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After yield, quality is one of the most important aspects of rice breeding. Preference for
rice quality varies among cultures and regions; therefore, rice breeders have to tailor
the quality according to the preferences of local consumers. Rice quality assessment
requires routine chemical analysis procedures. The advancement of molecular marker
technology has revolutionized the strategy in breeding programs. The availability of rice
genome sequences and the use of forward and reverse genetics approaches facilitate
gene discovery and the deciphering of gene functions. A well-characterized gene is
the basis for the development of functional markers, which play an important role in
plant genotyping and, in particular, marker-assisted breeding. In addition, functional
markers offer advantages that counteract the limitations of random DNA markers.
Some functional markers have been applied in marker-assisted breeding programs and
have successfully improved rice quality to meet local consumers’ preferences. Although
functional markers offer a plethora of advantages over random genetic markers, the
development and application of functional markers should be conducted with care.
The decreasing cost of sequencing will enable more functional markers for rice quality
improvement to be developed, and application of these markers in rice quality breeding
programs is highly anticipated.

Keywords: quantitative trait loci (QTL), DNA markers, rice quality, marker-assisted breeding (MAB),
micronutrients, sequencing technology

Introduction

The important attributes of rice are its cooking and eating qualities, its phytochemicals and its
micronutrients. The quality of rice needs to match the preferences of local consumers in order
to be acceptable. Generally, Japanese people prefer short and sticky rice, whereas Indians prefer
aromatic basmati rice which elongates when cooked. Furthermore, rice quality affects the market
value, given that better quality rice is able to fetch a higher premium. Indian basmati rice and
Thai jasmine rice are highly priced due to their distinctive aroma when cooked. The growing
income and food diversification in Asian countries such as China (Sumner et al., 2001) and
some European countries (Ferrero and Nguyen, 2004) have led consumers to prefer better quality
rice.
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While people in some parts of the world seek a better
cooking and eating quality of their rice, people in other
areas seek improved nutrition. Although micronutrients are
only required in small quantities, they are necessary to
maintain proper bodily function. In fact, two billion people
worldwide suffer from micronutrient deficiencies, particularly
in vitamin A, iodine, iron (Fe), and zinc (Zn) (World Health
Organization, 2007). Therefore, research has been undertaken
to increase the micronutrient content in rice to avert nutrient
deficiency in the human diet, especially for populations
where micronutrient deficiency is prevalent. Recently, Zn-
biofortified rice has been developed to avert Zn deficiency
in the diet of Bangladeshi people, particularly in children
(Ahmad, 2013). The International Rice Research Institute
(IRRI) is expected to release Fe-rich rice by the year 2029
to alleviate Fe deficiency anemia in needy countries (David,
2014).

Due to consumers’ demand for better rice quality, rice
breeders all over the world are endeavoring to develop rice
varieties with improved qualities that meet local demand.
The quality of a rice variety is assessed after harvesting
the grains from the plant. Prior to an assessment of the
acceptability of the rice variety by panelists, the quality
parameters of cooking and eating quality, and phytochemical
and micronutrient composition are determined by using
standard procedures (Dela Cruz and Khush, 2000).
Determination of the quality parameters in each individual
plant is laborious and time consuming. Certain chemical
analyses might require large grain samples, which can be
destructive to the plant material, especially during the
early stage of breeding when the breeder’s seed supply is
limited.

The advent of molecular marker technology in genetic
analysis has revolutionized the research on rice quality.
From the time scientists first ventured into using molecular
markers, from the earliest protein markers to the current
DNA markers, substantial effort in molecular mapping has
identified chromosome regions carrying genes of interest.
Undeniably, commonly used DNA markers, such as restriction
fragment length polymorphism (RFLP), randomly amplified
polymorphic DNA (RAPD), and simple sequence repeats (SSRs)
have contributed to the mapping and association studies
that led to the discovery of genes of interest. However,
these DNA markers are derived randomly from polymorphic
sites of the genome, and some can be located far from
the gene of interest, which might be independent from the
phenotype. Functional markers (FMs, also known as perfect
markers) are an alternative to random DNA markers. FMs
are developed from polymorphic sites within genes that
cause phenotypic trait variation (Andersen and Lübberstedt,
2003). In contrast with random DNA markers, FMs are
directly linked to the allele of the trait of interest (Varshney
et al., 2005). Therefore, FMs are outcompeting random DNA
markers, especially in marker-assisted breeding (MAB). Thus
far, numerous FMs have been developed for the breeding
of quality rice (Table 1), and some of them have been
applied to breeding programs that have delivered desirable

