseases. Therefore, it could be thought that the metabolome
can represent chemical phenotypes reflecting the physiological
state in an organism (Mochida et al, 2009; Sakurai et al,
2013). The combinatorial use of high-throughput metabolome
profiling and GWAS has become an efficient strategy to reveal
the genetic architecture of biochemical properties in plants
(Adamski and Suhre, 2013; Wen et al., 2014; Matsuda et al., 2015).
Metabolome profiling at different plant developmental stages
can provide stage-dependent information on the physiological
state of the plant in response to the environment during the
lifecycle (Onda et al., 2015). Therefore, chronological metabolome
analysis throughout the plant life cycle under field conditions
will also be a vital strategy to describe the physiological
state and to extract state factors associated with traits in
crops.

Computer Aided Understanding of
Biological Phenomena in Plants

As described above, recent advances in omics analytical
technologies have produced a wealth of genome-scale datasets
even from crops growing in field conditions. One of the
important issues in bioinformatics is how to deal with such large
and heterogeneous datasets, and to establish heuristic procedures
to accelerate gene discovery (Mochida and Shinozaki, 2011).
Information resources such as databases and computational tools
are extremely important for effectively handling genome-scale
datasets. Additionally, data storage for omics datasets must ensure
persistence and retrieval functionalities for shared use (Mochida
and Shinozaki, 2011).
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To gain a mechanistic understanding of biological systems,
mathematical modeling and simulation approaches have been
applied to the study of plant cellular metabolism, growth,
developmental processes, and responses to the environment
(Aikawa et al., 2010; De Vos et al., 2012; Katsuragi et al., 2013;
Satake et al., 2013; Miyazaki et al., 2014). Mathematical modeling
approaches are also used to understand a wide range of biological
functions in growth, survival, and reproduction in plants, for
example, in the circadian regulation of plant carbohydrate
metabolism (Webb and Satake, 2015), phloem sucrose transport
associated with rice grain yield (Seki et al., 2015), and silicon
uptake in rice roots (Sakurai et al., 2015).

Machine learning is a field of computer science for the design
of computational algorithms that automatically improve with
experience. In the last two decades, this research field has
dramatically advanced with the emergence of artificial intelligence
and data science, and has been applied in various fields in science,
technology and commerce (Jordan and Mitchell, 2015). Machine
learning is also used in applications for the analysis of genome-
scale datasets and other large-scale omics datasets in life science
(Libbrecht and Noble, 2015). Learning methods in machine
learning are usually classified into two primary categories of

supervised and unsupervised learning. The supervised machine
learning aims to produce an algorithm to predict output on
unknown input via a training process using a dataset of known
pairs of input and output. The unsupervised machine learning
methods are used to extract structures and identify their features
in a given dataset without examples for training. Computational
modeling using machine learning has been performed recently
with the aim of predicting gene networks based on large-scale
transcriptome datasets in plants. For example, in Arabidopsis,
supervised machine learning was used to build a network model
of responses to stress conditions, to explore genes related to
stress responses, and to predict molecular interactions (Ma
et al., 2014; Nourani et al., 2015). Machine learning provides a
data-driven approach to extract latent rules or patterns from a
comprehensively collected dataset without any biased view on the
biological phenomena of interest (Figure 2).

Conclusion and Future Perspectives

Cross-disciplinary research, including computer science,
functional genomics, and crop phenology, will provide a unique
opportunity to establish technologies for data-driven crop
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design to prevent crop yield shortfall under changing future
environments. It is expected that a synergy of life science and
data science will allow us to perceive novel and latent values
underlying the observed dataset by unbiased data-driven analyses.
Unbiased illustration of physiological state dynamics of crops
growing under field conditions could be an efficient strategy
to figure out features of genetic factors but also “state factors”
that determine eventual agronomical traits. Another issue for the
data-driven approach is how we fill the gap between findings
from model plants studied in laboratories and those from crops
under field conditions to generalize our knowledge on plant
systems including those in response to environmental changes.
Complementary use of hypothesis-driven and data-driven
approaches should be a practical way for further understanding
of physiological responses to field environments with cross-
referencing to knowledge from model plants that has been
accumulated in laboratories. Therefore, platforms for computing
and linking life science data will also play more significant roles
in research on data-driven crop breeding.
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