quality traits unambiguously (Yi et al., 2009; Jin et al.,
2010).

Advantages of FMs over Random DNA
Markers

The advantage of FMs is that they can be applied to any
population; random markers discovered from quantitative trait
loci (QTL) mapping might be population specific. Parents from
the QTL mapping have different genetic backgrounds, and
might not be polymorphic when applied to other populations
(Lübberstedt et al., 2005; Miklas et al., 2006; Gupta et al., 2010). In
contrast, FMs can be used regardless of the genetic background
of the population under study and applied to any population
without revalidating markers or the QTL relationship (Gupta
et al., 2010).

FMs are developed from functional gene motifs and, therefore,
have complete linkage to the desired allele (Andersen and
Lübberstedt, 2003). Due to the complete linkage of an FM with
the target gene and the absence of recombination between the
marker and the gene, the loss of information and the false
selection in MAB can be prevented (Ingvardsen et al., 2008).
Phenotypic validation in MAB that uses random DNAmarkers is
essential to ensure that the target gene andmarker are transferred
together to the progeny; however, using FMs eliminates the need
for phenotypic validation (Andersen and Lübberstedt, 2003).
Therefore, FMs are more efficient than random DNA markers in
MAB applications.

Another major concern in MAB is linkage drag. Random
DNA markers might be located far from the target genes;
therefore, when they are applied in MAB, a larger donor segment
will be introgressed into the recipient parent or backcross
progeny. Undesirable genes might be transferred along with the
target gene, resulting in reduced performance of the phenotypic
trait. To minimize linkage drag in MAB, Hospital (2001)
suggested the use of flanking markers closely linked to the
introgressed gene in a large population size to obtain double-
recombinant genotypes. Alternatively, FMs can reduce linkage
drag, particularly in foreground selection by genotyping a smaller
population size (Bagge and Lübberstedt, 2008; Gupta et al.,
2010).

A Brief Review on the Genetics of Rice
Quality

Eating quality refers to the consumers’ sensory perception
of cooked rice, which is related to characters such as flavor
and texture (Hsu et al., 2014). Cooking quality refers to
chemical reactions resulting from the cooking of the grain,
such as gelatinization temperature (GT), kernel elongation,
and water uptake (Juliano and Perez, 1984; Hsu et al., 2014).
Amylose, a constituent of starch which comprises approximately
95% of the grain dry weight (Fitzgerald et al., 2009), is an
important determinant of eating and cooking qualities. In
addition, amylose content (AC) affects the glycemic index
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TABLE 1 | Candidate genes for Functional marker (FM) development and developed FM available for quality rice breeding.

Trait Gene Reference Rice variety used FM available Method of FM
identification

Fragrance Badh2 Bradbury et al., 2005a Sequence alignment of 14 fragrant on
64 non-fragrant varieties, mapping with
F2 of Kyeema × Gulfmont

Bradbury et al., 2005b;
Amarawathi et al., 2008, Shi
et al., 2008; Sakthivel et al.,
2009, Myint et al., 2012
Vanavichit et al., 2010

QTL mapping,
map-based cloning
and association
studiesChen et al., 2008 Sequence alignment of 93-11 and

Nipponbare Transformation,
RNAi, and
comparing isogenic
lines

Shi et al., 2008 Sequence alignment of 24 fragrant rice
varieties and ten non-fragrant varieties,
mapping of F2 of
Xiangjing02-5855 × Xiangxuenuo

Vanavichit et al., 2010 Sequence alignment of Khao Dawk
Mali (KDML) and Nipponbare,Screening
of F6 of KDML × Jao Hom Nin

Amylose
content (AC)

Wx Ayres et al., 1997 Ninety-two US rice cultivars and
breeding lines

Chen et al., 2010; Gao et al.,
2012

Association studies

Mikami et al., 2008 Near isogenic lines (NILs) of Taichung
65

Teng et al., 2012 Single segment substitution lines
(SSSLs) from 16 donors and
Hua-jing-xian74

Grain size GS3 Aluko et al., 2004 Doubled haploid BC3F1 of
Caiapo∗4/Oryza glaberrima

Ramkumar et al., 2010
Wang et al., 2011

Association studies
Association studies

Fan et al., 2006 BC3F2 of Minghui 63∗4/Chuan7

Gelatinization
temperature

SSIIa Umemoto et al., 2002 BC1F8 of Nipponbare∗2/Kasalath Bao et al., 2006 Association studies

Waters et al., 2006 Seventy rice varieties originating from
different countries and breeding lines
from Australia

Gao et al., 2011 Map-based
cloning, association
studies

Bao et al., 2006 Sequencing analysis of 30 rice varieties,
association studies of 509 rice samples

Lu et al., 2010 Association
mapping

Iron (Fe) OsYSL1, OsMTP1 Anuradha et al., 2012 F6 recombinant inbred lines (RILs)
derived from the cross
Madhukar × Swarna

Have yet to be developed

OsFER1,OsFER2 Gross et al., 2003 Indica variety genome from Genomic
BLAST

Zinc (Zn) OsARD2
OsIRT1
OsNAS1
OsNAS2

Anuradha et al., 2012 F6 RILs derived from the cross
Madhukar × Swarna

Fe and Zn OsNAS gene family Johnson et al., 2011 Transformation of Nipponbare

OsNAS3, OsNRAMP1,
Heavy metal ion
transport, APRT

Anuradha et al., 2012 F6 RILs derived from the cross
Madhukar × Swarna

of a diet (Juliano and Goddard, 1986; Miller et al., 1992;
Fitzgerald et al., 2011). Amylose is synthesized by granule
bound starch synthase 1 (GBSSI) (Smith et al., 1997), which
is encoded by the Waxy gene. At present, many Waxy alleles
that correspond to different AC classes have been reported.
The five common alleles are wx, Wxt , Wxg1, Wxg2, and
Wxg3, which correspond to glutinous, low, intermediate, high
I, and high II classes of apparent AC, respectively (Teng
et al., 2012). In addition to these common alleles, a rare
allele, Wxop, has been reported by Mikami et al. (2008). The
identified alleles have given researchers the ability to develop
FMs to develop rice varieties with desired AC by using
MAB.

The Waxy gene has been reported to affect the gel
consistency (GC) and GT of rice (Tan et al., 1999; Wang

et al., 2007; Tian et al., 2009). Studies have confirmed
that Waxy gene affects both AC and GC (Fan et al.,
2005; Zhang et al., 2012). Although GT has been reported
to be influenced by the Waxy gene, a major QTL
corresponding to the alkali degeneration locus (alk) was
found to control GT (Tian et al., 2005; Wang et al., 2007).
The starch synthase IIa gene (SSIIa), located at the alk
locus (Umemoto et al., 2002), is reported to have several
functional single nucleotide polymorphisms (SNPs), SNP2,
SNP3 (Umemoto and Aoki, 2005; Waters et al., 2006),
and SNP4, (Bao et al., 2006; Waters et al., 2006) that affect
GT.

Rice grain appearance is an important aspect that affects
the visual preference of consumers. A major QTL on
chromosome 3 has been found to be responsible for grain
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length (Aluko et al., 2004; Fan et al., 2006). A comparative
sequencing study between short- and long-grain varieties
showed that the second exon of the putative grain length
gene GS3 has a nonsense mutation that is found in long-
grain varieties (Fan et al., 2006). On the other hand, a
loss of function mutation in GW2, a QTL located on
chromosome 2, affects the grain width and weight (Song
et al., 2007).

Fragrant rice varieties, such as basmati and jasmine, are
of great interest to consumers due to their distinctive flavor.
Researchers have identified many chemical compounds that
contribute to the fragrance of fragrant rice (Yajima et al., 1979;
Petrov et al., 1996). Of the identified chemical compounds,
2-acetyl-1-pyrroline (2AP) has been found to be the most
significant compound in conferring fragrance to fragrant rice
(Buttery et al., 1983, 1988). The elevated levels of 2AP in
fragrant rice are thought to be due to a deletion within
exon 7 (Bradbury et al., 2005a; Amarawathi et al., 2008) or
exon 2 (Shi et al., 2008) of the gene encoding the enzyme
betaine aldehyde dehydrogenase (BADH2), which is located
on chromosome 8. These mutations render BADH2 non-
functional, resulting in the accumulation of 2AP (Bradbury
et al., 2005a, 2008). However, the deletions within exon 2
and exon 7 are likely not the only mutations for fragrance
because there are varieties without them that accumulate 2AP
(Fitzgerald et al., 2008). Fitzgerald et al. (2008) suggest that
other mutations could influence BADH2 or that there exist
other biochemical pathways, such as the one proposed by
Huang et al. (2008), in addition to the pathway proposed by
Bradbury et al. (2008), that lead to 2AP accumulation. Hence,
the genetics and biochemical pathways of fragrance should be
investigated by researchers to further understand fragrance in
rice.

The micronutrients Zn and Fe are present in low quantities
in rice, especially in the polished grain (Mayer et al.,
2008). Therefore, biofortification strategies are undertaken
to enhance the nutritional quality of rice in order to
avert micronutrient deficiencies in populations for whom
rice is the staple food and who have limited access to
other fortified foods or micronutrient supplements (Bouis
and Welch, 2010). However, biofortification in rice is no
simple task. Sperotto et al. (2012) stated five constraints for
concern in Fe biofortification: uptake from the soil, loading
of the xylem, transport through the phloem, unloading at
the base of the grain, and grain sink strength. The genetic
engineering approach has reported success in increasing Zn
and Fe content by overexpression of genes such as ferritin
and those of the OsNAS gene family, which encode proteins
that serve different purposes such as Fe accumulation or
the transport of Fe ions (Johnson et al., 2011; Paul et al.,
2012). Many QTLs for Zn and Fe have been reported,
and candidate genes and linked markers have also been
identified (Lu et al., 2008; Garcia-Oliveira et al., 2009; Sperotto
et al., 2010; Anuradha et al., 2012). Based on specific QTLs,
linked markers and candidate genes, the development of
FMs for Zn and Fe improvement is anticipated for MAB
programs.

Progression toward FMs for Quality Rice
Breeding

Before the era of molecular marker technology, grain quality
was evaluated on palatability, and the presence or absence of a
certain trait, such as aroma. The evaluation of rice quality can
also be performed visually, providing morphological data, which
can then be represented by a morphological marker. Scientists
investigate the proteins or enzymes underlying a specific trait,
known as an allozyme marker, to discover the exact cause of the
trait. Due to ambiguity and the limited information that can be
extracted from enzyme analysis (Murphy et al., 1996), scientists’
attention has shifted toward DNAmarkers.

One classic example of DNA markers is the RFLP marker.
RFLP is a hybridization based marker that utilizes restriction
enzymes to cut the DNA at specific restriction sites. Single
nucleotide changes, insertions or deletions cause changes
in restriction sites, resulting in different molecular weight
restriction fragments and variation between individuals. RFLP
markers were used to map genes to chromosomes. Once a RFLP
marker has been positively identified as linked to the putative
gene controlling the trait under study, further investigation,
such as chromosome walking, cloning, or sequencing of the
gene, is undertaken. For instance, the gene controlling fragrance
was initially mapped by Ahn et al. (1992) using a RFLP
marker; using near isogenic lines (NILs), RFLP analysis showed
that the fragrance gene (fgr) is linked to marker RG28 on
chromosome 8.

The introduction of PCR-based markers such as SSR
has increased scientists’ knowledge of the genetic map. The
locus for a certain trait previously mapped with RFLP is
saturated with SSR markers, thereby increasing proximity
to the gene. In the case of fragrance, the fgr locus was
mapped with SSR markers after it was discovered (Chen
et al., 1997; Cho et al., 1998). Subsequently, the identified
SSR markers have facilitated the development of SSR
markers closely linked to the fgr, such as that developed
by Garland et al. (2000) which detects changes in the
mononucleotide repeat of thiamine, (T)n. This marker was
unable to discriminate between genotypes using low-resolution
agarose gels and was not polymorphic for some rice variety
combinations; therefore, Cordeiro et al. (2002) developed
another SSR marker based on the (AT)40 repeat for fragrance
genotyping.

Researchers’ efforts to identify linked markers have facilitated
further exploration into the genes responsible for rice quality
traits. Sequencing the rice genome has also facilitated gene
discovery (IRGSP, 2005; 3K RGP, 2014); now that rice genomic
sequence data are available, genotype sequences of rice with and
without a desirable trait can be compared, leading to discovery of
the sequence underlying the trait. Using a linked SSR marker and
a bacterial artificial chromosome (BAC), Bradbury et al. (2005a)
identified the sequence polymorphism between fragrant and non-
fragrant varieties, that is an 8-bp deletion and three SNPs and
found the gene (later known as badh2) that codes for BADH2
whose functionality determines 2AP accumulation in rice. Based
on sequence polymorphism and allele variation studies on
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different fragrant genotypes, researchers have developed FMs
for use in genotyping and breeding (Bradbury et al., 2005b;
Amarawathi et al., 2008; Shi et al., 2008; Sakthivel et al., 2009;
Vanavichit et al., 2010; Myint et al., 2012). The progress of
FM development for the example of fragrance is shown in a
simplified manner in Figure 1. Some of the FMs developed
by researchers for use in quality rice breeding are listed in
Table 1.

The Development and Applications of
FMs in Quality Rice Breeding

The development of FMs involves a series of steps (Figure 2). The
initial step is discovery of the gene that controls the trait. Forward
and reverse genetics approaches facilitate the identification of
genes that casually affect phenotypic variation. One method of
gene identification is by QTL mapping, which identifies loci that
underlie the gene or genes that contribute to the trait. Family-
based QTLmapping requires the development of a pedigree from
crosses between different genotypes and their resulting progeny.
Over the years, many family-based QTL mapping studies,
especially bi-parental QTL mapping, have been conducted for
rice quality traits. However, in family-based QTL mapping, the
recombination events are limited to the generations of the family
and therefore provide low resolution (Mitchell-Olds, 2010). To
improve the resolution of QTL mapping and promote more
recombination events, researchers can opt for multiple-parent
advanced generation inter-cross (MAGIC). Bandillo et al. (2013)
have developed a MAGIC population from half diallel-mating of
eight varieties; conducted genotyping by sequencing (GBS) on
200 indica MAGIC lines and identified major genes and QTLs
for many traits that influence grain quality, such as Waxy and
GS3. Conversely, population-based QTL mapping and genome-
wide association studies (GWAS) take into account the historical
recombination events that have accumulated over thousands of
generations and are, therefore, able to provide higher resolution
(Mitchell-Olds, 2010). GWAS utilizes more than 100 genotypes
with diverse backgrounds, which leads to a broader genetic
base (Mitchell-Olds, 2010). GWAS investigates genome-wide
association between SNPs and phenotypes, utilizing an array-
based SNP detection platform or next generation sequencing
(NGS). Chen et al. (2014) developed an array-based genotyping
tool called RiceSNP50 and identified a locus in the same region
as the GS3 locus. Huang et al. (2010) utilized NGS and conducted
GWAS on 373 indica lines for 14 agronomic traits important
to grain quality and identified major genes such as Waxy and
the alk locus, which were similar to those reported by other
researchers and other minor genes. Their study showed that
GWAS has the potential to identify genes that contribute to
natural variation of complex traits. Although the cost for this
sequencing platform may be high, with time, it will be made
affordable to all researchers. With the marker linked to the
loci, target genes can be isolated by map-based cloning (or
positional cloning), expression profiling (Duan and Sun, 2005)
or transposon tagging, enabling researchers to investigate gene
function.

FIGURE 1 | A chart of simplified progress of functional marker (FM)
development for trait used as an example, fragrance, with reference to
Ahn et al. (1992) and Bradbury et al. (2005a).

The candidate gene approach has been used in various crop
plants to identify genes that contribute to phenotypic variation.
Because rice is composed mostly of starch, genes related to starch
synthesis are targets of study. Tian et al. (2009) selected 18 starch
synthesis-related genes and conducted an association study with
AC, GC, and GT. According to Pflieger et al. (2001), genetic
transformation is required to determine whether the candidate
gene is the gene that causes the trait variation. Tian et al. (2009)
have verified the role of each gene in the starch synthesis system
by transformation. Their results suggest that selection of a single
gene might be insufficient because starch synthesis-related genes
cooperate with each other to form a network that determines AC,
GC, and GT; therefore, modifying a single gene may alter these
three properties. The verified candidate genes from this study can
potentially be used in FM development.

Currently, the availability of the rice genome sequence
(IRGSP, 2005; 3K RGP, 2014) facilitates gene discovery.
Despite this resource, not all genes have had their functions
characterized. Well-characterized gene function is a prerequisite
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FIGURE 2 | Flow chart of the development and applications of FMs.

of FM development. There are several methods by which
researchers can determine a gene’s function, including
genetic transformation, RNA interference (RNAi) and

mutant characterization. To determine the function of the
OsBADH2 gene, Niu et al. (2008) used RNAi combined with
Agrobacterium tumefaciens-mediated T-DNA transfer. Their
results demonstrated that down-regulated expression of the
OsBADH2 gene resulted in increased 2AP, thereby validating
OsBADH2 as a gene that affects fragrance in rice. Bradbury et al.
(2008) proposed a pathway involving BADH2 that leads to 2AP
accumulation; this pathway was supported by Chen et al. (2008),
who studied it by transformation. A study by Gross et al. (2003)
reported the ferritin genes OsFER1 and OsFER2. An expression
profile study on OsFER1 and OsFER2 was then conducted by
Stein et al. (2009), who showed that treatment with copper, excess
Fe, and other metals causes differential expression of OsFER1
and OsFER2. Paul et al. (2012) showed that overexpression
of theOsFER2 gene led to increased Fe and Zn levels in T3
transgenic plants.

Polymorphisms in the alleles that contribute to variation in
phenotype can be in the form of SNPs, insertions/deletions
(Indels) or SSRs. The relationship between the allelic
polymorphism and the phenotypic variation is tested by
either indirect or direct proof of allele function (Andersen and
Lübberstedt, 2003). Association study is an indirect approach for
proving allele function, which provides statistical proof of the
relationship between the allele polymorphism and phenotype.
Association studies rely on linkage disequilibrium (LD)
(Andersen and Lübberstedt, 2003), which plays an important
role in association studies because it affects the fine mapping
of agronomically important genes. Because rice (Oryza sativa)
is an autogamous species, the LD of approximately 75 kb for
the indica variety is considered high; therefore it is eligible for
genome-wide LD association mapping (Mather et al., 2007; Zhao
et al., 2011).

Alternatively, reverse genetics approaches such as homologous
recombination (HR) or targeted induced local lesions in genomes
(TILLING) can be used to directly identify motif function. HR
is the locus-targeted integration of alleles to produce isogenic
genotypes to obtain direct proof of allele function (Andersen
and Lübberstedt, 2003; Hanin and Paszkowski, 2003). Research
by Terada et al. (2002) used gene targeting by HR to investigate
the Waxy locus in rice with a positive/negative selection
vector; these researchers obtained approximately 1% survival
of transformants, suggesting that the method can be useful for
gene-targeting or gene-knockout. The effects on the phenotypes
of organisms generated from HR can, therefore, provide direct
proof of allele function.

Targeted induced local lesions in genomes approach involves
mutagenesis to create variations of mutants which are then
subject to high-throughput screening for mutation discovery.
By using two Nipponbare populations treated with ethyl
methanesulphonate (EMS) or a combination of sodium azide
andmethyl-nitrosourea (Az-MNU), Till et al. (2007) reported
mutation rates of 1/294 kb and 1/265 kb, respectively. Suzuki
et al. (2008) reported a mutation rate of 1/135 kb from a Taichung
65 mutant population treated with MNU, suggesting that a high
mutation rate can be used to compliment other mutant resources
in rice. EcoTILLING, a variant of TILLING, has been effective at
revealing allele polymorphism and acts as a useful marker system
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for resistant genes in barley (Mejlhede et al., 2006). Recently, Tsai
et al. (2011) incorporated NGS with multidimensional pooling
into a TILLING protocol for identification of rare alleles. This
advent in sequencing, along with researchers’ substantial efforts,
will lead to the discovery of more alleles. Polymorphisms detected
inmutants from TILLINGor EcoTILLING provide proof of allele
function; when coupled with phenotypic data, these results can
facilitate the development of FMs.

Plant breeding has benefited from the advent of marker
technology. The application of markers in plant breeding
is known as MAB. MAB includes marker-assisted recurrent
selection (MARS), marker-assisted backcrossing (MABC), and
marker-assisted gene pyramiding. MABC is the most commonly
used technique in rice breeding. In foreground selection of
MABC, markers associated with the QTL or genes for the desired
trait are used to identify plants that carry the preferred allele,
allowing selection to be conducted at an early stage of the
breeding program. Using an FM rather than a linked DNA
marker can improve the selection precision. Because the FM is
in complete linkage with the target gene, the risk of linkage drag
and recombination between the marker and target gene can be
minimized, thereby reducing the chance of undesirable alleles
being passed down from the donor parent. Jin et al. (2010) applied
FMs to selectWaxy, badh2, and SSIIa genes in their backcrossing
scheme and successfully improved the AC, GT, and fragrance of
a maintainer line used for hybrid rice production. Study by Jin
et al. (2010) showed that the availability of FMs has made possible
the introgression of three traits simultaneously in a breeding
program. Moreover, using FMs saves time as it circumvents the
phenotypic evaluation on a limited number of seeds at every stage
of breeding that would be conducted in conventional breeding.

Marker-assisted breeding is particularly useful for traits
controlled by major QTLs or genes with large effects; however,
it may be ineffective for traits governed by many QTLs with
small effects or those influenced by the environment. Genomic
selection (GS), an alternative to MAB proposed by Meuwissen
et al. (2001), utilizes all marker and phenotypic data to estimate
marker effects and makes predictions of which individuals would
make the best parents. The genomic estimated breeding values
(GEBVs) are calculated from a training population, for which
both genotypic and phenotypic data have been collected and then
tested on the candidate population (Chen et al., 2013). Recently,
Spindel et al. (2015) attempted GS on rice for three traits:
flowering time, plant height, and grain yield. Their study reported
more accurate predictions of breeding line performance than
pedigree data alone. With its many strengths, GS is anticipated
to aid researchers in breeding for micronutrients such as Fe and
Zn where many QTLs or genes are involved.

Challenges in the Development and
Application of FMs in Breeding for
Quality Rice

Although a plethora of developed FMs are recommended for
application in quality rice breeding programs, researchers who
have used them have different experiences and opinions on use.

Amarawathi et al. (2008) and Sakthivel et al. (2009) reported
inconsistency of the allele-specific amplification (ASA) marker
system for fragrant rice genotyping developed by Bradbury et al.
(2005a). Conversely, Sarhadi et al. (2011) proved the efficacy and
efficiency of ASA markers in differentiating fragrant and non-
fragrant rice genotypes and the genotype matches the phenotype
accurately. These contrary views suggest that proper optimization
of the FM assay prior to its use is essential because an optimized
assay ensures reproducible results; therefore, optimization is
required prior to its application in breeding programs (Poczai
et al., 2013).

Another concern for the application of FMs is the pleiotropic
effects of certain genes on several traits (Chen and Lübberstedt,
2010; Brenner et al., 2013). Understanding the correlation among
characteristics or the pleiotropy of major genes allows breeders
to decide which traits should be directly or indirectly selected
or to compensate for the undesirable traits with favorable alleles
(Chen and Lübberstedt, 2010). Although major genes or QTLs
that influence GT and GC have been identified [SSIIa (Umemoto
et al., 2002), alk2(t) (Shu et al., 2006), and qGC-6 (Su et al.,
2011)], the effect of the Waxy gene on GT and GC (Lanceras
et al., 2000; Bao et al., 2003; Zhang et al., 2012), has yet to be
determined as pleiotropic or gene linkage. This create a challenge
to breeders in selecting the traits in breeding programs (Shu et al.,
2006).

Epistasis is another concern for breeders because it
complicates the inheritance of quality traits. If epistatic
effects of the genes are not taken into account, the associations
for a single gene might be inaccurate or misleading, thereby
hindering the development of FMs and causing inconsistency
in FM application (Brenner et al., 2013). Epistatic effects among
the QTLs controlling quality traits have been reported (Lee and
Koh, 2010; Anuradha et al., 2012; Liu et al., 2013); therefore,
researchers should discern the epistatic effects of the genes
influencing a trait in quality rice breeding.

The main advantage of an FM is that it would have complete
linkage with the desired allele; therefore, it could be applied
to any population, regardless of genetic background, without
having to revalidate the QTL relationship. While the above
statement is technically correct, there is a subtle complication
that needs to be mentioned. If a researcher selects on the
basis of an FM, the possibility remains that the phenotype of
interest is due to another allele that is in linkage disequilibrium
with the FM. However, the effect is small. Although no large-
scale assessment of linkage disequilibrium has been observed
in O. sativa, the seminal work by Garris et al. (2003) indicated
a linkage disequilibrium decay of 100 kb around a disease
resistance locus in the aus subpopulation. More recently, linkage
disequilibrium decays of 50 kb in indica, 5 kb in Oryza rufipogon
(Rakshit et al., 2007), 2 Mb in indica and tropical japonica,
and 500 kb in O. rufipogon have been reported by using gene-
based markers and phenotypes (Caicedo et al., 2007). The
physical extent of linkage disequilibrium around a gene defines
the efficiency of linkage disequilibrium mapping, which is the
consequence of several factors, including the degree of artificial
or natural selection on the gene or region of the genome, the
rate of outcrossing, recombination fraction, the age of the allele
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under study, chromosomal location, and the population size and
structure (Garris et al., 2003).

While the costs of development and establishment and
application of FMs in MAB might currently be a concern
to researchers, the costs of marker development and marker
genotyping are expected to drop in the near future (Lau et al.,
2014). Monsanto reported that price per molecular marker
decreased over sixfold from 2000 to 2006 (Eathington et al.,
2007). Cost for marker discovery by sequencing technology is also
expected to decrease over time (Wetterstrand, 2014). Therefore,
the advancement of sequencing technology is expediting gene
discovery and FM development.

Conclusion

There are more genes involved in eating, cooking, and the
nutritional qualities of rice that have not yet been discovered.
Whole-genome sequencing of rice has been conducted to identify

some of these genes. The discovery of genes and gene function
characterization can be conducted using the various approaches
of forward and reverse genetics. FMs could revolutionize the
selection strategy in quality rice breeding without linkage drag.
Because the cost of marker discovery by sequencing technology is
decreasing, the adoption of FMs in breeding programs, especially
MAB, is greatly anticipated. We envision that the utilization of
FMs will enable the incorporation of all genes for cooking, eating,
and nutritional qualities into one rice genotype.
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